• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

Using side effects for drug target identification

on

  • 367 views

 

Statistics

Views

Total Views
367
Views on SlideShare
367
Embed Views
0

Actions

Likes
0
Downloads
4
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Using side effects for drug target identification Using side effects for drug target identification Presentation Transcript

    • Using side effects for drug target identification Lars Juhl Jensen
    • the problem
    • new uses for old drugs
    • drug–drug network
    • shared target(s)
    • chemical similarity
    • Campillos & Kuhn et al., Science , 2008
    • Campillos & Kuhn et al., Science , 2008
    • similar drugs share targets
    • only trivial predictions
    • the idea
    • chemical perturbations
    • phenotypic readouts
    • drug treatment
    • side effects
    • the hard work
    • information on side effects
    • no database
    • package inserts
    • Campillos & Kuhn et al., Science , 2008
    • text mining
    • side-effect ontology
    • backtracking
    • Campillos & Kuhn et al., Science , 2008
    • manual validation
    • SIDER Kuhn et al., Molecular Systems Biology , 2010
    • side-effect correlations
    • Campillos & Kuhn et al., Science , 2008
    • GSC weighting
    • side-effect frequencies
    • Campillos & Kuhn et al., Science , 2008
    • raw similarity score
    • Campillos & Kuhn et al., Science , 2008
    • p-values
    • Campillos & Kuhn et al., Science , 2008
    • side-effect similarity
    • chemical similarity
    • Campillos & Kuhn et al., Science , 2008
    • confidence scores
    • reference set
    • incomplete databases
    • text mining
    • manual validation
    • MATADOR Günther et al., Nucleic Acids Research , 2008
    • Campillos & Kuhn et al., Science , 2008
    • text mining
    • Reflect.ws
    • Pafilis, O’Donoghue, Jensen et al., Nature Biotechnology , 2009
    • collaborate with industry
    •  
    • the results
    • drug–drug network
    • Campillos & Kuhn et al., Science , 2008
    • categorization
    • Campillos & Kuhn et al., Science , 2008
    • 20 drug–drug pairs
    • in vitro binding assays
    • K i <10 µM for 11 of 20
    • cell assays
    • 9 of 9 showed activity
    • the future
    • link side-effects to targets
    • direct target prediction
    • Acknowledgments
      • Side effects
        • Monica Campillos
        • Michael Kuhn
        • Anne-Claude Gavin
        • Peer Bork
      • Reflect.ws
        • Heiko Horn
        • Sune Frankild
        • Evangelos Pafilis
        • Reinhardt Schneider
        • Sean O’Donoghue
    • larsjuhljensen