Using side effects for drug target identification

291
-1

Published on

Published in: Health & Medicine, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
291
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Using side effects for drug target identification

  1. 1. Using side effects for drug target identification Lars Juhl Jensen
  2. 2. the problem
  3. 3. new uses for old drugs
  4. 4. drug–drug network
  5. 5. shared target(s)
  6. 6. chemical similarity
  7. 7. Campillos & Kuhn et al., Science, 2008
  8. 8. Campillos & Kuhn et al., Science, 2008
  9. 9. similar drugs share targets
  10. 10. only trivial predictions
  11. 11. the idea
  12. 12. chemical perturbations
  13. 13. phenotypic readouts
  14. 14. drug treatment
  15. 15. side effects
  16. 16. the hard work
  17. 17. information on side effects
  18. 18. no database
  19. 19. package inserts
  20. 20. Campillos & Kuhn et al., Science, 2008
  21. 21. text mining
  22. 22. side-effect ontology
  23. 23. backtracking
  24. 24. Campillos & Kuhn et al., Science, 2008
  25. 25. manual validation
  26. 26. SIDER Kuhn et al., Molecular Systems Biology, 2010
  27. 27. side-effect correlations
  28. 28. Campillos & Kuhn et al., Science, 2008
  29. 29. GSC weighting
  30. 30. side-effect frequencies
  31. 31. Campillos & Kuhn et al., Science, 2008
  32. 32. raw similarity score
  33. 33. Campillos & Kuhn et al., Science, 2008
  34. 34. p-values
  35. 35. Campillos & Kuhn et al., Science, 2008
  36. 36. side-effect similarity
  37. 37. chemical similarity
  38. 38. Campillos & Kuhn et al., Science, 2008
  39. 39. confidence scores
  40. 40. reference set
  41. 41. incomplete databases
  42. 42. text mining
  43. 43. manual validation
  44. 44. MATADOR Günther et al., Nucleic Acids Research, 2008
  45. 45. Campillos & Kuhn et al., Science, 2008
  46. 46. text mining
  47. 47. Reflect.ws
  48. 48. Pafilis, O’Donoghue, Jensen et al., Nature Biotechnology, 2009
  49. 49. collaborate with industry
  50. 50. the results
  51. 51. drug–drug network
  52. 52. Campillos & Kuhn et al., Science, 2008
  53. 53. categorization
  54. 54. Campillos & Kuhn et al., Science, 2008
  55. 55. 20 drug–drug pairs
  56. 56. in vitro binding assays
  57. 57. Ki<10 µM for 11 of 20
  58. 58. cell assays
  59. 59. 9 of 9 showed activity
  60. 60. the future
  61. 61. link side-effects to targets
  62. 62. direct target prediction
  63. 63. Acknowledgments Side effects – Monica Campillos – Michael Kuhn – Anne-Claude Gavin – Peer Bork Reflect.ws – Heiko Horn – Sune Frankild – Evangelos Pafilis – Reinhardt Schneider – Sean O’Donoghue
  64. 64. larsjuhljensen
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×