Predicting novel targets for existing drugs using side effect information

  • 926 views
Uploaded on

Systems Biology Workshop, Technical University of Denmark, Lyngy, Denmark, May 14-15, 2009

Systems Biology Workshop, Technical University of Denmark, Lyngy, Denmark, May 14-15, 2009

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
926
On Slideshare
0
From Embeds
0
Number of Embeds
7

Actions

Shares
Downloads
52
Comments
0
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Predicting novel targets for existing drugs using side effect information Lars Juhl Jensen
  • 2. the problem
  • 3. new uses for old drugs
  • 4. drug–drug network
  • 5. shared target(s)
  • 6. chemical similarity
  • 7. Campillos & Kuhn et al., Science , 2008
  • 8. Campillos & Kuhn et al., Science , 2008
  • 9. similar drugs share targets
  • 10. only trivial predictions
  • 11. the idea
  • 12. chemical perturbations
  • 13. phenotypic readouts
  • 14. drug treatment
  • 15. side effects
  • 16. the implementation
  • 17. information on side effects
  • 18. package inserts
  • 19. Campillos & Kuhn et al., Science , 2008
  • 20. text mining
  • 21. side-effect ontology
  • 22. backtracking
  • 23. Campillos & Kuhn et al., Science , 2008
  • 24. side-effect correlations
  • 25. Campillos & Kuhn et al., Science , 2008
  • 26. GSC weighting
  • 27. side-effect frequencies
  • 28. Campillos & Kuhn et al., Science , 2008
  • 29. raw similarity score
  • 30. Campillos & Kuhn et al., Science , 2008
  • 31. p-values
  • 32. Campillos & Kuhn et al., Science , 2008
  • 33. side-effect similarity
  • 34. chemical similarity
  • 35. Campillos & Kuhn et al., Science , 2008
  • 36. reference set
  • 37. drug–target pairs
  • 38. Campillos & Kuhn et al., Science , 2008
  • 39. drug–drug pairs
  • 40. score bins
  • 41. benchmark
  • 42. Campillos & Kuhn et al., Science , 2008
  • 43. fit calibration function
  • 44. Campillos & Kuhn et al., Science , 2008
  • 45. probabilistic scores
  • 46. the results
  • 47. drug–drug network
  • 48. ATC codes
  • 49. Campillos & Kuhn et al., Science , 2008
  • 50. categorization
  • 51. Campillos & Kuhn et al., Science , 2008
  • 52. Campillos & Kuhn et al., Science , 2008
  • 53. Campillos & Kuhn et al., Science , 2008
  • 54. map onto score space
  • 55. Campillos & Kuhn et al., Science , 2008
  • 56. the experiments
  • 57. 20 drug–drug relations
  • 58. in vitro binding assays
  • 59. Campillos & Kuhn et al., Science , 2008
  • 60. Campillos & Kuhn et al., Science , 2008
  • 61. Campillos & Kuhn et al., Science , 2008
  • 62. K i <10 µM for 11 of 20
  • 63. cell assays
  • 64. Campillos & Kuhn et al., Science , 2008
  • 65. 9 of 9 showed activity
  • 66. the future
  • 67. target side-effect profiles
  • 68. drug–target network
  • 69. integration with STITCH
  • 70. Acknowledgments
    • Monica Campillos
    • Michael Kuhn
    • Anne-Claude Gavin
    • Peer Bork