Mining literature and medical records

  • 552 views
Uploaded on

 

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
552
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
6
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Mining literature and medical records Lars Juhl Jensen
  • 2. literature mining
  • 3. exponential growth
  • 4.  
  • 5.  
  • 6. some things are constant
  • 7.  
  • 8. ~45 seconds per paper
  • 9. computer
  • 10. as smart as a dog
  • 11. teach it specific tricks
  • 12.  
  • 13.  
  • 14. named entity recognition
  • 15. comprehensive lexicon
  • 16. orthographic variation
  • 17. “ black list”
  • 18. Reflect.ws
  • 19. augmented browsing
  • 20. Pafilis, O’Donoghue, Jensen et al., Nature Biotechnology , 2009 O’Donoghue et al., Journal of Web Semantics , 2010
  • 21. small molecules
  • 22. proteins
  • 23. subcellular compartments
  • 24. tissues
  • 25. diseases
  • 26. information extraction
  • 27. no access
  • 28.  
  • 29. collaboration
  • 30.  
  • 31. medical record mining
  • 32. electronic patient journals
  • 33. psychiatric diseases
  • 34. F20 F200 Negation Family
  • 35. domain specific
  • 36. patient stratification
  • 37.  
  • 38.  
  • 39. comorbidity matrix
  • 40.  
  • 41. detailed phenotype data
  • 42. thousands of individuals
  • 43. coarse phenotype data
  • 44. millions of patients
  • 45. national discharge registry
  • 46. 6.2 million individuals
  • 47. 66 million admissions
  • 48. 119 million diagnoses
  • 49. comorbidity matrix
  • 50. confounding factors
  • 51. gender
  • 52. age
  • 53. obesity
  • 54. smoking
  • 55. thousands of known links
  • 56. surprising comorbidities
  • 57. embedded/impacted tooth
  • 58. neoplasms in oral cavity
  • 59. reporting bias
  • 60. predict future diseases
  • 61.
      • Reflect.ws
      • Sune Frankild
      • Heiko Horn
      • Evangelos Pafilis
      • Michael Kuhn
      • Reinhardt Schneider
      • Sean O’Donoghue
      • LPR-mining
      • Anders B Jensen
      • Søren Brunak
      • EPJ-mining
      • Francisco S Roque
      • Peter B Jensen
      • Robert Eriksson
      • Henriette Schmock
      • Marlene Dalgaard
      • Massimo Andreatta
      • Thomas Hansen
      • Karen Søeby
      • Søren Bredkjær
      • Anders Juul
      • Thomas Werge
      • Søren Brunak
    Thank you!
  • 62. larsjuhljensen