Mining literature and medical records

583
-1

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
583
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Mining literature and medical records

  1. 1. Mining literature and medical records Lars Juhl Jensen
  2. 2. literature mining
  3. 3. exponential growth
  4. 6. some things are constant
  5. 8. ~45 seconds per paper
  6. 9. computer
  7. 10. as smart as a dog
  8. 11. teach it specific tricks
  9. 14. named entity recognition
  10. 15. comprehensive lexicon
  11. 16. orthographic variation
  12. 17. “ black list”
  13. 18. Reflect.ws
  14. 19. augmented browsing
  15. 20. Pafilis, O’Donoghue, Jensen et al., Nature Biotechnology , 2009 O’Donoghue et al., Journal of Web Semantics , 2010
  16. 21. small molecules
  17. 22. proteins
  18. 23. subcellular compartments
  19. 24. tissues
  20. 25. diseases
  21. 26. information extraction
  22. 27. no access
  23. 29. collaboration
  24. 31. medical record mining
  25. 32. electronic patient journals
  26. 33. psychiatric diseases
  27. 34. F20 F200 Negation Family
  28. 35. domain specific
  29. 36. patient stratification
  30. 39. comorbidity matrix
  31. 41. detailed phenotype data
  32. 42. thousands of individuals
  33. 43. coarse phenotype data
  34. 44. millions of patients
  35. 45. national discharge registry
  36. 46. 6.2 million individuals
  37. 47. 66 million admissions
  38. 48. 119 million diagnoses
  39. 49. comorbidity matrix
  40. 50. confounding factors
  41. 51. gender
  42. 52. age
  43. 53. obesity
  44. 54. smoking
  45. 55. thousands of known links
  46. 56. surprising comorbidities
  47. 57. embedded/impacted tooth
  48. 58. neoplasms in oral cavity
  49. 59. reporting bias
  50. 60. predict future diseases
  51. 61. <ul><ul><li>Reflect.ws </li></ul></ul><ul><ul><li>Sune Frankild </li></ul></ul><ul><ul><li>Heiko Horn </li></ul></ul><ul><ul><li>Evangelos Pafilis </li></ul></ul><ul><ul><li>Michael Kuhn </li></ul></ul><ul><ul><li>Reinhardt Schneider </li></ul></ul><ul><ul><li>Sean O’Donoghue </li></ul></ul><ul><ul><li>LPR-mining </li></ul></ul><ul><ul><li>Anders B Jensen </li></ul></ul><ul><ul><li>Søren Brunak </li></ul></ul><ul><ul><li>EPJ-mining </li></ul></ul><ul><ul><li>Francisco S Roque </li></ul></ul><ul><ul><li>Peter B Jensen </li></ul></ul><ul><ul><li>Robert Eriksson </li></ul></ul><ul><ul><li>Henriette Schmock </li></ul></ul><ul><ul><li>Marlene Dalgaard </li></ul></ul><ul><ul><li>Massimo Andreatta </li></ul></ul><ul><ul><li>Thomas Hansen </li></ul></ul><ul><ul><li>Karen Søeby </li></ul></ul><ul><ul><li>Søren Bredkjær </li></ul></ul><ul><ul><li>Anders Juul </li></ul></ul><ul><ul><li>Thomas Werge </li></ul></ul><ul><ul><li>Søren Brunak </li></ul></ul>Thank you!
  52. 62. larsjuhljensen

×