Your SlideShare is downloading. ×
Ejemplos de distribuciones de probabilidad
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Ejemplos de distribuciones de probabilidad

6,151
views

Published on

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
6,151
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
115
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Bernoulli 1) Tenemos cartas que están enumeradas del 1 al 9 ¿Cuál es la probabilidad de sacar la carta 9? ° La probabilidad de que obtengamos la carta 9. P(x=1) = (1/9) 1 * (8/9) 0 = 1/9 = 0.111 ° La probabilidad de que NO obtengamos la carta 9. P(x=0) = (1/9)0 * (8/9)1 = 8/9 = 0.8882) Una maestra enumera a sus alumnos del 1 al 16, para así poder darlesun premio, pero la maestra los seleccionará con los ojos cerrados, ¿Cual es la probabilidad de que salga el alumno numero 16? ° La probabilidad de que seleccione al alumno numero 16. P(x=1) = (1/16) 1 * (15/16) 0 = 1/16 = 0.0625 ° La probabilidad de que NO seleccione al alumno numero 16. P(x=0) = (1/9)0 * (15/16)1 = 15/16 = 0.937
  • 2. 3) Hay una urna con 342 boletos, para ganar un automóvil, al momento de sacar alguno de ellos ¿qué probabilidad hay para que pueda salir premiado el boleto número 342? ° La probabilidad de que saque el boleto número 342. P(x=1) = (1/342) 1 * (341/342) 0 = 1/342 = 0.00292 ° La probabilidad de que NO seleccione al alumno numero 342. P(x=0) = (1/342)0 * (341/342)1 = 341/342 = 0.99707 4) "Lanzar una moneda, probabilidad de conseguir que salga cruz". Se trata de un solo experimento, con dos resultados posibles: el éxito (p) seconsiderará sacar cruz. Valdrá 0,5. El fracaso (q) que saliera cara, que vale (1 - p) = 1 - 0,5 = 0,5. La variable aleatoria X medirá "número de cruces que salen en unlanzamiento", y sólo existirán dos resultados posibles: 0 (ninguna cruz, es decir, salir cara) y 1 (una cruz). Por tanto, la v.a. X se distribuirá como una Bernoulli, ya que cumple todos los requisitos. ° La probabilidad de obtener cruz. P(x=1) = (0.5) 1 * (0.5) 0 = 0.5 = 0.5 ° La probabilidad de no obtener cruz. P(x=0) = (0.5)0 * (0.5)1 = 0.5 = 0.5
  • 3. Binomial 1) Supongamos que se lanza un dado 50 veces y queremos la probabilidad de que el número 3 salga 20 veces. En este caso tenemos una X ~ B(50, 1/6) y la probabilidad sería P(X=20):2) La última novela de un autor ha tenido un gran éxito, hasta elpunto de que el 80% de los lectores ya la han leido. Un grupo de 4 amigos son aficionados a la lectura: 1. ¿Cuál es la probabilidad de que en el grupo hayan leido la novela 2 personas? B(4, 0.2) p = 0.8 q = 0.2 2.¿Y cómo máximo 2?
  • 4. 3) Un agente de seguros vende pólizas a cinco personas de la misma edad y que disfrutan de buena salud. Según las tablas actuales, la probabilidad de que una persona en estascondiciones viva 30 años o más es 2/3. Hállese la probabilidad de que, transcurridos 30 años, vivan: 1. Las cinco personas. B(5, 2/3) p = 2/3 q = 1/3 2.Al menos tres personas. 3.Exactamente dos personas.4) Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces. B(4, 0.5) p = 0.5q = 0.5
  • 5. 5) La probabilidad de que un hombre acierte en el blanco es1/4. Si dispara 10 veces ¿cuál es la probabilidad de que acierteexactamente en tres ocasiones? ¿Cuál es la probabilidad de que acierte por lo menos en una ocasión? B(10, 1/4) p = 1/4q = 3/4
  • 6. Poisson1) Si ya se conoce que solo el 3% de los alumnos de contabilidad son muy inteligentes ¿ Calcular la probabilidad de que si tomamos 100 alumnos al azar 5 de ellos sean muy inteligentes • n= 100 • P=0.03 • =100*0.03=3 • x=5 2) La producción de televisores en Samsung trae asociada una probabilidad de defecto del 2%, si se toma un lote o muestra de 85 televisores, obtener la probabilidad que existan 4 televisores con defectos. • n=85 • P=0.02 • P(x5)=(e^-17)(1.7^4)/4!=0.0635746 • X=4 • =1.7
  • 7. 3) El número de mensajes recibidos por el tablero computado de anuncios es una variable aleatoria de Poisson con una razón media de ocho mensajes por hora. a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas? a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora? P(X=3)= e-8* P(X=3)= 3.354626279x10-4 * P(X=3)= 3.354626279x10-4 * 273.0666667 P(X=3)= 0.09160366b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas? P(X=10)= e-12* P(X=10)= 6.144212353x10-6 * P(X=10)= 6.144212353x10-6 * 17062.76571 P(X=10)= 0.104837255
  • 8. 4) Una jaula con 100 pericos 15 de ellos hablan ruso calcular la probabilidad de que si tomamos 20 al azar 3 de ellos hablan ruso • n=20 • P=0.15 P (x=3)=(e^-8)(3^3)/3!=0.2240418 • X=3 • =35) La concentración de partículas en una suspensión es 2 por mL. Se agitapor completo la concentración, y posteriormente se extraen 3 mL. Sea X el número de partículas que son retiradas. Determine.a) P(X=5)b) P(X≤2)c) μXd) σx a) P(X=5)= e-6 * P(X=5)= 2.478752177x10-3 * P(X=5)= 2.478752177x10-3 * 64.8 P(X=5)= 0.160623141 b) P(X≤2) P(X=0)= e-6 * P(X=1)= e-6 * P(X=0)= 2.478752177x10-3 * P(X=1)= 2.478752177x10-3 * P(X=0)= 2.478752177x10-3 * 1 P(X=1)= 2.478752177x10-3 * 6
  • 9. P(X=0)= 2.478752177x10-3 P(X=1)= 0.014872513P(X=2)= e-6 * P(X≤2)= P(X=0)+P(X=1)+P(X=2) P(X=2)= 2.478752177x10-3 * P(X≤2)= 2.478752177+0.014872513+ 0.044617539 P(X=2)= 2.478752177x10-3 * 18P(X=2)= 0.044617539 P(X≤2)= 0.061968804 c) μX μX= 6 d) σx σx= σx= 2.449489743
  • 10. Normal 1) Determine el área bajo la curva normal a) Ala derecha de z= -0.85. b) Entre z = 0.40 y z = 1.30. c) Entre z =0.30 y z = 0.90. d) Desde z = - 1.50 hasta z =-0.45Estos resultados se obtuvieron con las tablas anexas al final de los problemas A – 1 – 0.1977 = 0.8023 B – 0.9032 – 0.6554 = 0.2478 C – 0.8159 – 0.3821 = 0.4338 D – 0.0668 + (1 – 0.3264) = 0.74042) Las puntuaciones de una prueba estandarizada se distribuyen normalmente con media de 480 y desviación estándar de 90. a) ¿Cuál es la proposición de puntuaciones mayores a 700? b) ¿Cuál es el 25º? ¿Percentil de las puntuaciones? c) Si la puntuación de alguien es de 600. ¿En qué percentil se encuentra?
  • 11. d) ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520? µ = 480 σ = 90 A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073 B – la puntuación de z en el 25 º percentil -0.67 El 25 º percentil es entonces 480 - 0.67 (90) = 419.7 C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082 Por lo que una puntuación de 600 esta en el percentil 91 D - z = (420 - 480)/90 = - 0.67 Z = (520 – 480)/90 = 0.44 El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.41863) La resistencia de una aleación de aluminio se distribuye normalmente con media de 10 giga pascales (Gpa) desviación estándar de 1.4 Gpa. a) ¿Cuál es la probabilidad de que una muestra de esta aleación tenga resistencia mayor a 12 GPa? b) Determine el primer cuartil de la resistencia de esta aleación. c) Determine el 95º. Percentil de la resistencia de esta aleación. RESULTADOS µ = 10 σ = 1.4
  • 12. A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 – 0.9236 = 0.0764 B) la puntuación de z en el 25 º percentil es -0.67 El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa. C) la puntuación de z en el 95 º percentil es 1.645 El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa. 4) La penicilina es producida por el hongo penicillium, que crece en un caldo, cuyo contenido de azúcar debe controlarse con cuidado. La concentración optima e azúcar es de 4.9 mg/mL. Si la concentraciónexcede los 6 mg/mL, el hongo muere y el proceso debe suspenderse todo el día. a) ¿Si la concentración de azúcar en tandas de caldo se distribuye normalmente con media 4.9 mg/mL y desviación estándar 0.6 mg/mL en que proporción de días se suspenderá el proceso? b) El distribuidor ofrece vender caldo con una concentración de azúcar que se distribuye normalmente con medida de 5.2 mg/ mL y desviación estándar de 0.4 mg/mL ¿este caldo surtirá efectos con menos días de producción perdida? RESULTADOS A) (6 – 4.9)/0.6 =1.83 1 – 0.9664 = 0.0336
  • 13. B) Z = (6 – 5.2)/0.4 = 2.00 1 – 0.9772 = 0.0228 Con este caldo el proceso se suspendería el 2.28% de los días 5) El volumen de las llantas llenadas por cierta maquina se distribuye con media de 12.05 onzas y desviación estándar de 0.03 onzas. a) ¿Qué proporción de latas contiene menos de 12 onzas?b) La medida del proceso se puede ajustar utilizando calibración. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas? c) Si la media del procesos sigue siendo de 12.05 onzas. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas? RESULTADOS A) (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475 B) Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07 onzas
  • 14. C) – 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas
  • 15. Gamma1) El número de pacientes que llegan a la consulta de un médico sigue una distribución de Poisson de media 3 pacientes por hora. Calcular la probabilidad de que transcurra menos de una hora hasta la llegada del segundo paciente. Debe tenerse en cuenta que la variable aleatoria “tiempo que transcurre hasta la llegada del segundo paciente” sigue una distribución Gamma (6, 2). Solución: Cálculo de probabilidades. Distribuciones continuas Gamma (a p) a: 60000 Escala p: 20000 Forma Punto X 10000 Cola Izquierda Pr[X<=k] 0,9826 Cola Derecha Pr[X>=k] 0,0174 Media 0,3333 Varianza 0,0556 Moda 0,1667 La probabilidad de que transcurra menos de una hora hasta que llegue el segundo paciente es 0,98.
  • 16. 2) Suponiendo que el tiempo de supervivencia, en años, de pacientes que son sometidos a una cierta intervención quirúrgica en un hospital sigue una distribución Gamma con parámetros a=0,81 y p=7,81, calcúlese: 1. El tiempo medio de supervivencia. 2. Los años a partir de los cuales la probabilidad de supervivencia es menor que 0,1. Cálculo de probabilidades. Distribuciones continuas Gamma (a,p) a : Escala 0,8100 p : Forma 7,8100 Cola Izquierda Pr [X<=k] 0,9000 Cola Derecha Pr [X>=k] 0,1000 Punto X 14,2429 Media 9,6420 Varianza 11,9037 Moda 8,4074 El tiempo medio de supervivencia es de, aproximadamente, 10 años.
  • 17. T- Student 1. Sea T ~ t(4,0.5) a) Determinar b) Determinar c) Determinar P(T P(T= 1- e –(0.5)(1) - e –(0.5)(1) - e –(0.5)(1) - e (0.5)(1) =1- 0.60653 -0.30327 -0.075816 -0.012636 =0.000175 d) Determinar P(T P(T = e –(0.5)(3) - e –(0.5)(3) - e –(0.5)(3) - e (0.5)(3) =0.22313 + 0.33470+0.25102 +0.12551 =0.9344
  • 18. 2) Sea T ~ Weibull(0.5,3) a) Determinar b) Determinar c) Determinar P(T P (T>5) =1-P(T 1) = 1 – e-3)En el articulo “Parameter Estimation with Only One CompleteFailure Observation”se modela la duracion en horas, de cierto tipo de cojinete con la distribucion de Weibull con parámetros
  • 19. a) Determine la probabilidad de que un cojinete dure mas de 1000 horas b) Determine la probabilidad de que un cojinete dure menos de 2000 horas P(T<2000)= P(Tc) La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en T=2000 horas? h(t) =
  • 20. 4) La duración de un ventilador, en horas , que se usa en un sistema computacional tiene una distribución de Weibull con a) ¿Cuáles la probabilidad de que un ventilador dure mas de 10 000 horas? P(T>10 000 ) =1 –(1- =0.3679 b) ¿Cuál es la probabilidad de que un ventilador dure menos de 5000 horas? P(t<5000) =P(T 5) Un sistema consiste de dos componentes conectados en serie. El sistema fallara cuando alguno de los componentes falle. Sea T elmomento en el que el sistema falla. Sean X1 y X2 las duraciones de losdos componentes. Suponga que X1 y X2 son independientes y que cada uno sigue una distribución Weibull con 2 a) Determine P( P( b) Determine P(T 5)
  • 21. P(T =0.8647c) T Tiene una distribución de Weibull= si es Asi ¿Cuáles son sus parametros? Si, T~ Weibull (2,