Creating Knowledge out of Interlinked Data         NIF – NLP Interchange Format                                           ...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format           Problem:            • Currently NLP softw...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format           Overview:            • NLP tools can be i...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format      • First Challenge: Representing Strings in RDF...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format                            5LOD2 Event . 06.09.2010...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format                                   Example URIs for ...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format      • First Challenge: Representing Strings in RDF...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format      • URIs are used to integrate output. RDF merge...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format      • Second challenge: Output of each layer is re...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format                            10LOD2 Event . 06.09.201...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format                            11LOD2 Event . 06.09.201...
Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format                            12LOD2 Event . 06.09.201...
Creating Knowledge out of Interlinked DataWorkplan      • EU Deliverable almost finished      • Integration of SnowballSte...
Creating Knowledge out of Interlinked DataFuture      • NIF allows to represent NLP output using Knowledge Representation ...
Creating Knowledge out of Interlinked DataReasons for Open Data      • Horváth et. al. (ILP 2009): „A Logic-Based Approach...
Creating Knowledge out of Interlinked Data         Thank you for your attention!LOD2 Presentation . 02.09.2010 . Page     ...
Upcoming SlideShare
Loading in …5
×

NIF - NLP Interchange Format

2,027
-1

Published on

Published in: Technology, Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,027
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
30
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

NIF - NLP Interchange Format

  1. 1. Creating Knowledge out of Interlinked Data NIF – NLP Interchange Format Sebastian Hellmann AKSW, Universität LeipzigLOD2 Presentation . 02.09.2010 . Page http://lod2.eu
  2. 2. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format Problem: • Currently NLP software is organized in pipelines • Integration is done „hard-wired“ – For each tool and each framework an adapter has to be created (n*m) • Difficult to exchange single components 2Open Linguistics@OKCon 30.6.2011 2 http://lod2.eu
  3. 3. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format Overview: • NLP tools can be integrated via a common output format (Common pattern in Enterprise Application Integration) • For each tool a wrapper needs to be created, that reads NIF and produces NIF • The combination of tools can be adhoc, i.e. it is not a pipeline that needs to be configured • Multi-layer and overlapping annotations are possible • Ontologies provide interfaces for each layer and for applications 3Open Linguistics@OKCon 30.6.2011 3 http://lod2.eu
  4. 4. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format • First Challenge: Representing Strings in RDF • How to give a part of a document or text an identifier (URI)? • What properties can such URIs have? 4Open Linguistics@OKCon 30.6.2011 4 http://lod2.eu
  5. 5. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format 5LOD2 Event . 06.09.2010 . Page 5 http://lod2.eu
  6. 6. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format Example URIs for annotating „Semantic Web“ 6Open Linguistics@OKCon 30.6.2011 6 http://lod2.eu
  7. 7. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format • First Challenge: Representing Strings in RDF • How to give a part of a document or text an identifier (URI)? • What properties can such URIs have? 7Open Linguistics@OKCon 30.6.2011 7 http://lod2.eu
  8. 8. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format • URIs are used to integrate output. RDF merges naturally, if the URIs are the same (or convertible using a certain recipe) 8Open Linguistics@OKCon 30.6.2011 8 http://lod2.eu
  9. 9. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format • Second challenge: Output of each layer is required to be stable. • Components and layers can be interchanged • OLiA provides an ontological interface 9Open Linguistics@OKCon 30.6.2011 9 http://lod2.eu
  10. 10. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format 10LOD2 Event . 06.09.2010 . Page 10 http://lod2.eu
  11. 11. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format 11LOD2 Event . 06.09.2010 . Page 11 http://lod2.eu
  12. 12. Creating Knowledge out of Interlinked DataNIF – NLP Interchange Format 12LOD2 Event . 06.09.2010 . Page 12 http://lod2.eu
  13. 13. Creating Knowledge out of Interlinked DataWorkplan • EU Deliverable almost finished • Integration of SnowballStemming and the Stanford Parser • Next step: Integration of Knowledge Extraction tools (Zemanta, DBpedia Spotlight, Alchemy, OpenCalais) • Web Service that read NIF and Output NIF • Google Code Project: http://code.google.com/p/nlp2rdf/ 13Open Linguistics@OKCon 30.6.2011 13 http://lod2.eu
  14. 14. Creating Knowledge out of Interlinked DataFuture • NIF allows to represent NLP output using Knowledge Representation Formalisms (RDF/OWL) • It is possible to mix it with other Knowledge (e.g. Wikipedia/DBpedia) • Good foundation to optimize machine learning: • Choose the best algortihms • Choose the best data 14Open Linguistics@OKCon 30.6.2011 14 http://lod2.eu
  15. 15. Creating Knowledge out of Interlinked DataReasons for Open Data • Horváth et. al. (ILP 2009): „A Logic-Based Approach to Relation Extraction from Texts“ • POS-Tags and Dependency Trees in First-Order-Logic • ILP Machine Learning Approach • TIDES Extraction (ACE) 2003 Multilingual Training Data • closed licence • about 3000 US $ • Barrier for reproduction of results • Authors could send me a (p)(r)e-print, but not a copy of the benchmarkTM 15Open Linguistics@OKCon 30.6.2011 15 http://lod2.eu
  16. 16. Creating Knowledge out of Interlinked Data Thank you for your attention!LOD2 Presentation . 02.09.2010 . Page http://lod2.eu
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×