• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Generating Networks with Arbitrary Properties
 

Generating Networks with Arbitrary Properties

on

  • 290 views

 

Statistics

Views

Total Views
290
Views on SlideShare
290
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-ShareAlike LicenseCC Attribution-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Generating Networks with Arbitrary Properties Generating Networks with Arbitrary Properties Presentation Transcript

    • Generating networks with arbitrary properties
    • Social Interaction “You’re my friend” Jérôme Kunegis Generating Networks with Arbitrary Properties 2
    • Many Social Interactions ” y friend m You’re “ Jérôme Kunegis ’re m y frie nd” ” nd rie y friend” “You y ’re my frie nd ” f my ’re ou “Y “You’re m ’re ou “Y m d” n ie fr “Yo u y friend m “You’re Generating Networks with Arbitrary Properties ” 3
    • Abstract: It's a Network Jérôme Kunegis Generating Networks with Arbitrary Properties 4
    • Problem: Generate Realistic Graphs Why generate graphs? To visualize an existing network: generate a smaller graph with same properties as a large real (note: sampling a subset will skew the properties) ● For testing algorithms: Generate a larger network then those currently known ● Jérôme Kunegis Generating Networks with Arbitrary Properties 5
    • Basic Idea for Generating Networks: Random Graphs Each edge has probability p of existing Paul Erdős Jérôme Kunegis Generating Networks with Arbitrary Properties 6
    • Random Graphs Are Not Realistic Real network Random graph Jérôme Kunegis Generating Networks with Arbitrary Properties 7
    • Real Networks Have Special Properties Many triangles (“clustering”) Many 2-stars (“preferential attachment”) Short paths (“small world”) ● Assortativity ● Power-law-like degree distributions ● Connectivity ● Reciprocity ● Global structure ● Subgraph patterns ● etc., etc., etc., etc., etc. ● Jérôme Kunegis Generating Networks with Arbitrary Properties 8
    • Solution: Exponential Random Graph Models Example with three statistics: P(G) = exp( a1 m + a2 t + a3 s + b ) m, t, s: Properties of G m = Number of edges; t = Number of triangles; s = Number of 2-stars a1, a2, a3, b: Parameters of the model Jérôme Kunegis Generating Networks with Arbitrary Properties 9
    • Problems of Exponential Random Graph Models P(G) = exp( a1 x1 + a2 x2 + … + ak xk + b ) Many exponential random graph models are degenerate: They contain mostly almost-empty or almost-full graphs But on average, they produce the correct statistics! Jérôme Kunegis Generating Networks with Arbitrary Properties 10
    • Explanation of Degeneracy Consider a variable x between 0 and 1 with expected value 0.3. An exponential random model for it is given by: P(x) = exp( ax + b ) P(x) We get Mode[x] = 0 !! 0 Jérôme Kunegis 0 0.3 Generating Networks with Arbitrary Properties 1 x 11
    • Idea Require not that E[x] = c, but that x follow a normal distribution P(x) 0 0 0.3 1 x P(G) = Pnorm (x1, x2, …; μ1, μ2, …, σ1, σ2, …) Jérôme Kunegis Generating Networks with Arbitrary Properties 12
    • Real Networks Have a Distribution of Values Anyway P(G) = Pnorm (x1, x2, …) Data from konect.uni-koblenz.de Jérôme Kunegis Generating Networks with Arbitrary Properties 13
    • Monte Carlo Markov Chain Methods + Current graphs × Possible next steps Wanted distribution × Random graphs + × x2 × × × P = high × Sampling will be bias towards the distribution of random graphs P = low × × × × × × × × × × x1 Jérôme Kunegis Generating Networks with Arbitrary Properties 14
    • Solution: Integral of Measure of Voronoi Cells Wanted distribution × × Random graphs × × x2 × × × × × × × × × × × × x1 Jérôme Kunegis Generating Networks with Arbitrary Properties 15
    • How To Compute The Integral over Voronoi Cells Answer: We don't have to. Sampling strategy: Sample point in statistic-space according to our wanted distribution ● Find nearest possible network (i.e., nearest “×”) ● Claim: This distribution at each step is similar to the underlying measure, giving an unbiased sampling. Jérôme Kunegis Generating Networks with Arbitrary Properties 16
    • Result: Close, But Not Exact Jérôme Kunegis Generating Networks with Arbitrary Properties 17
    • Convergence Speed (σ = 3) Edge count 2-star count Triangle count Jérôme Kunegis Generating Networks with Arbitrary Properties 18
    • Example: Generate Network with Same Properties as Zachary's Karate Club Jérôme Kunegis Generating Networks with Arbitrary Properties 19