Your SlideShare is downloading. ×
0
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Data structure lecture 2
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Data structure lecture 2

572

Published on

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
572
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
21
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Lecture – 2 onData structures Preliminaries
  • 2. Algorithmic Notation The format for the formal presentation of an algorithm consists of two parts. The first part is a paragraph which tells the purpose of the algorithm, identifies the variables which occur in the algorithm and lists the input data. The second part of the algorithm consists of the lists of steps that is to be executed.Example : A nonempty array DATA with N numerical values is given. Find the location LOC and the value MAX of the largest element of DATA.Algorithm 2.3: Given a nonempty array DATA with N numerical values, this algorithm finds the location LOC and the value MAX of the largest element of DATA. 1. Set K : = 1, LOC : =1 and MAX : =DATA[1]. 2. Repeat steps 3 and 4 while K<=N: 3. If MAX<DATA[K], then : Set LOC : =K and MAX : =DATA[K]. [End of if structure] 4. Set K : = K+1. 5. Write: LOC, MAX. 6. Exit.
  • 3. Algorithmic NotationSteps, Control, Exit :The steps of the algorithm are executed one after the other, beginning withstep 1. Control may be transferred to step n by Go to step nIf several statements appear in the same step, e. g. Set K : = 1, LOC : =1 and MAX : =DATA[1].Then they are executed from left to right.The algorithm is completed when the statement Exit.Is encountered.Comments :Step may contain a comment in brackets which indicates the main purpose ofthe step.
  • 4. Algorithmic NotationVariable names :Will use capital letters, as in MAX and DATACounters and subscripts will also be capitalized (K, N)Assignment Statement :Will use the dots-equal notation : =MAX : =DATA[1]Assigns the value in DATA[1] in MAX.Input and Output :Data may be input and assigned to variables by means of a read statement Read : Variable names.Messages placed in quotation marks and Data in variables may be output byWrite or print statement. Write : Messages and/ or Variable names.
  • 5. Algorithmic NotationProcedures :Independent algorithmic module which solves a particular problem.Certain type of sub algorithm.
  • 6. Complexity of AlgorithmThe complexity of an algorithm is a function describing the efficiency of thealgorithm in terms of the amount of data the algorithm must process. Thereare two main complexity measures of the efficiency of an algorithm:Time complexity is a function describing the amount of time an algorithmtakes in terms of the amount of input to the algorithm. "Time" can mean thenumber of memory accesses performed, the number of comparisons betweenintegers, the number of times some inner loop is executed, or some othernatural unit related to the amount of real time the algorithm will take.Space complexity is a function describing the amount of memory (space) analgorithm takes in terms of the amount of input to the algorithm. We oftenspeak of "extra" memory needed, not counting the memory needed to storethe input itself. Again, we use natural (but fixed-length) units to measure this.We can use bytes, but its easier to use, say, number of integers used, numberof fixed-sized structures, etc. In the end, the function we come up with will beindependent of the actual number of bytes needed to represent the unit.Space complexity is sometimes ignored because the space used is minimaland/or obvious, but sometimes it becomes as important an issue as time.
  • 7. Complexity of AlgorithmSuppose M is an algorithm, n size of the input data. The time and spaceused by the algorithm M are the two main measures for the efficiency ofM.The time is measured by counting the number of key operations – insorting and searching algorithms, for example the number ofcomparisons.The space is measured by counting the maximum of memory needed bythe algorithm.The complexity of an algorithm M is the function f(n) which gives therunning time and or storage space requirement of the algorithm in termsof the size n of the input data. Frequently, the storage space required byan algorithm is simply a multiple of the data size n.
  • 8. Complexity of AlgorithmThe two cases one usually investigates in complexity theory are as follows :1. Worst case : The maximum value of f(n) for any possible input.2. Average case : The expected value of f(n).Sometimes we also consider the minimum possible value of f(n), called the best case.Average case assumes a certain probabilistic distribution for the input data.Suppose the numbers n1, n2,………,nk occur with respective probabilities p1, p2, . . . Pk .Then the average value E is given by E = n1p1 +n2p2+. . . . +nkpk.
  • 9. Complexity of AlgorithmExample : Linear Search :Algorithm 2.4 : A linear array DATA with N elements and a specificITEM of information are given. This algorithm finds the location LOC ofITEM in the array DATA or sets LOC = 0. 1. Set K : = 1, LOC : =0. 2. Repeat steps 3 and 4 while LOC = 0 and K<=N: 3. If ITEM = DATA[K], then : Set LOC : =K . 4. Set K : = K+1. [End of step 2 loop] 5. [Successful?] If LOC = 0, then : Write : ITEM is not in the array DATA. Else : Write : LOC is the location of ITEM. [End of if structure] 6. Exit.
  • 10. Complexity of AlgorithmThe complexity of the search algorithm is given by the number C comparisonsbetween ITEM and DATA[k]. We seek C(n) for the worst case and the averagecase.Worst case :The worst case occurs when ITEM is the last element in the array DATA is notthere at all. In other situation, we have C(n) = nAccordingly C(n) is the worst case complexity of the linear search algorithm.Average case :The number of comparisons can be any of the numbers 1, 2, 3, . . . , n andeach number occurs with probability p = 1/n. Then C(n) = 1 . 1/n + 2 . 1/n + . . . + 2 . 1/n =(1+2+. . .+n) .1/n =(n(n+1)/2).1/n = (n+1)/2The average number of comparisons needed to find the location of ITEM isapproximately equal to half the number of elements in the DATA list.

√ó