• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Basic logic gates
 

 

Statistics

Views

Total Views
1,881
Views on SlideShare
1,881
Embed Views
0

Actions

Likes
0
Downloads
48
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Basic logic gates Basic logic gates Presentation Transcript

    • Basic Logic Gates
    • Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
    • NOT Gate -- Inverter X Y 0 1 1 0
    • NOT• Y = ~X (Verilog)• Y = !X (ABEL)• Y = not X (VHDL)• Y = X’•Y = X•Y = X (textook)• not(Y,X) (Verilog)
    • NOTX ~X ~~X = X X ~X ~~X 0 1 0 1 0 1
    • AND Gate AND X Y ZX 0 0 0 0 1 0 Z 1 0 0Y 1 1 1 Z = X & Y
    • AND•X & Y (Verilog and ABEL)• X and Y (VHDL) V•X Y U•X Y•X * Y• XY (textbook)• and(Z,X,Y) (Verilog)
    • OR Gate OR X Y ZX 0 0 0 Z 0 1 1Y 1 0 1 1 1 1Z = X | Y
    • OR•X | Y (Verilog)•X # Y (ABEL)• X or Y (VHDL)•X + Y (textbook)•X V Y•X U Y• or(Z,X,Y) (Verilog)
    • Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
    • NAND Gate NAND X Y ZX 0 0 1 0 1 1 Z 1 0 1Y 1 1 0 Z = ~(X & Y) nand(Z,X,Y)
    • NAND Gate NOT-AND X Y W ZX 0 0 0 1 W 0 1 0 1 Z 1 0 0 1Y 1 1 1 0 W = X & Y Z = ~W = ~(X & Y)
    • NOR Gate NOR X Y ZX 0 0 1 Z 0 1 0Y 1 0 0 1 1 0Z = ~(X | Y)nor(Z,X,Y)
    • NOR Gate NOT-OR X Y W ZX 0 0 0 1 W Z 0 1 1 0Y 1 0 1 0 1 1 1 0W = X | YZ = ~W = ~(X | Y)
    • Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
    • NAND Gate X Z X Z = Y YZ = ~(X & Y) Z = ~X | ~Y X Y W Z X Y ~X ~Y Z 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0
    • De Morgan’s Theorem-1~(X & Y) = ~X | ~Y• NOT all variables• Change & to | and | to &• NOT the result
    • NOR GateX X Z ZY YZ = ~(X | Y) Z = ~X & ~Y X Y Z X Y ~X ~Y Z 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0
    • De Morgan’s Theorem-2~(X | Y) = ~X & ~Y• NOT all variables• Change & to | and | to &• NOT the result
    • De Morgan’s Theorem• NOT all variables• Change & to | and | to &• NOT the result• --------------------------------------------• ~X | ~Y = ~(~~X & ~~Y) = ~(X & Y)• ~(X & Y) = ~~(~X | ~Y) = ~X | ~Y• ~X & !Y = ~(~~X | ~~Y) = ~(X | Y)• ~(X | Y) = ~~(~X & ~Y) = ~X & ~Y
    • Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
    • Exclusive-OR Gate XOR X Y ZX Z 0 0 0Y 0 1 1Z = X ^ Y 1 0 1xor(Z,X,Y) 1 1 0
    • XOR•X ^ Y (Verilog)•X $ Y (ABEL)•X @ YgX ⊕ Y (textbook)• xor(Z,X,Y) (Verilog)
    • Exclusive-NOR Gate XNOR X Y ZX Z 0 0 1Y 0 1 0Z = ~(X ^ Y) 1 0 0Z = X ~^ Y 1 1 1xnor(Z,X,Y)
    • XNOR• X ~^ Y (Verilog)• !(X $ Y) (ABEL)•X @ YgX e Y• xnor(Z,X,Y) (Verilog)
    • Basic Logic Gates and Basic Digital Design• NOT, AND, and OR Gates• NAND and NOR Gates• DeMorgan’s Theorem• Exclusive-OR (XOR) Gate• Multiple-input Gates
    • Multiple-input Gates Z1 Z2 Z3 Z4
    • Multiple-input AND Gate Z1Output Z 1 is HIGH only if all inputs are HIGH An open input will float HIGH
    • Multiple-input OR Gate Z2Output Z 2 is LOW only if all inputs are LOW
    • Multiple-input NAND Gate Z3Output Z 3 is LOW only if all inputs are HIGH
    • Multiple-input NOR Gate Z4Output Z 4 is HIGH only if all inputs are LOW