ข้อสอบคณิตศาสตร์ ม.1 เทอม 2 ชุดที่ 1
Upcoming SlideShare
Loading in...5
×
 

ข้อสอบคณิตศาสตร์ ม.1 เทอม 2 ชุดที่ 1

on

  • 58,796 views

 

Statistics

Views

Total Views
58,796
Views on SlideShare
58,788
Embed Views
8

Actions

Likes
22
Downloads
2,647
Comments
12

1 Embed 8

https://twitter.com 8

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

15 of 12 Post a comment

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • เฉลยยุตรงไหนหรอครับ
    Are you sure you want to
    Your message goes here
    Processing…
  • ขอบคุนคับ
    Are you sure you want to
    Your message goes here
    Processing…
  • thank you
    Are you sure you want to
    Your message goes here
    Processing…
  • ขอบคุณค่ะ
    Are you sure you want to
    Your message goes here
    Processing…
  • ขอบคุณมากๆครับ
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

ข้อสอบคณิตศาสตร์ ม.1 เทอม 2 ชุดที่ 1 ข้อสอบคณิตศาสตร์ ม.1 เทอม 2 ชุดที่ 1 Document Transcript

  •                                                                                                                                                                                                                
  •                                                                                                                                                                                                                                                                                                           
  •                                                                                                                                                                                                                                                                     
  •                                                                                                                                                                                                                                               
  •                                                   
  •                                                                                                                                                                                                                                                                                                                                                    
  •             
  •                                                  