Upcoming SlideShare
×

ข้อสอบคณิตศาสตร์ ม.1 เทอม 1 ชุดที่ 1

114,065 views

Published on

ตัวอย่างข้สอบคณิตศาสตร์ ม.1

66 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• ขอบคุณครับ

Are you sure you want to  Yes  No
• ขอบคุณค่ะ

Are you sure you want to  Yes  No
• ขอบคุณค่ะ

Are you sure you want to  Yes  No
• thank

Are you sure you want to  Yes  No
• ขอบคุณค่ะ

Are you sure you want to  Yes  No
Views
Total views
114,065
On SlideShare
0
From Embeds
0
Number of Embeds
216
Actions
Shares
0
6,006
13
Likes
66
Embeds 0
No embeds

No notes for slide

ข้อสอบคณิตศาสตร์ ม.1 เทอม 1 ชุดที่ 1

1. 1.                                                                                                                                                           
2. 2.                                                                                                                                                                                                                     
3. 3.                                                                                                                                                                                                                                
4. 4.                                                                                                                                                                                                             
5. 5.                                                                                                                                                                                                                                             
6. 6.                                               