Ai gentle intro

632 views
553 views

Published on

Published in: Technology, Spiritual
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
632
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
27
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Ai gentle intro

  1. 1. ARTIFICIAL INTELLIGENCE A Gentle, Jargon-Free Introduction K. Raghunathan Chartered Engineer FIETE, MIE, MCSI, MISTE, MISTD, MIIMM Retd Dy Controller (R&D)
  2. 2. Section 1
  3. 3. What is AI ? <ul><li>Study/Science of </li></ul><ul><ul><li>Intelligent Machines </li></ul></ul><ul><ul><li>Making Machines Intelligent </li></ul></ul>
  4. 4. AI & Computers <ul><li>Computers seem to have some Intelligence </li></ul><ul><ul><li>Solve Math problems [Arithmetic, Algebra, Calculus, Geometry etc] </li></ul></ul><ul><ul><li>Do text processing </li></ul></ul><ul><ul><li>Control Eqpt & Processes in Industry </li></ul></ul><ul><ul><li>Communicate </li></ul></ul><ul><li>Natural Belief : computers can be made more intelligent </li></ul><ul><li>So, AI is considered a Branch of Computer Science </li></ul>
  5. 5. Machines & Humans <ul><li>Right from Cavemen, humans are inventing new Tools, Instruments & Machines </li></ul><ul><ul><li>To do all our hard work </li></ul></ul><ul><ul><li>Even for entertainment </li></ul></ul><ul><ul><li>To reduce/avoid our physical/mental strain </li></ul></ul>
  6. 6. Human Tasks <ul><li>What are our everyday tasks ? </li></ul><ul><ul><li>Professional </li></ul></ul><ul><ul><li>Personal </li></ul></ul>
  7. 7. Functions of our Sensory Organs <ul><li>Eye </li></ul><ul><ul><li>See </li></ul></ul><ul><li>Ear </li></ul><ul><ul><li>Hear </li></ul></ul><ul><li>Tongue / Mouth </li></ul><ul><ul><li>Taste, Speak </li></ul></ul><ul><li>Nose </li></ul><ul><ul><li>Smell, Breathe </li></ul></ul><ul><li>Skin / Limbs </li></ul><ul><ul><li>Feel, do Physical Work – Walk, Climb, Lift, Throw, Eat etc </li></ul></ul>
  8. 8. Sixth Sense <ul><li>Comprehend [Understand] </li></ul><ul><ul><li>Vision </li></ul></ul><ul><ul><li>Language </li></ul></ul><ul><li>Remember </li></ul><ul><li>Plan </li></ul><ul><li>Decide </li></ul><ul><li>Learn </li></ul><ul><li>Emote </li></ul>
  9. 9. Brain & Mind <ul><li>Concrete & Abstract </li></ul><ul><li>Tangible & Intangible </li></ul><ul><li>Similar to Computer </li></ul><ul><li>Like Hardware & Software </li></ul>
  10. 10. What we still do ourselves ? <ul><li>Logical Thinking & Reasoning </li></ul><ul><li>Making wise decisions </li></ul><ul><ul><li>often with Incomplete, Vague & Uncertain facts at hand </li></ul></ul>AI attempts to fill this gap
  11. 11. Intelligent Machines <ul><li>Machines that can </li></ul><ul><ul><li>Think </li></ul></ul><ul><ul><li>Decide </li></ul></ul><ul><ul><li>Solve </li></ul></ul><ul><ul><li>Plan </li></ul></ul><ul><ul><li>Learn </li></ul></ul><ul><li>Thinking Machines </li></ul><ul><li>Artificial Intelligence </li></ul>
  12. 12. Can Machines Think ? <ul><li>Some believe so & some don’t </li></ul><ul><li>What Level of Intelligence will make a Machine qualify as Intelligent Machine or Thinking Machine ? </li></ul><ul><li>The Turing Test </li></ul>
  13. 13. The Turing Test
  14. 14. The Turing Test <ul><li>A machine can be deemed intelligent </li></ul><ul><li>If it can make a human think that </li></ul><ul><li>he/she is talking to a human </li></ul><ul><li>& not to a machine </li></ul>
  15. 15. Intelligent Machines <ul><li>A machine can be considered Intelligent </li></ul><ul><li>if it can solve complex problems </li></ul><ul><li>requiring a high level of intelligence </li></ul><ul><li>normally found only in human beings </li></ul>
  16. 16. AI – Science or Art ? <ul><li>Science </li></ul><ul><ul><li>Multi-disciplinary & Inter-disciplinary </li></ul></ul><ul><li>Art </li></ul><ul><ul><li>Very Intricate Fine Art </li></ul></ul><ul><ul><li>Like Painting & Sculpting </li></ul></ul><ul><li>Science </li></ul><ul><ul><li>involves designing machines </li></ul></ul><ul><li>Art </li></ul><ul><ul><li>involves programming </li></ul></ul>
  17. 17. Inputs to AI <ul><li>Maths [Symbolic Logic] </li></ul><ul><li>Physiology [Working of Body Parts of Living Organisms] </li></ul><ul><li>Philosophy & Psychology [Human Logic & Behaviour] </li></ul><ul><li>Cognitive Science [Perception, Understanding] </li></ul><ul><li>Cybernetics [Communication & Control in Animals & Machines] </li></ul><ul><li>Electronics [Making Machines] </li></ul><ul><li>Computer Science [Programming the Machine's Behaviour] </li></ul>
  18. 18. AI’s Output <ul><li>Used by almost all Sciences </li></ul><ul><ul><li>Including Computer Science </li></ul></ul><ul><li>Maximum dependency on AI </li></ul><ul><ul><li>Robotics & Neural Networks </li></ul></ul><ul><ul><li>Considered part of AI </li></ul></ul>
  19. 19. Section 2
  20. 20. Back to Square One <ul><li>What is Intelligence ? </li></ul><ul><li> Let us have your Opinions please </li></ul>
  21. 21. Intelligence <ul><li>Abstract </li></ul><ul><li>Eludes accurate, comprehensive definition </li></ul><ul><li>Easier to understood than to define </li></ul><ul><li>Seems to be directly proportional to Knowledge </li></ul>
  22. 22. Intelligence (cont’d) <ul><li>The Albert Einstein Anecdote </li></ul>
  23. 23. Intelligence (contd) <ul><li>Knowledge [Lots of it !] </li></ul><ul><li>Ability to put knowledge to use </li></ul><ul><li>Pertains to what we can do with our 5 Senses </li></ul><ul><li>Pertains more to what we can do with our 6th Sense ! </li></ul>
  24. 24. What is Knowledge ? Anybody wish to define ?
  25. 25. Knowledge <ul><li>Abstract </li></ul><ul><li>Eludes accurate, comprehensive definition </li></ul><ul><li>Easier to understand than to define </li></ul><ul><li>AI has to deal with various aspects of Knowledge </li></ul>
  26. 26. Knowledge (contd) <ul><li>Classification </li></ul><ul><li>Representation [including Storage in Computer Memory] </li></ul><ul><li>Acquisition [Learning] </li></ul><ul><li>Manipulation </li></ul><ul><ul><li>Searching & Matching </li></ul></ul><ul><ul><li>Reasoning [Inference, Drawing Conclusions, Decision Making, Problem Solving] </li></ul></ul><ul><li>Planning </li></ul>
  27. 27. Classification of Knowledge <ul><li>Factual or Procedural </li></ul><ul><li>Certain or Uncertain </li></ul><ul><li>Consistent or Inconsistent [vary with time, place, person or situation] </li></ul><ul><li>Well-Defined [Crisp] or Vague [ Fuzzy ] </li></ul><ul><li>Complete or Incomplete [ Partial ] </li></ul>
  28. 28. Reasoning Techniques <ul><li>Depend on the Type of Knowledge being dealt with </li></ul><ul><li>Certain, consistent & crisp : Predicate Logic </li></ul><ul><li>Uncertain : Probablistic Reasoning </li></ul><ul><li>Inconsistent : Truth Maintenance Systems </li></ul><ul><li>Fuzzy : Fuzzy Logic </li></ul><ul><li>Partial : Statistical & Probablistic Reasoning </li></ul>
  29. 29. Reasoning Techniques (cont’d) <ul><li>Ad hoc Methods </li></ul><ul><ul><li>Closed World Assumption </li></ul></ul><ul><ul><li>Circumscription </li></ul></ul><ul><ul><li>Abductive Reasoning </li></ul></ul><ul><ul><li>Modal & Temporal Logics </li></ul></ul>
  30. 30. Learning Methods <ul><li>By Rote [by Reading] </li></ul><ul><li>By being Taught </li></ul><ul><li>From Experience </li></ul><ul><li>By Analogy [From Examples] </li></ul><ul><li>By Drawing Conclusions </li></ul><ul><ul><li>From other known Facts </li></ul></ul>
  31. 31. What Humans are Good at <ul><li>An Interactive Experiment </li></ul>1 2
  32. 32. What Humans are Good at <ul><li>Humans seem to be good at </li></ul><ul><ul><li>Reasoning with Uncertain, Fuzzy & Partial Knowledge </li></ul></ul><ul><ul><li>Learning from Experience & Examples </li></ul></ul><ul><li>AI Research pays more attention to these Areas </li></ul>
  33. 33. AI Techniques <ul><li>Procedures & Algorithms employed in AI </li></ul><ul><li>Compared to those used in other Sciences </li></ul><ul><ul><li>Not merely Formulae </li></ul></ul><ul><ul><li>Use different approaches </li></ul></ul><ul><ul><li>More efficient, effective & intelligent </li></ul></ul><ul><ul><li>Profuse use of Heuristics </li></ul></ul><ul><li>Heuristic </li></ul><ul><ul><li>“Educated Guess” </li></ul></ul><ul><ul><li>Born out of Past Experience </li></ul></ul>
  34. 34. <ul><li>Heuristics </li></ul><ul><li>- An Interactive Experiment </li></ul><ul><li>[opening a book at a desired page] </li></ul>
  35. 35. Heuristic Search Techniques <ul><li>Many Methods available </li></ul><ul><li>Most Noteworthy are: </li></ul><ul><ul><li>A* </li></ul></ul><ul><ul><li>MiniMax with Alpha-Beta Pruning </li></ul></ul>
  36. 36. Expert Systems & Decision Support Systems <ul><li>A Speciality of AI </li></ul><ul><li>Very High Level of Intelligence & Domain Knowledge </li></ul><ul><li>a Level normally found only in Experts in that Field </li></ul>
  37. 37. Expert Systems Knowledge Base Search Engine Match Logic Inference Logic User Inter face Query Response
  38. 38. Section 3
  39. 39. Miscellaneous Topics <ul><li>Miscellaneous, but nevertheless Essential </li></ul><ul><li>Automation </li></ul><ul><ul><li>Useful in Hazardous Environs </li></ul></ul><ul><li>Computer Vision </li></ul><ul><ul><li>Object Recognition </li></ul></ul><ul><li>Natural Language Processing </li></ul><ul><li>Pattern Recognition & Pattern Classification </li></ul><ul><ul><li>Data Mining, Image Processing </li></ul></ul><ul><li>Guide/Help/Rescue </li></ul><ul><li>Weather/Business Forecasting </li></ul><ul><li>Neural Networks </li></ul>
  40. 40. Vision <ul><li>Object Recognition </li></ul><ul><li>Range Estimation </li></ul><ul><li>Emotion Recognition </li></ul>
  41. 41. Natural Language Processing <ul><li>Vocabulary </li></ul><ul><li>Ambiguity </li></ul><ul><ul><li>Human Languages are Context-Sensitive </li></ul></ul><ul><ul><li>One word having many meanings </li></ul></ul><ul><ul><li>Many words having same/similar meaning </li></ul></ul><ul><ul><li>Accent varies from place to place </li></ul></ul><ul><ul><ul><li>Real Life Examples </li></ul></ul></ul><ul><li>Feelings/Emotions </li></ul>
  42. 42. AI Milestones <ul><li>Too many to list here </li></ul><ul><li>Early days of AI </li></ul><ul><ul><li>Mycin - Medical Diagnosis </li></ul></ul><ul><ul><li>R - Design of Computer HW Architecture </li></ul></ul><ul><ul><li>Deep Blue - Chess Champion </li></ul></ul><ul><ul><li>Eliza - Conversationist </li></ul></ul><ul><ul><li>Racter - Writes Books </li></ul></ul>
  43. 43. AI Milestones (2) <ul><li>Modern days: </li></ul><ul><li>Expert Systems & Decision Support Systems in a wide range of fields </li></ul><ul><ul><li>especially Medicine, Finance & Entertainment </li></ul></ul><ul><li>Wide range of Medical Eqpt - CAT Scan etc </li></ul><ul><li>Analysis & Prediction - Economics, Stockmarket, Agriculture, Genetics, Elections </li></ul><ul><li>3D Computer Games & Walk-throughs </li></ul><ul><li>Helpful Robots - Rescue, Operating in Hazardous environments </li></ul>
  44. 44. AI Milestones (3) <ul><li>Spell-Check & Word Completion </li></ul><ul><li>facility in Text Processing Programs </li></ul><ul><li>Voice Commands to open/close files etc </li></ul><ul><li>Programs to read text, to teach Languages </li></ul><ul><li>3D & Walk-Through Games/Presentations </li></ul>
  45. 45. Basic Hurdle <ul><li>Intelligent Machine = Thinking Machine </li></ul><ul><li>To make a machine think, act & react like a human: </li></ul><ul><li>We should first understand how humans think, act & react </li></ul><ul><li>Why a person thinks, acts & reacts in a particular way </li></ul><ul><li>Why different persons think, act & react differently </li></ul><ul><li>Why same person thinks, acts & reacts differently at different times, even if situations are similar </li></ul>
  46. 46. Basic Hurdle (cont’d) <ul><li>Real life examples </li></ul><ul><ul><li>Bernard Shaw & Isadora Duncan Episode </li></ul></ul><ul><ul><li>Once I took my wife to a movie …. </li></ul></ul>
  47. 47. Basic Hurdle (cont’d) <ul><li>Unfortunate Reality for AI scientists </li></ul><ul><li>God Almighty has a habit of making humans </li></ul><ul><ul><li>so varied, </li></ul></ul><ul><ul><li>so un-understandable </li></ul></ul><ul><ul><li>so unpredictable ! </li></ul></ul><ul><li>Given such a starting point </li></ul><ul><ul><li>How are we going to make machines that would behave like humans ? </li></ul></ul>
  48. 48. Basic Hurdle (cont’d) <ul><li>Everyone says “AI is a difficult subject&quot;. </li></ul><ul><ul><li>Not only Students, even Faculty say so </li></ul></ul><ul><ul><li>except the Enthusiastic & Optimistic AI Researcher, of course </li></ul></ul><ul><li>The Ground Reality is: </li></ul><ul><ul><li>Humans are so difficult to understand ! </li></ul></ul><ul><li>WE are our own Hurdles ! </li></ul>
  49. 49. Concluding Remarks <ul><li>In spite of the Enormity of the Obstacles, AI marches ahead, relentlessly </li></ul><ul><li>The progress is slow </li></ul><ul><li>New Findings & Achievements are Sporadic, few & far between </li></ul><ul><li>But that is no reason to lose hope </li></ul><ul><ul><li>We have achieved many things, which were once considered impossible </li></ul></ul><ul><ul><li>We have set foot on the Moon </li></ul></ul><ul><li>Let us hope that one day we will see </li></ul><ul><ul><li>The Ultimate Intelligent Machine </li></ul></ul>
  50. 50. Any Questions ?
  51. 51. Thank You !

×