• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Slides for talk at BMES Conference 2011
 

Slides for talk at BMES Conference 2011

on

  • 722 views

 

Statistics

Views

Total Views
722
Views on SlideShare
585
Embed Views
137

Actions

Likes
0
Downloads
2
Comments
0

1 Embed 137

http://kritisen.com 137

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Slides for talk at BMES Conference 2011 Slides for talk at BMES Conference 2011 Presentation Transcript

    • Novel Biomedical   and Biological Applica1ons  using Lab‐based Mul1‐scale CT System    K. Sen Sharma, D. M. Vasilescu,  A. S. Kizhakke Puliyakote,   E. A. Hoffman, T. Andric,  J. W. Freeman, C. Markert,   J. D. SchiMauer, S. Xiao, H. Yu, and G. Wang 
    • Novel Biomedical   and Biological Applica1ons  using Lab‐based Mul1‐scale CT System    K. Sen Sharma, D. M. Vasilescu,  A. S. Kizhakke Puliyakote,   E. A. Hoffman, T. Andric,  J. W. Freeman, C. Markert,   J. D. SchiMauer, S. Xiao, H. Yu, and G. Wang 
    • Claims Micro‐ and nano‐CT: 1.  Allow higher resolu1on in tradi1onal biological  applica1ons 2.  Overcome limita1ons of tradi1onal imaging  methods (e.g. SEM, histology) 3.  Allow novel imaging applica1ons not possible  otherwise 
    • Outline  Sample Applica1ons  1.  Imaging of Vasculature  2.  Tissue Engineering  3.  Imaging of Mouse Lung  4.  Animal Embryo Microfossil   
    • #1 ‐ Imaging of Vasculature  Multiresolution imaging of mouse limb [Duvall et. al. Am J. Heart Circul. Phy. 2004]Project objectives:•  To illustrate the advantage of using micro-CT for imaging blood vessel networks in mouse modelsSample:•  Mouse limb, contrast agent: Microfil•  In 10% formalin solution during scanCollaborator:(Wake Forest University) Dr. C. Markert
    • Mouse Limb Vasculature  0.5mmVR of entire mouselimb -16µm resolution VR of portion of mouse limb – 5µm resolution [Duvall et. al. Am J. Heart Circul. Phy. 2004]
    • #2 ‐ Tissue Engineering  SOLUTION Micro-CT allows imaging of internal structureBone loss Scaffolds SEMOccurs due to For bone -Only surfacecancer, injury etc. regeneration imaging -Sectioning required
    • slice of a 3D scaffold and shows Figure 2. Reconstructed CT slice of the 3D scaffo ith concentric players of PLLA Osteon‐like Scaffolds el size in the tomogram was 2.5 solve PGA cores with diameter !m.eneficial to assess the uniformity Project objectives: scaffolds are packed together. It 0.5mm •  To fabricate fiber scaffolds thatcaffolds mimic between 190 and variesar view of  a 3D scaffold. The the single osteon (functional GA fibers run along the entire unit) layers of   cortical bone. how PLLA fibers and Collaborator: (VT, Rutgers) T. Andric, Dr. J. Freemanold engineering procedure wase next step would be to control e uniform diameter distribution. d to view a mineral distribution Multiplanar view of 3d scaffold shows internal structure of individual microfiber scaffolds and alignment within 3d scaffold. y important to evaluate theow well the scaffolds are packed
    • Osteon‐like Scaffolds  0.5mm 4000 μm 550 μmOptical microscope (Top) and SEM (Bottom) Video showing alignment of microfiber images of osteon-like scaffold. scaffolds within 3d scaffold (Long). [T. Andric et al. Mat. Sci. Eng. C 2011]
    • #3 – Imaging of Mouse Lung Project objectives:•  To develop an imaging protocol that allows non-destructive multi- resolution imaging.•  To provide measurements of parenchymal characteristics such as: volume fractions, surface area and alveolar number.Subject:•  Lungs of mice, fixed in situ by means of vascular perfusion at 20cmH2O airway pressure.Collaborators:(University of Iowa) D. M. Vasilescu, A.S. Kizhakke Puliyakote, Dr. E. A. Mouse lung imaging and volume calculationHoffman [Vasilescu et al. J. Appl. Physiol. 2011]
    • Acinar Structure of Mouse Lungs  Scanner: Xradia MicroXCT Objective: 0.5x and 10x Voxel size: 13.1µm and 2.0µm Mouse lung – reconstructed transversal slice (0.5x objective ofMicroXCT, 13.1µm voxel); Inset: interior ROI imaged at 10x, 2.04µm voxel.
    • Imaging series: in vivo (le^, 28µm/voxel), ex‐vivo (middle, 13µm/voxel)    and high resolu1on (right, 2µm/voxel) images.     [Vasilescu et al. J. Appl. Physiol. 2011]
    • 2I6$<"6"-%,:6I"P",&5("2$-,6C+&,&4:6-2I6$-5<&2& #4 ‐ Animal Embryo Microfossils   26-2+(-,6#+24693%-:60;6$"A<2+Q#"L (A) Optical microscope image of microfossil, (E) Microfossil structure, (B-D, F-H) MicroCT images. [J. W. Hagadorn et al. Science 2006](" Project objectives: To understand the early developmental biology and taphonomy (how fossils are preserved) of the earliest known animals using X-ray CT. Subject: 600 million year old animal embryo fossils with possible nuclei Collaborator: (Virginia Tech) Dr. J. D. Schiffbauer, Dr. S. Xiao
    • Microfossil in Micro‐CT  250µm 0.5mm Scanner: Xradia MicroXCT-400 Objective: 20x Voxel size: 0.7µm Video in which planar sections allowvisualization of cell boundaries and nuclues-like structures.
    • <^>,(.($$(N([($$( Microfossil in Nano‐CT   !"#$%&()!"#$%&"()*+,*"(+%-."/."01"23,+3"!"#$%4" <^>,((_.(!$(N(`.(!$( 10µm-" Scanner: Xradia NanoXCT-100 DA#98:C36?#96(4C1( Objective: NanoXCT LFOV E,3?"QRS" <^>,((_.(!$(N(`.(!$( &:,1&"71" Voxel size: L3,-7,"" =$3)&8$6&",1-"8,1- 65nm #7:3$L9B>gUU" %+7*7+."$;"+8"(A#"9B " *,/$3,+7$1",:3$&&"-7& Y7?8>0&4"" +8"(:$1-"E7;"A7- &:,1&"71" L3,-7,"" F,)"+3,7171?":$&+> X,1$L9B>NUU" J%,71+-"D7+8"+8"&:, <^>,().(!$(N()..(!$( 0F9C?%67C3(4C1( &7@":$F6$11+&"$3" $1"&&&7$1&4" !"#$%&([,(#7:3$;$&&7*"&+%-."/."(8%8,7"L7,$"!"#$%4" early Cambrian shelly fossil Micro- and nano-CT imaging of internal mold of an "
    • Conclusion  Higher  Resolu1on  Novel  Overcome Applica1ons  Limita1ons 
    • Thanks for Your A0en2on from All of Us  (Le^ to Right) Top row: K. Sen Sharma, D. M. Vasilescu,  A. S. Kizhakke Puliyakote, E. A. Hoffman, T. Andric  Bodom row: J. W. Freeman, C. Markert, J. D. SchiMauer, S. Xiao, H. Yu, G. Wang  Grant Support: NIH SIG grant (RR025667), NSF MRI grant (CMMI0923297), ICTAS-VT and SBES-VT internal funding.
    • EXTRA SLIDES 
    • Mouse Limb Vasculature  0.5mm Scanner: Xradia MicroXCT Objective: 4x ROI size: 4.5mm Resolution: 5µm CT visualization in which both vasculature and bone structures are visible.
    • Senior author: jwfreeman@vt.edu / wangg@vt.educaffolds that Osteon‐like Scaffolds  better scaffolds that have mechanical properties and structures similar to natural bone in order to promote complete tissue regeneration.3D scaffolds e. Currently Scanner:copy (SEM), Xradia MicroXCT quantify the computed Objective:e scaffold at 4xults obtained ROI size: be obtained 5mm Resolution: 5µm inning setup Subject:(PLLA) and •  3D scaffold made of Poly-rospun onto L-lactide fibers onness of the polyglycolide fibers.s varied by •  Microfibers spun together by electrospinning; then osteon-like molded and sintered into a sheet of the desired shape. `ndrical moldred to create Figure 1. SEM cross section of a microfiber scaffold. SEM image of single microfiber scaffold shows great detail at surface but cannot show internal structure.ed using !"#$
    • Fixa1on Setup Scheme   [Vasilescu et al. J. Appl. Physiol. 2011]
    • Animal Embryo Microfossils   100µm Scanner: Xradia MicroXCT Objective: 20x ROI size: 900µm Resolution: 1.5µm K+4L6ZMicroCT volume visualization showing K+4L6Z3UL6RXX6(+,,+&26:"-%6&,I6 nucleus-like structures.
    • Microfossils in Nano‐CT   10µmZernike phase-contrast mode shows more structural details for this sample.