INFORMATION VISUALIZATIONfor healthcareKrist wongsuphasawat@kristwongzDepartment of Computer Science & Human-Computer Inte...
INFORMATION VISUALIZATIONINFO. VIS.
A picture is worth a thousand words.
INFORMATION VISUALIZATIONINFO. VIS.      “   Using visual representations and interaction techniques,          which take ...
Anscombe’s quartet       #1            #2            #3             #4     X     Y      X     Y     X     Y      X     Y  ...
Anscombe’s quartet     #1                #2               #3              #4                   Property               Valu...
Anscombe’s quartet                 #1                      #2                          #3                          #4 12! ...
INFORMATION VISUALIZATION    Visual representation                     +      User interactions        click, drag, zoom, ...
HealthcareElectronic medical records (EMRs)     “   To improve the quality of our health care while lowering its cost,    ...
EMRs + INFO. VIS.A lot of data!   Help understand data!      	                  	  
One patient  x
Example of EMRs System
Lifelines  One patient          x    [Plaisant et al. 1998]!http://www.cs.umd.edu/hcil/lifelines!
LifeLines
LifeLines
LifeLines
LifeLines
LifeLines
Lifelines user study         Faster decision          Better recall
Lifelines              One patientDemographic-  Gender-  Age-  …                      x                [Plaisant et al. 19...
Lifelines 2Multiple patientsxxxxx    [Wang et al. 2008, 2009]!  http://www.cs.umd.edu/hcil/lifelines2!
Case study       Contrast-induced nephropathy  Radiographic Examination  (Medical Imaging)  e.g. X-ray  using a contrast a...
Data : contrast & creatinine      CREAT-    Normal level of Creatinine      RADIOLOGY Radiographic exam (with contrast)   ...
LifeLines2
Video demoData Analysis with Lifelines2
Lifelines 2Multiple patientsxxxxx    [Wang et al. 2008, 2009]!  http://www.cs.umd.edu/hcil/lifelines2!
Lifelines 2search from medical events xxxxx  [Wang et al. 2008, 2009]!      http://www.cs.umd.edu/hcil/lifelines2!
Data : patients transfer      ARRIVAL      Arrive the hospital      EMERGENCY    Emergency room      ICU          Intensiv...
Improve the Quality of Care	  Pa$ent	  ID:	  45851733 	  	      Pa$ent	  ID:	  45851732 	  	  12/02/2008	  14:26 	  Arriva...
task           Find “Bounce backs”            ICU         Floor        ICU                                within 2 days   ...
patientsx x x xx x x x xx x xx x x xx x x x x x x
LifeFlow     overview    xx     x x   xx x  x x xx[Wongsuphasawat et al. 2011]! http://www.cs.umd.edu/hcil/lifeflow!
Video demo Creating LifeFlow
LifeFlow
Video demoData Analysis with LifeFlow
Other examplesVisualizations in the Medical Domain
MIDGAARDhFp://www.infovis-­‐wiki.net/index.php?$tle=MIDGAARD	  
HemoVishFp://people.seas.harvard.edu/~borkin/HemoVis/	  
Information Visualization for Health Care
Information Visualization for Health Care
Information Visualization for Health Care
Information Visualization for Health Care
Information Visualization for Health Care
Upcoming SlideShare
Loading in...5
×

Information Visualization for Health Care

1,997

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,997
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
41
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Information Visualization for Health Care

  1. 1. INFORMATION VISUALIZATIONfor healthcareKrist wongsuphasawat@kristwongzDepartment of Computer Science & Human-Computer Interaction LabUniversity of Maryland
  2. 2. INFORMATION VISUALIZATIONINFO. VIS.
  3. 3. A picture is worth a thousand words.
  4. 4. INFORMATION VISUALIZATIONINFO. VIS. “ Using visual representations and interaction techniques, which take advantage of the human eye’s broad bandwidth pathway into the mind, to allow users to see, explore, and understand large amounts of information at once.” [Wikipedia]!  
  5. 5. Anscombe’s quartet #1 #2 #3 #4 X Y X Y X Y X Y 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
  6. 6. Anscombe’s quartet #1 #2 #3 #4 Property Value Mean of X 11.0 Variance of X 10.0 Mean of Y 7.5 Variance of Y 3.75 Correlation between X and Y 0.816 Linear regression y = 3.0 +0.5x Identical statistics
  7. 7. Anscombe’s quartet #1 #2 #3 #4 12! 10! 14! 14! 9! 10! 12! 12! 8! 7! 10! 10! 8! 6! 8! 8! 6! 5! 4! 6! 6! 4! 3! 4! 4! 2! 2! 2! 2! 1! 0! 0! 0! 0! 0! 5! 10! 15! 0! 5! 10! 15! 0! 5! 10! 15! 0! 10! 20! But very different
  8. 8. INFORMATION VISUALIZATION Visual representation + User interactions click, drag, zoom, select, etc.!  
  9. 9. HealthcareElectronic medical records (EMRs) “ To improve the quality of our health care while lowering its cost, we will make the immediate investments necessary to ensure that, within five years, all of Americas medical records are computerized. This will cut waste, eliminate red tape and reduce the need to repeat expensive medical tests. But it just wont save billions of dollars and thousands of jobs; it will save lives by reducing the deadly but preventable medical errors that pervade our health-care system.” [President Barack Obama – Jan 2009]!  
  10. 10. EMRs + INFO. VIS.A lot of data! Help understand data!    
  11. 11. One patient x
  12. 12. Example of EMRs System
  13. 13. Lifelines One patient x [Plaisant et al. 1998]!http://www.cs.umd.edu/hcil/lifelines!
  14. 14. LifeLines
  15. 15. LifeLines
  16. 16. LifeLines
  17. 17. LifeLines
  18. 18. LifeLines
  19. 19. Lifelines user study Faster decision Better recall
  20. 20. Lifelines One patientDemographic-  Gender-  Age-  … x [Plaisant et al. 1998]! Medical Events* -  Emergency room on Jan 15 -  Surgery on Oct 1 -  … http://www.cs.umd.edu/hcil/lifelines!
  21. 21. Lifelines 2Multiple patientsxxxxx [Wang et al. 2008, 2009]! http://www.cs.umd.edu/hcil/lifelines2!
  22. 22. Case study Contrast-induced nephropathy Radiographic Examination (Medical Imaging) e.g. X-ray using a contrast agent e.g. Iodine, Barium x Creatinine -  Amino Acid Damage to the kidney -  Levels in blood reflect kidney function
  23. 23. Data : contrast & creatinine CREAT- Normal level of Creatinine RADIOLOGY Radiographic exam (with contrast) CREAT-H High level of Creatinine (bad) x Time Jan Feb Mar Apr
  24. 24. LifeLines2
  25. 25. Video demoData Analysis with Lifelines2
  26. 26. Lifelines 2Multiple patientsxxxxx [Wang et al. 2008, 2009]! http://www.cs.umd.edu/hcil/lifelines2!
  27. 27. Lifelines 2search from medical events xxxxx [Wang et al. 2008, 2009]! http://www.cs.umd.edu/hcil/lifelines2!
  28. 28. Data : patients transfer ARRIVAL Arrive the hospital EMERGENCY Emergency room ICU Intensive Care Unit FLOOR Normal room EXIT-ALIVE Leave the hospital alive EXIT-DEAD Leave the hospital dead
  29. 29. Improve the Quality of Care Pa$ent  ID:  45851733     Pa$ent  ID:  45851732    12/02/2008  14:26  Arrival  12/02/2008  14:26I  D:  45851731 Pa$ent   Emergency       Emergency Department 12/02/2008  14:26  Arrival   6,000+12/02/2008  22:44  ICU  mergency   12/02/2008  14:26  E  12/05/2008  05:071Floor  Arrival   12/02/2008     4:26 12/02/2008  22:44  ICU  mergency   12/02/2008  14:26  E12/08/2008  10:02  Floor   12/05/2008  05:07  Floor   12/02/2008  22:44  ICU  12/14/2008  06:19  Discharge   12/08/2008  10:02  Floor   12/05/2008  05:07  Floor     12/14/2008  06:19  Discharge   12/08/2008  10:02  Floor     12/14/2008  06:19  Discharge   patients per month  
  30. 30. task Find “Bounce backs” ICU Floor ICU within 2 days Limitations High-level questions Arrival ? ICU ? ?
  31. 31. patientsx x x xx x x x xx x xx x x xx x x x x x x
  32. 32. LifeFlow overview xx x x xx x x x xx[Wongsuphasawat et al. 2011]! http://www.cs.umd.edu/hcil/lifeflow!
  33. 33. Video demo Creating LifeFlow
  34. 34. LifeFlow
  35. 35. Video demoData Analysis with LifeFlow
  36. 36. collected visual representation large eye interactions rich EMRs + INFO. VIS. A lot of data! Help understand data!     and more… Lifelines LifeFlow Save more lives Lifelines 2 Patientslikeme / i2b2 / BTRIS Many case studies / etc. Krist wongsuphasawat @kristwongz kristw@cs.umd.edu! http://www.cs.umd.edu/hcil/temporalviz!  
  37. 37. Other examplesVisualizations in the Medical Domain
  38. 38. MIDGAARDhFp://www.infovis-­‐wiki.net/index.php?$tle=MIDGAARD  
  39. 39. HemoVishFp://people.seas.harvard.edu/~borkin/HemoVis/  

×