VISUALIZATION
Krist Wongsuphasawat (@kristw)
FROM DATA TO
Senior Data Visualization Scientist, Twitter
Twitter Analytics / Visual Insights
Internal
Dashboarding system
Exploratory data visualization tools
!
External
Public fa...
#interactive
http://twitter.github.io/interactive
Examples
What are visualizations?
pretty graphics
POWER OF THE EYES
pretty
MEANINGFUL
Anscombe’s Quartet
X Y
10.0 8.04
8.0 6.95
13.0 7.58
9.0 8.81
11.0 8.33
14.0 9.96
6.0 7.24
4.0 4.26
12.0 10.84
7.0 4.82
5.0...
Anscombe’s Quartet
Property Value
Mean of X 11.0
Variance of X 10.0
Mean of Y 7.5
Variance of Y 3.75
Correlation between X...
Anscombe’s Quartet
#1 #2 #3 #4
0!
2!
4!
6!
8!
10!
12!
0! 5! 10! 15!
0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
0! 5! 10! 15!
0!
2!
...
Napoleon’s March
geography
time
course (attack/retreat)
quantity of troops
temperature
direction
London Cholera Outbreak
London Cholera Outbreak
Visualization
• Power
• Understand data quickly
• Discover hidden facts
• Usage
• Storytelling / Reporting
• Exploratory d...
“Visualization”
• Information Visualization (academia)
• InfoVis
• Data Visualization (commonly used)
• DataVis
!
• infogr...
How to start?
• What tool should I use?
!
!
DATA
How to start?
• What tool should I use?
!
!
!
1. What type of data do I have?
DATA
DATA
1) What type of data?
DATA
1) What type of data?
vis7
vis5
vis3
vis2
vis1
vis6
vis4
Many options...
Which visualization technique should I use?
1) What type of data?
• Visualizations are categorized by data types:
• 2,3- dimensional
• Multi-dimensional
• Temporal
• ...
Let’s take a tour.
2D, 3D data
(real world objects)
!
a.k.a. Scientific Visualization (SciVis)
2D: Maps
3D: Brain
Multi-dimensional data
abstract dimensions
(+ real world dimensions)
Flowers
species sepalLength sepalWidth petalLength petalWidth
setosa 5.1 3.5 1.4 0.2
setosa 4.9 3.0 1.4 0.2
setosa 4.7 3.2...
Scatterplot
http://bl.ocks.org/mbostock/3887118
Sepal Length
Sepal Width
Scatterplot Matrix
http://bl.ocks.org/mbostock/4063663
Sepal
Length
Sepal
Width
Petal
Length
Petal
Width
Cars
Name
economy
(mpg)
cylinders
power
(hp)
weight
(lb)
0-60 mph
(s)
Ford Mustang 18 6 88 3139 14.5
Honda Accord 31.5 4 6...
Parallel Coordinates
http://bl.ocks.org/jasondavies/1341281
The Geography of Tweets
@miguelrios
The Geography of Tweets
@miguelrios
tweet counts latitude longitude
20,000 27.174526 78.042153
9,000 49.124093 52.201304
1...
Temporal Data
value changes over time
events
Line charts
http://bl.ocks.org/mbostock/3884955
Calendar chart
Events on timeline
http://evolutionofweb.appspot.com/#/evolution/day
Trees
hierarchy
Tree
http://bl.ocks.org/mbostock/4339083
Stock Market
Financial
All stocks
Healthcare Technology ...
Apple Google Canon ...
DATA
TreeMaps
http://www.marketwatch.com/tools/stockresearch/marketmap
Icicle
http://bl.ocks.org/mbostock/1005873
Sunburst
http://bl.ocks.org/mbostock/4348373
Networks
nodes and edges
Character Co-occurrences
{!
nodes: [!
'valjean',!
'fantine',!
'cosette',!
...!
],!
edges: [!
{character1: 'valjean', chara...
Node-link diagram
http://bl.ocks.org/mbostock/4062045
Matrix
http://bost.ocks.org/mike/miserables/
Combination
Multi-D + Temporal
Multi-D + Tree
Multi-D + Network
Temporal + Tree
Temporal + Network
...
Life Expectancy
(Multi-D + Temporal)
http://www.gapminder.org/videos/the-river-of-myths/
VISUALIZATION
visual encodings + interactions
tooltips
animation
highlight
filter
etc.
bar chart
line chart
matrix
node-lin...
DATA
1) What type of data?
vis7
vis5
vis3
vis2
vis1
vis6
vis4
Many options...
Which visualization technique should I use?
DATA
1) What type of data?
vis7
vis3
vis4
Less options...
Still, which one should I use?
How to start?
• What tool should I use?
!
!
!
1. What type of data do I have?
2. What do I want from the data?
DATA
2) What do I want from the data?
• Many ways to visualize one type of data.
• Things to consider:
• audience (data scienti...
Storytelling
Exploratory
Four more years
https://www.youtube.com/watch?v=01un0ORjQps
Photogrid (Treemap + photo)
http://twitter.github.io/interactive/sochi
Soccer Tournament
https://uclfinal.twitter.com/
State of the Union
http://twitter.github.io/interactive/sotu2014/#p1
Ok, now tools.
1. What type of data do I have?
2. What do I want from the data?
Tools
Option 1: Programming library
Option 2: Packaged software
You have to write code.
(Mostly) no coding involved
Programming libraries
• d3.js, processing, R, etc.
!
• Copy and modify from examples.
• Can do custom stuffs (if you can fig...
Packaged software
• Tableau (multi-dimensional)
• Gephi (graph)
• NodeXL (graph)
• Research projects (contact authors)
!
•...
Ideal workflow
1. What type of data do I have?
2. What do I want from the data?
3. Pick appropriate techniques/tools
4. Don...
Ideal workflow
1. What type of data do I have?
2. What do I want from the data?
3. Pick appropriate techniques/tools
4. Don...
Real-life workflow
data are dirty unsatisfied
transform
What type of data do I have?
Pre-process data
What do I want from th...
New year 2014
http://twitter.github.io/interactive/newyear2014/
Behind the scene
VISUALIZATION
FROM DATA TO
@kristw
VISUALIZATION
FROM DATA TO
@kristw
DATA first, not tools.
VISUALIZATION
FROM DATA TO
@kristw
DATA first, not tools.
visual encodings

(by data types)
+ interactionschoose:
VISUALIZATION
FROM DATA TO
visual encodings

(by data types)
+ interactions
DATA first, not tools.
@kristw
choose:
twitter....
Thank you
From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?
From Data to Visualization, what happens in between?
Upcoming SlideShare
Loading in...5
×

From Data to Visualization, what happens in between?

9,461

Published on

A talk at Data Visualization Summit 2014 in Santa Clara, CA

ABSTRACT: What is the thought process that transforms data into visualizations? In this presentation, I will talk about guidelines that will help you when starting with raw data, walk through standard techniques, and also discuss things to keep in mind when making design decisions.

Published in: Data & Analytics, Software
1 Comment
49 Likes
Statistics
Notes
  • my c­­­­o-­­­­wor­­­­ker's ha­­­­lf-si­­­­ster ma­­­­kes $8­­­­9 /hou­­­­r o­­­­n t­­­­he l­­­­aptop . Sh­­­­e ha­­­­s be­­­­en fire­­­­d fro­­­­m w­­­­ork f­­­­or five mo­­­­nths ­­­­b­­­­­­­­ut las­­­­t m­­­­onth h­­­­er c­­­­heck wa­­­­s $21­­­­382 ju­­­­st ­­­­wor­­­­ki­­­­ng o­­­­n th­­­­e la­­­­ptop fo­­­­r a f­­­­ew h­­­­ours.

    l­­­­ook a­­­­t th­­­­is s­­­­ite........ http://goo.gl/ZC87k7
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
9,461
On Slideshare
0
From Embeds
0
Number of Embeds
26
Actions
Shares
0
Downloads
268
Comments
1
Likes
49
Embeds 0
No embeds

No notes for slide

From Data to Visualization, what happens in between?

  1. 1. VISUALIZATION Krist Wongsuphasawat (@kristw) FROM DATA TO Senior Data Visualization Scientist, Twitter
  2. 2. Twitter Analytics / Visual Insights Internal Dashboarding system Exploratory data visualization tools ! External Public facing visualizations #interactive
  3. 3. #interactive http://twitter.github.io/interactive
  4. 4. Examples
  5. 5. What are visualizations?
  6. 6. pretty graphics POWER OF THE EYES
  7. 7. pretty MEANINGFUL
  8. 8. Anscombe’s Quartet X Y 10.0 8.04 8.0 6.95 13.0 7.58 9.0 8.81 11.0 8.33 14.0 9.96 6.0 7.24 4.0 4.26 12.0 10.84 7.0 4.82 5.0 5.68 X Y 10.0 9.14 8.0 8.14 13.0 8.74 9.0 8.77 11.0 9.26 14.0 8.10 6.0 6.13 4.0 3.10 12.0 9.13 7.0 7.26 5.0 4.74 X Y 10.0 7.46 8.0 6.77 13.0 12.74 9.0 7.11 11.0 7.81 14.0 8.84 6.0 6.08 4.0 5.39 12.0 8.15 7.0 6.42 5.0 5.73 X Y 8.0 6.58 8.0 5.76 8.0 7.71 8.0 8.84 8.0 8.47 8.0 7.04 8.0 5.25 19.0 12.50 8.0 5.56 8.0 7.91 8.0 6.89 #1 #2 #3 #4
  9. 9. Anscombe’s Quartet Property Value Mean of X 11.0 Variance of X 10.0 Mean of Y 7.5 Variance of Y 3.75 Correlation between X and Y 0.816 Linear regression y = 3.0 +0.5x #1 #2 #3 #4 Identical statistics!
  10. 10. Anscombe’s Quartet #1 #2 #3 #4 0! 2! 4! 6! 8! 10! 12! 0! 5! 10! 15! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 0! 5! 10! 15! 0! 2! 4! 6! 8! 10! 12! 14! 0! 5! 10! 15! 0! 2! 4! 6! 8! 10! 12! 14! 0! 10! 20! but very different
  11. 11. Napoleon’s March geography time course (attack/retreat) quantity of troops temperature direction
  12. 12. London Cholera Outbreak
  13. 13. London Cholera Outbreak
  14. 14. Visualization • Power • Understand data quickly • Discover hidden facts • Usage • Storytelling / Reporting • Exploratory data analysis
  15. 15. “Visualization” • Information Visualization (academia) • InfoVis • Data Visualization (commonly used) • DataVis ! • infographics (...)
  16. 16. How to start? • What tool should I use? ! ! DATA
  17. 17. How to start? • What tool should I use? ! ! ! 1. What type of data do I have? DATA
  18. 18. DATA 1) What type of data?
  19. 19. DATA 1) What type of data? vis7 vis5 vis3 vis2 vis1 vis6 vis4 Many options... Which visualization technique should I use?
  20. 20. 1) What type of data? • Visualizations are categorized by data types: • 2,3- dimensional • Multi-dimensional • Temporal • Tree • Network • etc.
  21. 21. Let’s take a tour.
  22. 22. 2D, 3D data (real world objects) ! a.k.a. Scientific Visualization (SciVis)
  23. 23. 2D: Maps
  24. 24. 3D: Brain
  25. 25. Multi-dimensional data abstract dimensions (+ real world dimensions)
  26. 26. Flowers species sepalLength sepalWidth petalLength petalWidth setosa 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 virginica 4.6 3.1 1.5 0.2 virginica 5.0 3.6 1.4 0.2 virginica 5.4 3.9 1.7 0.4 DATA
  27. 27. Scatterplot http://bl.ocks.org/mbostock/3887118 Sepal Length Sepal Width
  28. 28. Scatterplot Matrix http://bl.ocks.org/mbostock/4063663 Sepal Length Sepal Width Petal Length Petal Width
  29. 29. Cars Name economy (mpg) cylinders power (hp) weight (lb) 0-60 mph (s) Ford Mustang 18 6 88 3139 14.5 Honda Accord 31.5 4 68 2045 18.5 Honda Civic 24 4 97 2489 15 Mazda RX-7 23.7 3 100 2420 12.5 DATA
  30. 30. Parallel Coordinates http://bl.ocks.org/jasondavies/1341281
  31. 31. The Geography of Tweets @miguelrios
  32. 32. The Geography of Tweets @miguelrios tweet counts latitude longitude 20,000 27.174526 78.042153 9,000 49.124093 52.201304 1,000 12.2995 31.59592 ... ... ... DATA abstract dimension real world dimensions
  33. 33. Temporal Data value changes over time events
  34. 34. Line charts http://bl.ocks.org/mbostock/3884955
  35. 35. Calendar chart
  36. 36. Events on timeline http://evolutionofweb.appspot.com/#/evolution/day
  37. 37. Trees hierarchy
  38. 38. Tree http://bl.ocks.org/mbostock/4339083
  39. 39. Stock Market Financial All stocks Healthcare Technology ... Apple Google Canon ... DATA
  40. 40. TreeMaps http://www.marketwatch.com/tools/stockresearch/marketmap
  41. 41. Icicle http://bl.ocks.org/mbostock/1005873
  42. 42. Sunburst http://bl.ocks.org/mbostock/4348373
  43. 43. Networks nodes and edges
  44. 44. Character Co-occurrences {! nodes: [! 'valjean',! 'fantine',! 'cosette',! ...! ],! edges: [! {character1: 'valjean', character2: 'fantine', 10},! {character1: 'valjean', character2: 'cosette', 5},! ...! ]! }! DATA
  45. 45. Node-link diagram http://bl.ocks.org/mbostock/4062045
  46. 46. Matrix http://bost.ocks.org/mike/miserables/
  47. 47. Combination Multi-D + Temporal Multi-D + Tree Multi-D + Network Temporal + Tree Temporal + Network ...
  48. 48. Life Expectancy (Multi-D + Temporal) http://www.gapminder.org/videos/the-river-of-myths/
  49. 49. VISUALIZATION visual encodings + interactions tooltips animation highlight filter etc. bar chart line chart matrix node-link treemaps etc. or multiple views (data type)
  50. 50. DATA 1) What type of data? vis7 vis5 vis3 vis2 vis1 vis6 vis4 Many options... Which visualization technique should I use?
  51. 51. DATA 1) What type of data? vis7 vis3 vis4 Less options... Still, which one should I use?
  52. 52. How to start? • What tool should I use? ! ! ! 1. What type of data do I have? 2. What do I want from the data? DATA
  53. 53. 2) What do I want from the data? • Many ways to visualize one type of data. • Things to consider: • audience (data scientist, execs, etc.) • goal (storytelling, exploratory analysis) • tasks
  54. 54. Storytelling Exploratory
  55. 55. Four more years https://www.youtube.com/watch?v=01un0ORjQps
  56. 56. Photogrid (Treemap + photo) http://twitter.github.io/interactive/sochi
  57. 57. Soccer Tournament https://uclfinal.twitter.com/
  58. 58. State of the Union http://twitter.github.io/interactive/sotu2014/#p1
  59. 59. Ok, now tools. 1. What type of data do I have? 2. What do I want from the data?
  60. 60. Tools Option 1: Programming library Option 2: Packaged software You have to write code. (Mostly) no coding involved
  61. 61. Programming libraries • d3.js, processing, R, etc. ! • Copy and modify from examples. • Can do custom stuffs (if you can figure out how) • More overhead for common task
  62. 62. Packaged software • Tableau (multi-dimensional) • Gephi (graph) • NodeXL (graph) • Research projects (contact authors) ! • Just use the software. No hassle of code/debug • Limited functionalities to what the tools can do • Custom designs more difficult
  63. 63. Ideal workflow 1. What type of data do I have? 2. What do I want from the data? 3. Pick appropriate techniques/tools 4. Done!
  64. 64. Ideal workflow 1. What type of data do I have? 2. What do I want from the data? 3. Pick appropriate techniques/tools 4. Done! Not that easy!
  65. 65. Real-life workflow data are dirty unsatisfied transform What type of data do I have? Pre-process data What do I want from the data? Pick appropriate techniques/tools See results change goal change perspective
  66. 66. New year 2014 http://twitter.github.io/interactive/newyear2014/
  67. 67. Behind the scene
  68. 68. VISUALIZATION FROM DATA TO @kristw
  69. 69. VISUALIZATION FROM DATA TO @kristw DATA first, not tools.
  70. 70. VISUALIZATION FROM DATA TO @kristw DATA first, not tools. visual encodings
 (by data types) + interactionschoose:
  71. 71. VISUALIZATION FROM DATA TO visual encodings
 (by data types) + interactions DATA first, not tools. @kristw choose: twitter.github.io/interactive
  72. 72. Thank you
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×