SlideShare a Scribd company logo
1 of 22
1
REDES SATELITALES
1. ANTECEDENTES
A partir del lanzamiento del primer satélite ruso SPUTNIK en 1957, los mercados
corporativos han visto a la comunicación vía satelital como una gran oportunidad de
mejorar sus oportunidades en comunicaciones. El creciente avance de la ciencia y
tecnología en las ultimas décadas ha impulsado el desarrollo de nuevas y modernas
tecnologías satelitales, dejando atrás la idea de que un satélite se utiliza únicamente para
la transmisión de señales de T.V.; hoy en día se realizan con gran éxito transmisiones de
voz, datos, videoconferencia e Internet de alta velocidad.
Por todo ello es menester profundizar el concepto de las redes satelitales y la importancia
de las mismas en las comunicaciones, labor que presentaremos en el presente
documento.
2. OBJETIVOS
 Realizar una investigación referente a las Redes Satelitales.
3. OBJETIVOS ESPECIFICOS
 Definir red satelital.
 Funcionamiento de una red satelital
 Servicios y aplicaciones de la misma.
4. FUNDAMENTO TEORICO
REDES SATELITALES
¿QUE ES UN SATELITE?
Un satélite puede definirse como un repetidor radioeléctrico ubicado en el espacio, que
recibe señales generadas en la tierra, las amplifica y las vuelve a enviar a la tierra, ya sea
al mismo punto donde se origino la señal u otro punto distinto.
RED SATELITAL
Una Red Satelital es el conjunto de antenas, equipos electrónicos y satélites que se
interconectan y comunican entre sí para compartir información entre sitios distantes y a
los cuales no se tiene acceso mediante la vía terrestre.
Una red satelital realiza la transmisión de información utilizando radio frecuencias que se
amplifican y envían a un determinado satélite el cuál las recibe, procesa, amplifica y
retransmite hacia otras antenas terrestres, o bien de varias antenas hacia una antena
central.
Un Enlace Satelital es un canal por el cual serán enviadas y recibidas las señales
transmitidas de la estación terrestre al satélite y de este a la estación terrestre.
2
Red Satelital
CARACTERISTICAS DE LAS REDES SATELITALES
 Las transmisiones son realizadas a altas velocidades, en el rango de frecuencias
de los Giga Hertz.
 Son muy costosas, por lo que su uso se ve limitado a grandes empresas y países
desarrollados.
 Trabajan a largas distancias.
ELEMENTOS DE LAS REDES SATELITALES
 Transponders
Es un dispositivo que realiza la función de recepción y transmisión. Las señales recibidas
son amplificadas antes de ser retransmitidas a la tierra. Para evitar interferencias del
enlace ascendente y descendente se utiliza distintas frecuencias.
Transponder
3
 Estaciones terrenas
Las estaciones terrenas controlan la recepción con el satélite y desde el satélite, regula la
interconexión entre terminales, administra los canales de salida, codifica los datos y
controla la velocidad de transferencia.
Consta de 3 componentes:
 Estación emisora: Esta compuesta por el transmisor y la antena de emisión.
 Antena: Debe captar la radiación del satélite y concentrarla en un foco donde está
ubicado el alimentador. Una antena de calidad debe ignorar las interferencias y los
ruidos en la mayor medida posible.
 Estación receptora: Recibe toda la información generada en la estación
transmisora y retransmitida por el satélite.
Estos satélites están equipados con antenas receptoras y con antenas transmisoras. Por
medio de ajustes en los patrones de radiación de las antenas pueden generarse
cubrimientos globales, cubrimiento a solo un país (satélites domésticos), o conmutar entre
una gran variedad de direcciones.
La potencia emitida es alta para que la señal del satélite sea buena. Esta señal debe ser
captada por la antena receptora. Para cubrir el trayecto ascendente envía la información
al satélite con la modulación y portadora adecuada.
Como medio de transmisión físico se utilizan medios no guiados, principalmente el aire.
Se utilizan señales de microondas para la transmisión por satélite, estas son
unidireccionales, sensibles a la atenuación producida por la lluvia, pueden ser de baja o
de alta frecuencia y se ubican en el orden de los 100 MHz hasta los 10 GHz.
Estación Terrena - Vista exterior e interior
4
CLASIFICACION DE LAS TRANSMISIONES SATELITALES
Las transmisiones de satélite se clasifican como bus o carga útil. La de bus incluye
mecanismos de control que apoyan la operación de carga útil. La de carga útil es la
información del usuario que será transportada a través del sistema.
En el caso de radiodifusión directa de televisión vía satélite el servicio que se da es de
tipo unidireccional por lo que normalmente se requiere una estación transmisora única,
que emite los programas hacia el satélite, y varias estaciones terrenas de recepción
solamente, que toman las señales provenientes del satélite. Existen otros tipos de
servicios que son bidireccionales donde las estaciones terrenas son de transmisión y de
recepción.
Uno de los requisitos más importantes del sistema es conseguir que las estaciones sean
lo más económicas posibles para que puedan ser accesibles a un gran numero de
usuarios, lo que se consigue utilizando antenas de diámetro chico y transmisores de baja
potencia. Sin embargo hay que destacar que es la economía de escala (en aquellas
aplicaciones que lo permiten) el factor determinante para la reducción de los costos.
MODELOS DE ENLACE DEL SISTEMA SATELITAL
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un
transponder satelital y una bajada.
 Modelo de subida
El principal componente dentro de la sección de subida, de un sistema satelital, es el
transmisor de la estación terrena. Un típico transmisor de la estación terrena consiste de
un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta
potencia (HPA) y algún medio para limitar la banda del espectro de salida (un filtro pasa-
banda de salida).
El modulador de IF convierte las señales de banda base de entrada a una frecuencia
intermedia modulada e FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-
banda) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA
5
proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la
señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de
onda progresiva.
Modelo de subida del satélite.
 Transponder
Un típico transponer satelital consta de un dispositivo para limitar la banda de entrada
(BPF), un amplificador de bajo ruido de entrada (LNA), un translador de frecuencia, un
amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida.
El transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los
repetidores de IF, y de banda base, semejantes a los utilizados en los repetidores de
microondas.
El BPF de entrada limita el ruido total aplicado a la entrada del LNA (un dispositivo
normalmente utilizado como LNA, es un diodo túnel).
La salida del LNA alimenta un translador de frecuencia (un oscilador de desplazamiento y
un BPF), que se encarga de convertir la frecuencia de subida de banda alta a una
frecuencia de bajada de banda baja.
El amplificador de potencia de bajo nivel, que es comúnmente un tubo de ondas
progresivas (TWT), amplifica la señal de RF para su posterior transmisión por medio de la
bajada a los receptores de la estación terrena.
También pueden utilizarse amplificadores de estado sólido (SSP), los cuales en la
actualidad, permiten obtener un mejor nivel de linealidad que los TWT.
La potencia que pueden generar los SSP, tiene un máximo de alrededor de los 50 Watts,
mientras que los TWT pueden alcanzar potencias del orden de los 200 Watts.
6
Transponder del satélite.
 Modelo de bajada
Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de
RF a IF. El BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo
altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un
amplificador parametrico. El convertidor de RF a IF es una combinación de filtro
mezcador/pasa-bandas que convierte la señal de RF a una frecuencia de IF.
Modelo de bajada del satélite
Los enlaces satelitales cuentan con distintas tecnologías de acceso y transmisión entre la
estación terrena y el satélite y viceversa.
Tecnologías de acceso
La tecnología de acceso es el procedimiento por el cual la señal de la estación terrestre
es colocada sobre la portadora para enviarse al satélite.
Las tecnologías más utilizadas para este proceso son:
 TDM / TDMA (Time Division Multiplex/Multiple Access).
 SCPC. (Singel Channel Per Carrier).
 DAMA. (Demand Assined Multiple Access).
 MCPC. (Multiple Channels Per Carrier).
 BROADCAST.
7
Tecnología De Transmisión
De la misma forma en que una red terrestre utiliza diversos métodos de transmisión, las
redes satelitales utilizan estos principios básicos para establecer la transmisión entre los
diferentes puntos.
Las tecnologías más utilizadas para este proceso son:
 X.25.
 FRAME RELAY.
 ATM.
Topología
Básicamente, la comunicación satelital utiliza los mismos métodos utilizados en las redes
terrestres.
La gran ventaja de una red satelital es el hecho de poder comunicar a una estación
central con varias estaciones remotas en el mismo tiempo (BROADCAST), situación
imposible para una red terrestre.
Ante esta posibilidad se establecen las siguientes topologías:
 Malla.
 Estrella.
 Punto a Punto.
 Punto a Multipunto.
 Multipunto a Multipunto.
Por ejemplo en el par de gráficos se observa dos distintas topologías.
Malla Estrella
8
5. FUNDAMENTO PRÁCTICO
5.1. SERVICIOS DE UNA RED SATELITAL
Una red satelital puede ofrecer los mismos servicios de comunicación que una red de tipo
terrestre, con la ventaja de poder comunicar puntos distantes de forma simultanea y en
zonas donde la comunicación terrestre es poco accesible.
Entre los principales servicios pueden mencionarse los siguientes:
 SERVICIOS DE DATOS
Servicio que brinda solución a los requerimientos de comunicaciones de alta
capacidad entre dos puntos cualesquiera. Asimismo, se dispone de varios canales
de datos, voz, fax y videoconferencia.
Este servicio permite combinar canales de datos a distintas velocidades y
protocolos para conexiones host to host, así como canales de voz que facilitan
las comunicaciones telefónicas entre dos puntos y canales para transmisión de
imágenes utilizados en videoconferencia.
 SERVICIOS DE COMUNICACIONES INTERNACIONALES
Servicio que permite establecer enlaces de altas y varias capacidades entre
cualquier punto con el resto del mundo. Dichas aplicaciones incluyen el transporte
de datos, voz, fax e imágenes, multiplexados sobre el mismo canal.
 VSAT
Servicio de comunicación satelital cuya principal propiedad es la utilización
eficiente del ancho de banda, pues se transmite sólo cuando hay información entre
los diferentes usuarios. Asimismo, permite establecer enlaces punto-punto y
punto-multipunto entre estaciones de una misma red para desarrollar
aplicaciones de consulta y transacciones.
A través de las VSAT también pueden transmitirse comunicaciones de datos, voz y
fax que permiten la interconexión directa en ambientes de redes de área local y
área amplia.
 SERVICIO DE TELEDATOS
Servicio creado para dar interconectividad en el área metropolitana, ya que se
utiliza principalmente en los accesos de última milla para los servicios satelitales,
es decir, la conexión desde la oficina del cliente hasta el telepuerto.
 BROADCAST
Servicio de difusión de datos, diseñado para clientes que requieren difundir
información, esto es, boletines de tarjetas de crédito, difusión de noticias,
información financiera, entre otros.
9
 OTROS SERVICIOS SATELITALES
El desarrollo de nuevas tecnologías y mayor potencia en los satélites ha
incrementado la posibilidad de servicios ofrecidos vía satélite y la tendencia es
ubicar a esta tecnología como una plataforma de banda ancha capaz de brindar
una gran variedad de servicios en línea y multimedios.
Estas aplicaciones, alcanzan hoy en día servicios tales como:
 Envío de mensajes electrónicos.
 Participación en videoconferencias múltiples.
 Transmisión de archivos.
 Recepción de páginas del WWW a altas velocidades.
 Telefonía satelital inalámbrica.
 Redes de datos y multiservicios.
 Redes móviles de comunicación
 Redes privadas nacionales e internacionales.
¿Quiénes requieren el servicio de redes satelitales?
 Empresas que requieran de una red privada de comunicaciones principalmente
para aplicaciones transaccionales. Empresas que tengan más de 3 puntos de
presencia regional, nacional y/o multinacional.
 Empresas que tengan puntos de venta múltiples.
 Empresas que tengan sucursales o puntos de presencia en sitios de difícil acceso
y/o en donde la fibra óptica no llega.
 Empresas que no cuenten con una infraestructura actual de telecomunicaciones.
 Empresas cuyos puntos de venta y/o de presencia sean susceptibles a cambios
frecuentes.
 Empresas que tengan tiempos críticos y reducidos para interconectar nuevas
sucursales y/o puntos de venta.
 Empresas cuya infraestructura tecnológica requiera de continuo crecimiento al
menor costo de inversión en equipamiento.
5.2. APLICACIONES DE LAS REDES SATELITALES
 MUNICACIÓN GLOBAL
La tecnología satelital ha desarrollado sistemas en donde las computadoras
personales se les pueden adaptar pequeñas antenas, las cuales-vía satelite-pueden
recibir y transmitir todo el banco de información de datos de su compañía, sin importar
el lugar en que se encuentren.
Esta aplicación requiere de una pequeña antena satelital y un microporocesador
instalados en una tarjeta inteligente dentro de una computadora portátil. La oficina
central requiere de una antena receptora y un software especial que procese la
información. De esta manera, las empresas que requieren comunicar a todas sus
filiales, las cuales se encuentran distribuidas geográficamente, pueden hacerlo por
medio de la creación de enlaces satelitales que les permiten el desarrollo de un sinfiín
de actividades de intercambio de información.
10
 APLICACIONES CASETAS DE PEAJE
En las casetas de peaje es colocada una antena satelital, la cuál permite que a la hora
que el cobrador digita en su máquina la cantidad de la cuota, ésta automáticamente se
envía por medio de una VSAT a la oficina central del controlador. Así se tiene el
control del estado financiero de cada carretera y sus correspondientes casetas.
 APLICACIONES FINANCIERAS
Gracias al desarrollo de sistemas satelitales tales como las VSAT, hoy en día es
posible la instalación de cajeros automáticos, en cualquier lugar, si necesidad de que
exista una línea telefónica. Un cajero puede instalarse en zonas rurales, gasolineras y
carreteras.
 APLICACIONES PUNTOS DE VENTA
Los grandes supermercados y tiendas comerciales pueden también verse
beneficiados gracias a la comunicación satelital, ofreciendo a sus clientes un mejor
servicio y manteniendo al día sus inventarios. Gracias a la comunicación satelital cada
tienda puede estar comunicada con sus oficinas centrales para la modificación de
precios o promociones de ocasión, monitorear y controlar sus inventarios, autorizar
pagos con tarjetas de crédito, realizar transacciones de tarjetas de débito, etc.
 RESERVACIONES
Reservaciones en líneas aéreas, agencias de viajes, hoteles, renta de automóviles.
Control y registro de puntos acumulados en los programas de viajero frecuente, cliente
VIP, tarjetas de crédito. Registro, seguimiento y control de mensajería, carga, envíos,
etc.
 APLICACIONES SCADA
Las grandes industrias, principalmente del ramo petrolero y de energía, cuentan con
instalaciones en zonas de difícil acceso en muchos casos, y requieren el control de
sistemas sofisticados para el monitoreo de sus instalaciones, El sistema SCADA utiliza
antenas VSAT para la recolección de datos remotos, monitoreo y control de válvulas,
switches y sistemas en localidades remotas, control sobre tuberías en gasoductos,
utilización de electricidad, monitoreo y control de flujos, etc.
 LOTERIAS
La aplicación satelital en este campo permite el registro de billetes de lotería y el
control de venta y autenticidad de los billetes.
 APLICACIONES SERVICIOS DE TELEFONIA
Para redes corporativas privadas o para servicio público en áreas fuera de servicio o
poco accesibles.
11
 APRENDIZAJE REMOTO
Clases a distancia, proporcionar instrucciones de calidad en sitios remotos, proveer
capacitación en demanda a oficinas remotas, etc.
 NOTICIAS E INFORMACION
Bajar o bien hacer broadcast de información a múltiples localidades esparcidas en un
territorio.
 APLICACIONES CON ANCHO DE BANDA INTENSIVO
 Video.
 Internet.
 Intranet.
 Multimedia.
 Transferencia de Software.
 Transferencia de archivos.
 Actualización de base de datos.
5.3. VENTAJAS DE UNA RED SATELITAL
 Control efectivo del cliente sobre sus telecomunicaciones.
 Reducción de costos.
 Rápida respuesta.
 Incremento de flexibilidad.
 Mayor desempeño.
 Disponibilidad virtualmente del 100%
 Fácil control de la red.
 Ubiquidad.
 Acceso a sitios carentes de comunicación terrestre.
 Servicio mundial.
 Múltiples aplicaciones sobre la misma plataforma.
 Menor tiempo de espera que con la disponibilidad de enlaces
terrestres.
 Movilidad.
 Soporte de múltiples protocolos.
 Broadcast.
 Servicios de valor agregado.
.
12
6. EQUIPOS
A continuación daremos un vistazo a los equipos necesarios, utilizados en un enlace de
red satelital.
ANTENAS
Antena
Antena Rx Tx de 4.5m
RECEPCION-
C
TRANSMISION-
C
RECEPCION-
Ku
TRANSMISION-
Ku
Frecuencia (GHz) 3.4-4.2 5.85-6.725 10.95-12.75 13.75-14.5
Ganancia Típica (dBi) 43.39 47.43 52.94 54.25
VSWR 1.25:1
Anchura de Haz:-3dB 1.08° 0.715° 0.37° 0.318°
-15dB 2.16° 1.43° 0.741° 0.637°
Temperatura de Ruido de la Antena (°K) 2 Puertos de alimentación
10° Elevación 36 45
20° Elevación 29 40
40° Elevación 24 36
Capacidad de manejo de energía 5KW/Puerto 1KW/Puerto
Interfaz de alimentación CPR-229G CPR-137G WR-75
Perdida de inserción de alimentación 0.25dB 0.2dB 0.3dB 0.25dB
Tx-Rx ≥85dB
Coeficiente Axial (dB) 1.5dB 1.0dB
13
Aislamiento de polarización cruzada (en el
eje)
35dB
Lóbulos laterales CCIR.580-4
Mecánico
Óptica de la Antena Anillo de enfoque de la antena
Recorrido Azimut Manual 360°, Motorizado ±85°
Recorrido de Elevación 0° a 90°
Superficie de precisión 0.5mm(R.M.S)
Ambiental
Presión del viento
72 kmph operacional (Mantiene precisión)
97 kmph operacional (Disminuye precisión)
200 kmph Supervivencia (Fija hacia el cielo)
Temperatura ambiente -45° a 60°
Humedad relativa 0% a 100%
Sísmica (Supervivencia) 0.3G horizontal 0.15G vertical
14
AMPLIFICADORES HPA TWT
ENCAPSULADOR IP
Está construido sobre una velocidad alta, incorporado la plataforma que ha sido adaptado
para la alta velocidad de las aplicaciones de datos. Está equipado con dos puertos gigabit
ethernet de entradas y dos salidas, es capaz de total de rendimiento de la red hasta 155
mbps agregado y de procesamiento de paquetes de 140, paquetes 000 por segundo.
Band KU KU, C, X KU
TWT Power 180W 400W / 750W
125W / 150W /
180W
TFOP
Typical Flange Output
Power
150W 350W / 650W
120W / 150W /
165W
Tamaño
132.5H x 348L x
183W
350W: 244H x 520L
x 260W
650W: 303H x 546L
x 324W
203H x 436L x
213W mm
Montaje Antena Antena Antena
Temperatura
Operacion
-40 to +55 °C -40 to +55 °C -40 to +45 °C
Peso 9 Kgs.
15
LNA-LNB
 Highly reliable
 Compact size and light weight
 King post / pole mount outdoor unit,IP65 rated
 Selection of DC voltage & 22kHz tone & 10MHz reference to the LNB
 Monitor and Control on the LNB through proprietary software
 Comes with L-Band multiplexer for BUC
 Internal attenuator and amplifiers for gain and insertion loss adjustment
 High accuracy internal OCXO reference
 Comes with Receive L-Band monitor port
BLOCK UP CONVERTER (BUC)
 Compact and light weight
 Feed mountable
 Available in both standard and extended Ku-Band
 Forward power detection facility
 Intuitive monitoring & control through RS232/485 & Ethernet(SNMP & HTTP)
 Auto ranging 38 to 60V DC Power Supply
 Automatic fault identification & alarm generation
 Wide operating temperature range -40 to +60 deg C
 IP65 rated housing (Weather proof Construction)
 RoHS compliant
16
CONVERTER
 Compact unit, complete in a single 1 RU package
 Full monitoring and control through LCD and keypad front panel or serial remote
 User selectable spectrum inversion
 Redundant ready
 Available for wide satellite bands
 Flexible design for various users’ configurations
 RS232, RS485 and SNMP interface for remote M&C
TRANCEIVERS KU-BAND
 Available for all Ku-Band frequencies
 Broadband data transmission
 Easy installation & configuration
 Built-in monitor and control
 Higher power options available
 Built-in image rejection filter
 Very stable OCXO reference oscillator
 Output power monitoring
 Electronically tuneable synthesizer for Transmit and Receive
 1.0 MHz frequency step size
 Redundancy ready
 Surge Protection
 70 or 140 MHz IF interface
17
POWER SUPLY UNIT
 Compact power supplies for all Agilis’ BUCs
 Multiplex DC with IF, Reference and FSK M&C signals
 Available in both indoor and outdoor solution
 Wide AC input range (115VAC to 230VAC)
 Complies with EMI/EMC standard
 Wide operating temperature range -40oC to +60oC for outdoor PSU
 Extremely reliable
 High power efficiency
 Low ripple output voltage
 Waterproof with IP65 standard for outdoor PSU
 LED indicator for PSU status
 Option to monitor the optic signal status (ON/OFF)
LNA/LNB OUTDOOR
 Available for all C-Band & Ku-Band frequencies
 Excellent gain flatness and gain stability
 Low current consumption
 High / Small Signal gain
 Wide gain control range
 Low noise figure
18
REDUNDANCY
 Provides power supply and reference signal to redundant LNB units.
 Power supply in 1:1 redundant mode is available.
 Supports C and Ku-Band LNB units.
 Built-in 1:1 extremely stable 10MHz OCXO (Optional)
 10 MHz reference available in 1:1 redundant mode
 Redundant 180-230 VAC power supply input. (Optional 90 -130 VAC)
 Fault indication by LED display
 King post / pole mount outdoor unit with IP65 rated.
 RS 232/ RS 485 serial and SNMP for remote Monitoring & Control
 Form C contact closure outputs.
 Field programmable firmware.
SOLID STATE POWER AMPLIFIER (SSPA)
 High RF output power
 Low spurious level
 Various output power rating
 RF output monitor port
 RF input monitor port
 Built-in Redundancy (optional external Redundancy unit)
19
MODEM SATELITE SERIE
 BPSK, QPSK, OQPSK, 8PSK, 16QAM.
 Programmable receive acquisition/tracking range
 Typical DSP acquisition time of 315 mseconds at 9.6 kbps QPSK, 71 mseconds at
64 kbps QPSK.
 Viterbi and Reed-Solomon FEC standard, TPC optional. BER vs. Eb/No
performance within 0.3 dB of theoretical. 10 – 7 BER at 6.0 dB Eb/No (2.8 dB with
TPC, 3.5 dB with Reed-Solomon codec).
 DDS transmit and receive frequency setting in 1 Hz increments
 Programmable Interface type
 Low power, light weight 1 U case
 Built-in IBS Multiplexer with overhead channel, AUPC and Remote Modem Control
 Built-In BER Test Set
 DDS setting of transmit and receive data rates from 1.2 kbps to 20 Mbps in 1 bps
increments
 Viterbi FEC codec programmable to rate 1/2, 3/4, 5/6, 7/8 disabled.
 40 dB AGC range with +15 dBm composite input power
 Fully programmable from either front panel or remote command without jumpers
 Built-in 1:1 Redundancy
 Designed to use internal or external G.703 and Ethernet interfaces.
 140 MHz IF available on request.
 8 User stored and recallable configurations. Automatic Recovery of stored
configurations
20
DRIVEAWAY INTEGRATED SYSTEM
 Carbon fibre reflector
 Full auto acquisition with DVB satellite locator
 Integrated GPS and flux gate compass
 Meets Intelsat/Eutelsat recommended specifications
 Side lobe performance better than 29-25 log F
 A standard +12VDC power supply or 90 to 260VAC supply
MOBILE EARTH STATION (MES)
 Transportable 3.9m Ku-Band Tri-fold Antenna
 Integrated LNA, HPA, Converter in Redundancy Configuration
 Modular HVAC Shelter with Rooftop Access
 Intelligent Network Management System
 1-hr Uninterruptible Power Supply for Critical Electronics
 On-board Power Generation, 24-hrs Diesel Fuel Tank & Power Distribution
 Lightning Protection & Grounding Kit
 Removable Platform for Full Earth Station Payload
 Off-Road Qualified Heavy Duty Trailer
 Stabilizers & Level Provisions
 Lifting Gears, Tools, Ladders & Accessories
21
AGILIS MANPACK TERMINAL (AMT)
 High performance flat panel antenna.
 Extremely compact and Rugged
 Optimal size, weight and power
 Built-in Tx & Rx Rejection Filter
 Intelligent power management System (iPMS)
 Built-in GPS & 4.5inch LCD touch screen with simple GUI
 Built-in Compass
 Supports external wide range AC & DC supply
 Compact packaging for easy transport
 MIL-STD-810F Compliance & weather-proof IP65
 Optional manual battery charging in the field
22
7. CONCLUSIONES
 La tecnología de redes satelitales, representada por satélites poderosos y
complejos y el perfeccionamiento de las estaciones terrenas están revolucionando
el mundo. Así por ejemplo, la necesidad de interconectar terminales remotos con
bases de datos centralizadas, de una manera veloz y eficiente, han conducido a
una nueva tecnología conocida como ‘Very Small Apertura Terminal (VSAT)”
 En el enlace ascendente, es posible colocar en las estaciones terrenas
transmisores con mucha potencia, y antenas de gran tamaño para tener una
mayor ganancia, todo esto, aunque es posible resulta en un incremento de los
costos.
 La situación se complica mucho más en el enlace descendente, ya que la potencia
del transmisor está limitada por la energía que pueda generar el satélite, la cual no
es mucha, también, el tamaño de la antena está limitado por la zona de servicio
que deba cubrirse y además por el costo que implicaría transportarla. Esto hace
que las señales recibidas de los satélites, en la tierra, sean extremadamente
débiles, es por ello que se le debe dar fundamental importancia a la ganancia de la
antena, la eficiencia del transmisor, la figura de ruido del receptor y el tipo de
modulación y técnica de acceso.
 El transponder del satélite consiste básicamente de un amplificador de bajo ruido,
un convertidor de frecuencia y por ultimo un amplificador de potencia. El
inconveniente con el transponder surge cuando se utiliza la técnica de Acceso
Múltiple por División de Frecuencia (FDMA), donde es usual que existan
numerosas portadoras por transponder, lo cual si bien mejora la conectividad y el
acceso múltiple, por otro lado tiene el inconveniente de que genera ruido de
intermodulación en el amplificador del transponder, lo que obliga a que este
trabaje en condiciones de bajo rendimiento de potencia.
 Con el Acceso Múltiple por División de Tiempo (TDMA), en cada instante solo está
presente una portadora, por lo que no existen problemas de intermodulacion y se
puede hacer trabajar al amplificador del transponder en saturación, obteniéndose
un máximo de rendimiento. El inconveniente de esta técnica de acceso es que
requiere una temporización estricta y una gran capacidad de almacenamiento y
procesamiento de la señal.
8. BIBLIOGRAFIA
 Documento IEEE "Características de una Radio LAN" 1992 LACE Inc.Chandos A.
Rypinski.
 http://instalacionsatelital.wordpress.com/internet-satelital/
 http://www.oocities.org/es/kenlis78/telecomunicaciones/PAG1.htm
 http://materias.fi.uba.ar/6679/apuntes/Redes_Satelitales_v2.pdf
 http://www.geocities.ws/maria_abalo/rt/Foro-redes/Redes_ii.html
 http://es.calameo.com/read/001879677b72c28619783
 http://departamento.pucp.edu.pe/ingenieria/images/documentos/Tipos_de_redes_s
atelitales.pdf
 http://www.agilissatcom.com/index.php

More Related Content

What's hot

Conmutacion de circuitos y paquetes
Conmutacion de circuitos y paquetesConmutacion de circuitos y paquetes
Conmutacion de circuitos y paquetesJarvey Gonzalez
 
Unidad 3-antenas
Unidad 3-antenasUnidad 3-antenas
Unidad 3-antenasJuan Lopez
 
Cuadro comparativo de modulaciones
Cuadro comparativo de modulacionesCuadro comparativo de modulaciones
Cuadro comparativo de modulacionesFernando Luz
 
Grupo 4 metodos de multiplexacion
Grupo 4   metodos de multiplexacionGrupo 4   metodos de multiplexacion
Grupo 4 metodos de multiplexacionCarlos Ventura Luyo
 
6.5 Tipos mas comunes de antenas
6.5 Tipos mas comunes de antenas6.5 Tipos mas comunes de antenas
6.5 Tipos mas comunes de antenasEdison Coimbra G.
 
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)Juan Herrera Benitez
 
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDO
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDOTABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDO
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDOjavier david lobato pardo
 
Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2Enrique Zrt
 
Investigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisiónInvestigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisiónJosé Alexis Cruz Solar
 
Sistema de Comunicación. Redes de Telecomunicaciones
Sistema de Comunicación. Redes de TelecomunicacionesSistema de Comunicación. Redes de Telecomunicaciones
Sistema de Comunicación. Redes de Telecomunicacionesmamogetta
 
Introducción comunicaciones satelitales
Introducción   comunicaciones satelitalesIntroducción   comunicaciones satelitales
Introducción comunicaciones satelitalesFrancisco Sandoval
 
Cuadro comparativo de los medios de transmisión guiados y no guiados
Cuadro comparativo de los medios de transmisión guiados y no guiadosCuadro comparativo de los medios de transmisión guiados y no guiados
Cuadro comparativo de los medios de transmisión guiados y no guiadosJorge William
 
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IPCUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IPdisenarUniminuto
 
Diagrama de bloques de un sistema de comunicadion
Diagrama de bloques de un sistema de comunicadionDiagrama de bloques de un sistema de comunicadion
Diagrama de bloques de un sistema de comunicadionJimmy Siete
 
Telefonía móvil 2G final
Telefonía móvil 2G finalTelefonía móvil 2G final
Telefonía móvil 2G finalleobarflo
 
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3Francisco Apablaza
 
Ruido En Sistemas De Comunicaciones
Ruido En Sistemas De ComunicacionesRuido En Sistemas De Comunicaciones
Ruido En Sistemas De Comunicacionesgbermeo
 

What's hot (20)

Conmutacion de circuitos y paquetes
Conmutacion de circuitos y paquetesConmutacion de circuitos y paquetes
Conmutacion de circuitos y paquetes
 
Unidad 3-antenas
Unidad 3-antenasUnidad 3-antenas
Unidad 3-antenas
 
Cuadro comparativo de modulaciones
Cuadro comparativo de modulacionesCuadro comparativo de modulaciones
Cuadro comparativo de modulaciones
 
6.3 Parametros de antenas
6.3 Parametros de antenas6.3 Parametros de antenas
6.3 Parametros de antenas
 
Grupo 4 metodos de multiplexacion
Grupo 4   metodos de multiplexacionGrupo 4   metodos de multiplexacion
Grupo 4 metodos de multiplexacion
 
6.5 Tipos mas comunes de antenas
6.5 Tipos mas comunes de antenas6.5 Tipos mas comunes de antenas
6.5 Tipos mas comunes de antenas
 
Señales analogicas
Señales analogicasSeñales analogicas
Señales analogicas
 
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)
Modulacion y Codificacion Digital - Analogo (ASK, FSK & PSK)
 
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDO
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDOTABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDO
TABLA DE CARACTERISTICAS DE MEDIOS DE TRANSMISION by JAVIER DAVID LOBATO PARDO
 
Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2
 
Investigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisiónInvestigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisión
 
Sistema de Comunicación. Redes de Telecomunicaciones
Sistema de Comunicación. Redes de TelecomunicacionesSistema de Comunicación. Redes de Telecomunicaciones
Sistema de Comunicación. Redes de Telecomunicaciones
 
Introducción comunicaciones satelitales
Introducción   comunicaciones satelitalesIntroducción   comunicaciones satelitales
Introducción comunicaciones satelitales
 
Cuadro comparativo de los medios de transmisión guiados y no guiados
Cuadro comparativo de los medios de transmisión guiados y no guiadosCuadro comparativo de los medios de transmisión guiados y no guiados
Cuadro comparativo de los medios de transmisión guiados y no guiados
 
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IPCUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
 
Diagrama de bloques de un sistema de comunicadion
Diagrama de bloques de un sistema de comunicadionDiagrama de bloques de un sistema de comunicadion
Diagrama de bloques de un sistema de comunicadion
 
Telefonía móvil 2G final
Telefonía móvil 2G finalTelefonía móvil 2G final
Telefonía móvil 2G final
 
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
 
Ruido En Sistemas De Comunicaciones
Ruido En Sistemas De ComunicacionesRuido En Sistemas De Comunicaciones
Ruido En Sistemas De Comunicaciones
 
Tipos de multiplexacion
Tipos de multiplexacionTipos de multiplexacion
Tipos de multiplexacion
 

Similar to Redes satelitales

Comunicaciones Satelitales.pptx
Comunicaciones Satelitales.pptxComunicaciones Satelitales.pptx
Comunicaciones Satelitales.pptxMarko Zapata
 
Tipos de redes satelitales
Tipos de redes satelitalesTipos de redes satelitales
Tipos de redes satelitalesKîŋġ Løst
 
Dianamartinez grupo6 actividad 3 (2)
Dianamartinez grupo6 actividad 3 (2)Dianamartinez grupo6 actividad 3 (2)
Dianamartinez grupo6 actividad 3 (2)Andrés Acosta
 
04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_rodrigo valdez rueda
 
188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitalesJuancho Perdomo
 
No guiados maro
No guiados maroNo guiados maro
No guiados marocococoP
 
No guiados maro
No guiados maroNo guiados maro
No guiados marocococoP
 
Taller+medios+de+transmisíon++no+guiados (1)
Taller+medios+de+transmisíon++no+guiados (1)Taller+medios+de+transmisíon++no+guiados (1)
Taller+medios+de+transmisíon++no+guiados (1)Alexandra Zapata
 
Comunicaciones por satélite (trabajo exposición)
Comunicaciones por satélite (trabajo exposición)Comunicaciones por satélite (trabajo exposición)
Comunicaciones por satélite (trabajo exposición)ludisgarcia
 

Similar to Redes satelitales (20)

Comunicaciones satelitales
Comunicaciones satelitalesComunicaciones satelitales
Comunicaciones satelitales
 
Comunicaciones Satelitales.pptx
Comunicaciones Satelitales.pptxComunicaciones Satelitales.pptx
Comunicaciones Satelitales.pptx
 
Enlaces de microndas
Enlaces de microndasEnlaces de microndas
Enlaces de microndas
 
Tipos de redes satelitales
Tipos de redes satelitalesTipos de redes satelitales
Tipos de redes satelitales
 
Redes satelitales
Redes satelitalesRedes satelitales
Redes satelitales
 
Dianamartinez grupo6 actividad 3 (2)
Dianamartinez grupo6 actividad 3 (2)Dianamartinez grupo6 actividad 3 (2)
Dianamartinez grupo6 actividad 3 (2)
 
04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_
 
Servicio de tv cable por satélite
Servicio de tv cable por satéliteServicio de tv cable por satélite
Servicio de tv cable por satélite
 
Servicio de tv cable por satélite
Servicio de tv cable por satéliteServicio de tv cable por satélite
Servicio de tv cable por satélite
 
Servicio de tv cable por satélite
Servicio de tv cable por satéliteServicio de tv cable por satélite
Servicio de tv cable por satélite
 
188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
 
Transponders
TranspondersTransponders
Transponders
 
Analisis
AnalisisAnalisis
Analisis
 
Redes_Satelitales.pdf
Redes_Satelitales.pdfRedes_Satelitales.pdf
Redes_Satelitales.pdf
 
Taller+medios+de+transmisíon++no+guiados (1)
Taller+medios+de+transmisíon++no+guiados (1)Taller+medios+de+transmisíon++no+guiados (1)
Taller+medios+de+transmisíon++no+guiados (1)
 
Medios de Trasmisión
Medios de TrasmisiónMedios de Trasmisión
Medios de Trasmisión
 
Vaneee♥♥!♥
Vaneee♥♥!♥Vaneee♥♥!♥
Vaneee♥♥!♥
 
Comunicaciones por satélite (trabajo exposición)
Comunicaciones por satélite (trabajo exposición)Comunicaciones por satélite (trabajo exposición)
Comunicaciones por satélite (trabajo exposición)
 

Recently uploaded

Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadMiguelAngelVillanuev48
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxazmysanros90
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELmaryfer27m
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxMariaBurgos55
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxNombre Apellidos
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..RobertoGumucio2
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptJavierHerrera662252
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfSergioMendoza354770
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMidwarHenryLOZAFLORE
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxAlexander López
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son241514984
 
R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaarkananubis
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxJOSEMANUELHERNANDEZH11
 

Recently uploaded (20)

Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidad
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptx
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFEL
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptx
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptx
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son
 
R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en mina
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptx
 

Redes satelitales

  • 1. 1 REDES SATELITALES 1. ANTECEDENTES A partir del lanzamiento del primer satélite ruso SPUTNIK en 1957, los mercados corporativos han visto a la comunicación vía satelital como una gran oportunidad de mejorar sus oportunidades en comunicaciones. El creciente avance de la ciencia y tecnología en las ultimas décadas ha impulsado el desarrollo de nuevas y modernas tecnologías satelitales, dejando atrás la idea de que un satélite se utiliza únicamente para la transmisión de señales de T.V.; hoy en día se realizan con gran éxito transmisiones de voz, datos, videoconferencia e Internet de alta velocidad. Por todo ello es menester profundizar el concepto de las redes satelitales y la importancia de las mismas en las comunicaciones, labor que presentaremos en el presente documento. 2. OBJETIVOS  Realizar una investigación referente a las Redes Satelitales. 3. OBJETIVOS ESPECIFICOS  Definir red satelital.  Funcionamiento de una red satelital  Servicios y aplicaciones de la misma. 4. FUNDAMENTO TEORICO REDES SATELITALES ¿QUE ES UN SATELITE? Un satélite puede definirse como un repetidor radioeléctrico ubicado en el espacio, que recibe señales generadas en la tierra, las amplifica y las vuelve a enviar a la tierra, ya sea al mismo punto donde se origino la señal u otro punto distinto. RED SATELITAL Una Red Satelital es el conjunto de antenas, equipos electrónicos y satélites que se interconectan y comunican entre sí para compartir información entre sitios distantes y a los cuales no se tiene acceso mediante la vía terrestre. Una red satelital realiza la transmisión de información utilizando radio frecuencias que se amplifican y envían a un determinado satélite el cuál las recibe, procesa, amplifica y retransmite hacia otras antenas terrestres, o bien de varias antenas hacia una antena central. Un Enlace Satelital es un canal por el cual serán enviadas y recibidas las señales transmitidas de la estación terrestre al satélite y de este a la estación terrestre.
  • 2. 2 Red Satelital CARACTERISTICAS DE LAS REDES SATELITALES  Las transmisiones son realizadas a altas velocidades, en el rango de frecuencias de los Giga Hertz.  Son muy costosas, por lo que su uso se ve limitado a grandes empresas y países desarrollados.  Trabajan a largas distancias. ELEMENTOS DE LAS REDES SATELITALES  Transponders Es un dispositivo que realiza la función de recepción y transmisión. Las señales recibidas son amplificadas antes de ser retransmitidas a la tierra. Para evitar interferencias del enlace ascendente y descendente se utiliza distintas frecuencias. Transponder
  • 3. 3  Estaciones terrenas Las estaciones terrenas controlan la recepción con el satélite y desde el satélite, regula la interconexión entre terminales, administra los canales de salida, codifica los datos y controla la velocidad de transferencia. Consta de 3 componentes:  Estación emisora: Esta compuesta por el transmisor y la antena de emisión.  Antena: Debe captar la radiación del satélite y concentrarla en un foco donde está ubicado el alimentador. Una antena de calidad debe ignorar las interferencias y los ruidos en la mayor medida posible.  Estación receptora: Recibe toda la información generada en la estación transmisora y retransmitida por el satélite. Estos satélites están equipados con antenas receptoras y con antenas transmisoras. Por medio de ajustes en los patrones de radiación de las antenas pueden generarse cubrimientos globales, cubrimiento a solo un país (satélites domésticos), o conmutar entre una gran variedad de direcciones. La potencia emitida es alta para que la señal del satélite sea buena. Esta señal debe ser captada por la antena receptora. Para cubrir el trayecto ascendente envía la información al satélite con la modulación y portadora adecuada. Como medio de transmisión físico se utilizan medios no guiados, principalmente el aire. Se utilizan señales de microondas para la transmisión por satélite, estas son unidireccionales, sensibles a la atenuación producida por la lluvia, pueden ser de baja o de alta frecuencia y se ubican en el orden de los 100 MHz hasta los 10 GHz. Estación Terrena - Vista exterior e interior
  • 4. 4 CLASIFICACION DE LAS TRANSMISIONES SATELITALES Las transmisiones de satélite se clasifican como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema. En el caso de radiodifusión directa de televisión vía satélite el servicio que se da es de tipo unidireccional por lo que normalmente se requiere una estación transmisora única, que emite los programas hacia el satélite, y varias estaciones terrenas de recepción solamente, que toman las señales provenientes del satélite. Existen otros tipos de servicios que son bidireccionales donde las estaciones terrenas son de transmisión y de recepción. Uno de los requisitos más importantes del sistema es conseguir que las estaciones sean lo más económicas posibles para que puedan ser accesibles a un gran numero de usuarios, lo que se consigue utilizando antenas de diámetro chico y transmisores de baja potencia. Sin embargo hay que destacar que es la economía de escala (en aquellas aplicaciones que lo permiten) el factor determinante para la reducción de los costos. MODELOS DE ENLACE DEL SISTEMA SATELITAL Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.  Modelo de subida El principal componente dentro de la sección de subida, de un sistema satelital, es el transmisor de la estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del espectro de salida (un filtro pasa- banda de salida). El modulador de IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada e FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa- banda) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA
  • 5. 5 proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva. Modelo de subida del satélite.  Transponder Un típico transponer satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un translador de frecuencia, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida. El transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los utilizados en los repetidores de microondas. El BPF de entrada limita el ruido total aplicado a la entrada del LNA (un dispositivo normalmente utilizado como LNA, es un diodo túnel). La salida del LNA alimenta un translador de frecuencia (un oscilador de desplazamiento y un BPF), que se encarga de convertir la frecuencia de subida de banda alta a una frecuencia de bajada de banda baja. El amplificador de potencia de bajo nivel, que es comúnmente un tubo de ondas progresivas (TWT), amplifica la señal de RF para su posterior transmisión por medio de la bajada a los receptores de la estación terrena. También pueden utilizarse amplificadores de estado sólido (SSP), los cuales en la actualidad, permiten obtener un mejor nivel de linealidad que los TWT. La potencia que pueden generar los SSP, tiene un máximo de alrededor de los 50 Watts, mientras que los TWT pueden alcanzar potencias del orden de los 200 Watts.
  • 6. 6 Transponder del satélite.  Modelo de bajada Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. El BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador parametrico. El convertidor de RF a IF es una combinación de filtro mezcador/pasa-bandas que convierte la señal de RF a una frecuencia de IF. Modelo de bajada del satélite Los enlaces satelitales cuentan con distintas tecnologías de acceso y transmisión entre la estación terrena y el satélite y viceversa. Tecnologías de acceso La tecnología de acceso es el procedimiento por el cual la señal de la estación terrestre es colocada sobre la portadora para enviarse al satélite. Las tecnologías más utilizadas para este proceso son:  TDM / TDMA (Time Division Multiplex/Multiple Access).  SCPC. (Singel Channel Per Carrier).  DAMA. (Demand Assined Multiple Access).  MCPC. (Multiple Channels Per Carrier).  BROADCAST.
  • 7. 7 Tecnología De Transmisión De la misma forma en que una red terrestre utiliza diversos métodos de transmisión, las redes satelitales utilizan estos principios básicos para establecer la transmisión entre los diferentes puntos. Las tecnologías más utilizadas para este proceso son:  X.25.  FRAME RELAY.  ATM. Topología Básicamente, la comunicación satelital utiliza los mismos métodos utilizados en las redes terrestres. La gran ventaja de una red satelital es el hecho de poder comunicar a una estación central con varias estaciones remotas en el mismo tiempo (BROADCAST), situación imposible para una red terrestre. Ante esta posibilidad se establecen las siguientes topologías:  Malla.  Estrella.  Punto a Punto.  Punto a Multipunto.  Multipunto a Multipunto. Por ejemplo en el par de gráficos se observa dos distintas topologías. Malla Estrella
  • 8. 8 5. FUNDAMENTO PRÁCTICO 5.1. SERVICIOS DE UNA RED SATELITAL Una red satelital puede ofrecer los mismos servicios de comunicación que una red de tipo terrestre, con la ventaja de poder comunicar puntos distantes de forma simultanea y en zonas donde la comunicación terrestre es poco accesible. Entre los principales servicios pueden mencionarse los siguientes:  SERVICIOS DE DATOS Servicio que brinda solución a los requerimientos de comunicaciones de alta capacidad entre dos puntos cualesquiera. Asimismo, se dispone de varios canales de datos, voz, fax y videoconferencia. Este servicio permite combinar canales de datos a distintas velocidades y protocolos para conexiones host to host, así como canales de voz que facilitan las comunicaciones telefónicas entre dos puntos y canales para transmisión de imágenes utilizados en videoconferencia.  SERVICIOS DE COMUNICACIONES INTERNACIONALES Servicio que permite establecer enlaces de altas y varias capacidades entre cualquier punto con el resto del mundo. Dichas aplicaciones incluyen el transporte de datos, voz, fax e imágenes, multiplexados sobre el mismo canal.  VSAT Servicio de comunicación satelital cuya principal propiedad es la utilización eficiente del ancho de banda, pues se transmite sólo cuando hay información entre los diferentes usuarios. Asimismo, permite establecer enlaces punto-punto y punto-multipunto entre estaciones de una misma red para desarrollar aplicaciones de consulta y transacciones. A través de las VSAT también pueden transmitirse comunicaciones de datos, voz y fax que permiten la interconexión directa en ambientes de redes de área local y área amplia.  SERVICIO DE TELEDATOS Servicio creado para dar interconectividad en el área metropolitana, ya que se utiliza principalmente en los accesos de última milla para los servicios satelitales, es decir, la conexión desde la oficina del cliente hasta el telepuerto.  BROADCAST Servicio de difusión de datos, diseñado para clientes que requieren difundir información, esto es, boletines de tarjetas de crédito, difusión de noticias, información financiera, entre otros.
  • 9. 9  OTROS SERVICIOS SATELITALES El desarrollo de nuevas tecnologías y mayor potencia en los satélites ha incrementado la posibilidad de servicios ofrecidos vía satélite y la tendencia es ubicar a esta tecnología como una plataforma de banda ancha capaz de brindar una gran variedad de servicios en línea y multimedios. Estas aplicaciones, alcanzan hoy en día servicios tales como:  Envío de mensajes electrónicos.  Participación en videoconferencias múltiples.  Transmisión de archivos.  Recepción de páginas del WWW a altas velocidades.  Telefonía satelital inalámbrica.  Redes de datos y multiservicios.  Redes móviles de comunicación  Redes privadas nacionales e internacionales. ¿Quiénes requieren el servicio de redes satelitales?  Empresas que requieran de una red privada de comunicaciones principalmente para aplicaciones transaccionales. Empresas que tengan más de 3 puntos de presencia regional, nacional y/o multinacional.  Empresas que tengan puntos de venta múltiples.  Empresas que tengan sucursales o puntos de presencia en sitios de difícil acceso y/o en donde la fibra óptica no llega.  Empresas que no cuenten con una infraestructura actual de telecomunicaciones.  Empresas cuyos puntos de venta y/o de presencia sean susceptibles a cambios frecuentes.  Empresas que tengan tiempos críticos y reducidos para interconectar nuevas sucursales y/o puntos de venta.  Empresas cuya infraestructura tecnológica requiera de continuo crecimiento al menor costo de inversión en equipamiento. 5.2. APLICACIONES DE LAS REDES SATELITALES  MUNICACIÓN GLOBAL La tecnología satelital ha desarrollado sistemas en donde las computadoras personales se les pueden adaptar pequeñas antenas, las cuales-vía satelite-pueden recibir y transmitir todo el banco de información de datos de su compañía, sin importar el lugar en que se encuentren. Esta aplicación requiere de una pequeña antena satelital y un microporocesador instalados en una tarjeta inteligente dentro de una computadora portátil. La oficina central requiere de una antena receptora y un software especial que procese la información. De esta manera, las empresas que requieren comunicar a todas sus filiales, las cuales se encuentran distribuidas geográficamente, pueden hacerlo por medio de la creación de enlaces satelitales que les permiten el desarrollo de un sinfiín de actividades de intercambio de información.
  • 10. 10  APLICACIONES CASETAS DE PEAJE En las casetas de peaje es colocada una antena satelital, la cuál permite que a la hora que el cobrador digita en su máquina la cantidad de la cuota, ésta automáticamente se envía por medio de una VSAT a la oficina central del controlador. Así se tiene el control del estado financiero de cada carretera y sus correspondientes casetas.  APLICACIONES FINANCIERAS Gracias al desarrollo de sistemas satelitales tales como las VSAT, hoy en día es posible la instalación de cajeros automáticos, en cualquier lugar, si necesidad de que exista una línea telefónica. Un cajero puede instalarse en zonas rurales, gasolineras y carreteras.  APLICACIONES PUNTOS DE VENTA Los grandes supermercados y tiendas comerciales pueden también verse beneficiados gracias a la comunicación satelital, ofreciendo a sus clientes un mejor servicio y manteniendo al día sus inventarios. Gracias a la comunicación satelital cada tienda puede estar comunicada con sus oficinas centrales para la modificación de precios o promociones de ocasión, monitorear y controlar sus inventarios, autorizar pagos con tarjetas de crédito, realizar transacciones de tarjetas de débito, etc.  RESERVACIONES Reservaciones en líneas aéreas, agencias de viajes, hoteles, renta de automóviles. Control y registro de puntos acumulados en los programas de viajero frecuente, cliente VIP, tarjetas de crédito. Registro, seguimiento y control de mensajería, carga, envíos, etc.  APLICACIONES SCADA Las grandes industrias, principalmente del ramo petrolero y de energía, cuentan con instalaciones en zonas de difícil acceso en muchos casos, y requieren el control de sistemas sofisticados para el monitoreo de sus instalaciones, El sistema SCADA utiliza antenas VSAT para la recolección de datos remotos, monitoreo y control de válvulas, switches y sistemas en localidades remotas, control sobre tuberías en gasoductos, utilización de electricidad, monitoreo y control de flujos, etc.  LOTERIAS La aplicación satelital en este campo permite el registro de billetes de lotería y el control de venta y autenticidad de los billetes.  APLICACIONES SERVICIOS DE TELEFONIA Para redes corporativas privadas o para servicio público en áreas fuera de servicio o poco accesibles.
  • 11. 11  APRENDIZAJE REMOTO Clases a distancia, proporcionar instrucciones de calidad en sitios remotos, proveer capacitación en demanda a oficinas remotas, etc.  NOTICIAS E INFORMACION Bajar o bien hacer broadcast de información a múltiples localidades esparcidas en un territorio.  APLICACIONES CON ANCHO DE BANDA INTENSIVO  Video.  Internet.  Intranet.  Multimedia.  Transferencia de Software.  Transferencia de archivos.  Actualización de base de datos. 5.3. VENTAJAS DE UNA RED SATELITAL  Control efectivo del cliente sobre sus telecomunicaciones.  Reducción de costos.  Rápida respuesta.  Incremento de flexibilidad.  Mayor desempeño.  Disponibilidad virtualmente del 100%  Fácil control de la red.  Ubiquidad.  Acceso a sitios carentes de comunicación terrestre.  Servicio mundial.  Múltiples aplicaciones sobre la misma plataforma.  Menor tiempo de espera que con la disponibilidad de enlaces terrestres.  Movilidad.  Soporte de múltiples protocolos.  Broadcast.  Servicios de valor agregado. .
  • 12. 12 6. EQUIPOS A continuación daremos un vistazo a los equipos necesarios, utilizados en un enlace de red satelital. ANTENAS Antena Antena Rx Tx de 4.5m RECEPCION- C TRANSMISION- C RECEPCION- Ku TRANSMISION- Ku Frecuencia (GHz) 3.4-4.2 5.85-6.725 10.95-12.75 13.75-14.5 Ganancia Típica (dBi) 43.39 47.43 52.94 54.25 VSWR 1.25:1 Anchura de Haz:-3dB 1.08° 0.715° 0.37° 0.318° -15dB 2.16° 1.43° 0.741° 0.637° Temperatura de Ruido de la Antena (°K) 2 Puertos de alimentación 10° Elevación 36 45 20° Elevación 29 40 40° Elevación 24 36 Capacidad de manejo de energía 5KW/Puerto 1KW/Puerto Interfaz de alimentación CPR-229G CPR-137G WR-75 Perdida de inserción de alimentación 0.25dB 0.2dB 0.3dB 0.25dB Tx-Rx ≥85dB Coeficiente Axial (dB) 1.5dB 1.0dB
  • 13. 13 Aislamiento de polarización cruzada (en el eje) 35dB Lóbulos laterales CCIR.580-4 Mecánico Óptica de la Antena Anillo de enfoque de la antena Recorrido Azimut Manual 360°, Motorizado ±85° Recorrido de Elevación 0° a 90° Superficie de precisión 0.5mm(R.M.S) Ambiental Presión del viento 72 kmph operacional (Mantiene precisión) 97 kmph operacional (Disminuye precisión) 200 kmph Supervivencia (Fija hacia el cielo) Temperatura ambiente -45° a 60° Humedad relativa 0% a 100% Sísmica (Supervivencia) 0.3G horizontal 0.15G vertical
  • 14. 14 AMPLIFICADORES HPA TWT ENCAPSULADOR IP Está construido sobre una velocidad alta, incorporado la plataforma que ha sido adaptado para la alta velocidad de las aplicaciones de datos. Está equipado con dos puertos gigabit ethernet de entradas y dos salidas, es capaz de total de rendimiento de la red hasta 155 mbps agregado y de procesamiento de paquetes de 140, paquetes 000 por segundo. Band KU KU, C, X KU TWT Power 180W 400W / 750W 125W / 150W / 180W TFOP Typical Flange Output Power 150W 350W / 650W 120W / 150W / 165W Tamaño 132.5H x 348L x 183W 350W: 244H x 520L x 260W 650W: 303H x 546L x 324W 203H x 436L x 213W mm Montaje Antena Antena Antena Temperatura Operacion -40 to +55 °C -40 to +55 °C -40 to +45 °C Peso 9 Kgs.
  • 15. 15 LNA-LNB  Highly reliable  Compact size and light weight  King post / pole mount outdoor unit,IP65 rated  Selection of DC voltage & 22kHz tone & 10MHz reference to the LNB  Monitor and Control on the LNB through proprietary software  Comes with L-Band multiplexer for BUC  Internal attenuator and amplifiers for gain and insertion loss adjustment  High accuracy internal OCXO reference  Comes with Receive L-Band monitor port BLOCK UP CONVERTER (BUC)  Compact and light weight  Feed mountable  Available in both standard and extended Ku-Band  Forward power detection facility  Intuitive monitoring & control through RS232/485 & Ethernet(SNMP & HTTP)  Auto ranging 38 to 60V DC Power Supply  Automatic fault identification & alarm generation  Wide operating temperature range -40 to +60 deg C  IP65 rated housing (Weather proof Construction)  RoHS compliant
  • 16. 16 CONVERTER  Compact unit, complete in a single 1 RU package  Full monitoring and control through LCD and keypad front panel or serial remote  User selectable spectrum inversion  Redundant ready  Available for wide satellite bands  Flexible design for various users’ configurations  RS232, RS485 and SNMP interface for remote M&C TRANCEIVERS KU-BAND  Available for all Ku-Band frequencies  Broadband data transmission  Easy installation & configuration  Built-in monitor and control  Higher power options available  Built-in image rejection filter  Very stable OCXO reference oscillator  Output power monitoring  Electronically tuneable synthesizer for Transmit and Receive  1.0 MHz frequency step size  Redundancy ready  Surge Protection  70 or 140 MHz IF interface
  • 17. 17 POWER SUPLY UNIT  Compact power supplies for all Agilis’ BUCs  Multiplex DC with IF, Reference and FSK M&C signals  Available in both indoor and outdoor solution  Wide AC input range (115VAC to 230VAC)  Complies with EMI/EMC standard  Wide operating temperature range -40oC to +60oC for outdoor PSU  Extremely reliable  High power efficiency  Low ripple output voltage  Waterproof with IP65 standard for outdoor PSU  LED indicator for PSU status  Option to monitor the optic signal status (ON/OFF) LNA/LNB OUTDOOR  Available for all C-Band & Ku-Band frequencies  Excellent gain flatness and gain stability  Low current consumption  High / Small Signal gain  Wide gain control range  Low noise figure
  • 18. 18 REDUNDANCY  Provides power supply and reference signal to redundant LNB units.  Power supply in 1:1 redundant mode is available.  Supports C and Ku-Band LNB units.  Built-in 1:1 extremely stable 10MHz OCXO (Optional)  10 MHz reference available in 1:1 redundant mode  Redundant 180-230 VAC power supply input. (Optional 90 -130 VAC)  Fault indication by LED display  King post / pole mount outdoor unit with IP65 rated.  RS 232/ RS 485 serial and SNMP for remote Monitoring & Control  Form C contact closure outputs.  Field programmable firmware. SOLID STATE POWER AMPLIFIER (SSPA)  High RF output power  Low spurious level  Various output power rating  RF output monitor port  RF input monitor port  Built-in Redundancy (optional external Redundancy unit)
  • 19. 19 MODEM SATELITE SERIE  BPSK, QPSK, OQPSK, 8PSK, 16QAM.  Programmable receive acquisition/tracking range  Typical DSP acquisition time of 315 mseconds at 9.6 kbps QPSK, 71 mseconds at 64 kbps QPSK.  Viterbi and Reed-Solomon FEC standard, TPC optional. BER vs. Eb/No performance within 0.3 dB of theoretical. 10 – 7 BER at 6.0 dB Eb/No (2.8 dB with TPC, 3.5 dB with Reed-Solomon codec).  DDS transmit and receive frequency setting in 1 Hz increments  Programmable Interface type  Low power, light weight 1 U case  Built-in IBS Multiplexer with overhead channel, AUPC and Remote Modem Control  Built-In BER Test Set  DDS setting of transmit and receive data rates from 1.2 kbps to 20 Mbps in 1 bps increments  Viterbi FEC codec programmable to rate 1/2, 3/4, 5/6, 7/8 disabled.  40 dB AGC range with +15 dBm composite input power  Fully programmable from either front panel or remote command without jumpers  Built-in 1:1 Redundancy  Designed to use internal or external G.703 and Ethernet interfaces.  140 MHz IF available on request.  8 User stored and recallable configurations. Automatic Recovery of stored configurations
  • 20. 20 DRIVEAWAY INTEGRATED SYSTEM  Carbon fibre reflector  Full auto acquisition with DVB satellite locator  Integrated GPS and flux gate compass  Meets Intelsat/Eutelsat recommended specifications  Side lobe performance better than 29-25 log F  A standard +12VDC power supply or 90 to 260VAC supply MOBILE EARTH STATION (MES)  Transportable 3.9m Ku-Band Tri-fold Antenna  Integrated LNA, HPA, Converter in Redundancy Configuration  Modular HVAC Shelter with Rooftop Access  Intelligent Network Management System  1-hr Uninterruptible Power Supply for Critical Electronics  On-board Power Generation, 24-hrs Diesel Fuel Tank & Power Distribution  Lightning Protection & Grounding Kit  Removable Platform for Full Earth Station Payload  Off-Road Qualified Heavy Duty Trailer  Stabilizers & Level Provisions  Lifting Gears, Tools, Ladders & Accessories
  • 21. 21 AGILIS MANPACK TERMINAL (AMT)  High performance flat panel antenna.  Extremely compact and Rugged  Optimal size, weight and power  Built-in Tx & Rx Rejection Filter  Intelligent power management System (iPMS)  Built-in GPS & 4.5inch LCD touch screen with simple GUI  Built-in Compass  Supports external wide range AC & DC supply  Compact packaging for easy transport  MIL-STD-810F Compliance & weather-proof IP65  Optional manual battery charging in the field
  • 22. 22 7. CONCLUSIONES  La tecnología de redes satelitales, representada por satélites poderosos y complejos y el perfeccionamiento de las estaciones terrenas están revolucionando el mundo. Así por ejemplo, la necesidad de interconectar terminales remotos con bases de datos centralizadas, de una manera veloz y eficiente, han conducido a una nueva tecnología conocida como ‘Very Small Apertura Terminal (VSAT)”  En el enlace ascendente, es posible colocar en las estaciones terrenas transmisores con mucha potencia, y antenas de gran tamaño para tener una mayor ganancia, todo esto, aunque es posible resulta en un incremento de los costos.  La situación se complica mucho más en el enlace descendente, ya que la potencia del transmisor está limitada por la energía que pueda generar el satélite, la cual no es mucha, también, el tamaño de la antena está limitado por la zona de servicio que deba cubrirse y además por el costo que implicaría transportarla. Esto hace que las señales recibidas de los satélites, en la tierra, sean extremadamente débiles, es por ello que se le debe dar fundamental importancia a la ganancia de la antena, la eficiencia del transmisor, la figura de ruido del receptor y el tipo de modulación y técnica de acceso.  El transponder del satélite consiste básicamente de un amplificador de bajo ruido, un convertidor de frecuencia y por ultimo un amplificador de potencia. El inconveniente con el transponder surge cuando se utiliza la técnica de Acceso Múltiple por División de Frecuencia (FDMA), donde es usual que existan numerosas portadoras por transponder, lo cual si bien mejora la conectividad y el acceso múltiple, por otro lado tiene el inconveniente de que genera ruido de intermodulación en el amplificador del transponder, lo que obliga a que este trabaje en condiciones de bajo rendimiento de potencia.  Con el Acceso Múltiple por División de Tiempo (TDMA), en cada instante solo está presente una portadora, por lo que no existen problemas de intermodulacion y se puede hacer trabajar al amplificador del transponder en saturación, obteniéndose un máximo de rendimiento. El inconveniente de esta técnica de acceso es que requiere una temporización estricta y una gran capacidad de almacenamiento y procesamiento de la señal. 8. BIBLIOGRAFIA  Documento IEEE "Características de una Radio LAN" 1992 LACE Inc.Chandos A. Rypinski.  http://instalacionsatelital.wordpress.com/internet-satelital/  http://www.oocities.org/es/kenlis78/telecomunicaciones/PAG1.htm  http://materias.fi.uba.ar/6679/apuntes/Redes_Satelitales_v2.pdf  http://www.geocities.ws/maria_abalo/rt/Foro-redes/Redes_ii.html  http://es.calameo.com/read/001879677b72c28619783  http://departamento.pucp.edu.pe/ingenieria/images/documentos/Tipos_de_redes_s atelitales.pdf  http://www.agilissatcom.com/index.php