98780537 gsm-fundamentals
Upcoming SlideShare
Loading in...5
×
 

98780537 gsm-fundamentals

on

  • 2,263 views

 

Statistics

Views

Total Views
2,263
Views on SlideShare
2,263
Embed Views
0

Actions

Likes
2
Downloads
161
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

98780537 gsm-fundamentals 98780537 gsm-fundamentals Presentation Transcript

  • Mobile Radio Network Planning 13FL 11820 ABAA WAZZA ed01GSM Radio Network EngineeringFundamentalsPrerequisite: Introduction to theAlcatel GSM Network
  • Mobile Radio Network Planning 2GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw RNP Process Overvieww Coverage Planningw Traffic Planning and FrequencyPlanningw Radio Interface / Quality of Servicew Abbreviationsw P. 3w P. 39w P. 54w P.306w P.382w P.416
  • Mobile Radio Network Planning 33FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsIntroduction
  • Mobile Radio Network Planning 4GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Standardizationw Documentationw Radio Network Architecturew Mobile Phone Systems
  • Mobile Radio Network Planning 53FL 11820 ABAA WAZZA ed01IntroductionStandardizationDocumentation
  • Mobile Radio Network Planning 6GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01www.3GPP.org organizational partnersw Project supported bys ARIB Association of RadioIndustries and Businesses (Japan)s CWTS China WirelessTelecommunication Standardgroups ETSI EuropeanTelecommunications StandardsInstituts T1 Standards Committee T1Telecommunication (US)s TTA TelecommunicationsTechnology Association (Korea)s TTC TelecommunicationTechnology Committee (Japan)w The Organizational Partners shalldetermine the general policy andstrategy of 3GPP and perform thefollowing tasks:s Approval and maintenance ofthe 3GPP scopes Maintenance the PartnershipProject Descriptions Taking decisions on the creationor cessation of TechnicalSpecification Groups, andapproving their scope and termsof references Approval of OrganizationalPartner funding requirementss Allocation of human andfinancial resources provided bythe Organizational Partners tothe Project Co-ordination Group
  • Mobile Radio Network Planning 7GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Specification Group TSG
  • Mobile Radio Network Planning 8GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications and Releasesw GSM/Edge Releases: http://www.3gpp.org/specs/releases.htms TR 41.103 GSM Phase 2+ Release 5q Freeze date: March - June 2002s TR 41.102 GSM Phase 2+ Release 4q Freeze date: March 2001s TR 01.01 Phase 2+ Release 1999q Freeze date: March 2000w For the latest specification status information please go to the 3GPPSpecifications database:http://www.3gpp.org/ftp/Information/Databases/Spec_Status/w The latest versions of specifications can be found onftp://ftp.3gpp.org/specs/latest/
  • Mobile Radio Network Planning 9GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications out of Release 1999s TR 01.04 Abbreviations and acronymss TS 03.22 Functions related to Mobile Station (MS) in idle modeand group receive modes TR 03.30 Radio Network Planning Aspectss TS 04.04 Layer 1 - General Requirementss TS 04.06 Mobile Station - Base Stations System (MS - BSS)Interface Data Link (DL) Layer Specifications TS 04.08 Mobile radio interface layer 3 specifications TS 05.05 Radio Transmission and Receptions TS 05.08 Radio Subsystem Link Controls TS 08.06 Signalling Transport Mechanism Specification for theBase Station System - Mobile Services Switching Centre (BSS-MSC) Interfaces TS 08.08 Mobile-services Switching Centre - Base Station system(MSC-BSS) Interface Layer 3 Specification
  • Mobile Radio Network Planning 103FL 11820 ABAA WAZZA ed01IntroductionRadio Network ArchitectureMobile Phone Systems
  • Mobile Radio Network Planning 11GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network ArchitectureHLR GCRAuCEB CDFGHIAbisBCDEFGHIPSTNISDNBTS- BSCMSC-VLR(SM-G)MSC-HLRHLR-VLR(SM-G)MSC-MSC (SS7 basic)+MAPMSC-EIRVLR-VLRHLR-AuCMSC-GCRMSC-PSTN (SS7 basic)+ TUPorISUPMSC-ISDNLapD(ISDN type)GSM Circuit-switching:(BSSAP = BSSMAP +DTAP)A BSC - MSC (SS7 basic)+BSSAPBTSLapDm(GSM specific)Um(Radio)MS- BTSBSCBSCMSCMSCBTSPSTN /ISDNMSVLR VLR EIRAuC
  • Mobile Radio Network Planning 12GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Gc GGSN-HLR IP/SS7LAPDm(GSM specific)GsGbUm (Radio)Gi GGSN-Data Network IPMSBSS - SGSNGr SS7SGSN-HLRGf SS7SGSN-EIRSGSN-MSC/VLRGnSGSN-GGSN IPIPSGSN-SGSNMS - BTSGsGfGrGnGnGc SS7GSM Packet-switching(GPRS/EDGE):BSSGPBSSwithPCUBSSwithPCUHLR EIRDataNetworkSGSNGGSNSGSNMSC
  • Mobile Radio Network Planning 13GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01OMC-RBSSBTSBTSAlcatel9135MFSSSP+ RCPBSCSGSNOMC-RMSA bis A terTCGbAGGSNGnOMC-GNSSGPRS CN
  • Mobile Radio Network Planning 14GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network Elementsw Base Station System BSSs Base Transceiver StationBTSs Base Station ControllerBSCw Terminal Equipments Mobile Station MSw Operation and MaintenanceCenter-Radio OMC-Rw Network Subsystem NSSs Mobile Services SwitchingCenter MSCs Visitor Location Register VLRs Home Location Register HLRs Authentication Center AuCs Equipment Identity RegisterEIRw Operation and Maintenance CenterOMCw Multi-BSS Fast Packet Server(GPRS) MFSw Serving GPRS Support Node SGSNw Gateway GPRS Support NodeGGSN
  • Mobile Radio Network Planning 15GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RF SpectrumSystem TotalBandwidthUplinkfrequencyband /MHzDownlinkfrequencyband /MHzCarrierSpacingGSM 450 2x7.5MHz 450.4-457.6 460.4-467.6 200 kHzGSM 480 2x7.2MHz 478.8-486 488.8-496 200 kHzGSM 850 2x25MHz 824-849 869-894 200 kHzGSM 900 2x25MHz 890-915 935-960 200 kHzE-GSM 2x35MHz 880-915 925-960 200 kHzDCS 1800(GSM)2x75MHz 1710-1785 1805-1880 200 kHzPCS 1900(GSM)2x60MHz 1850-1910 1930-1990 200 kHz
  • Mobile Radio Network Planning 16GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Access Methodsw FDMA (Frequency Division Multiple Access)w TDMA (Time Division Multiple Access)w CDMA (Code Division Multiple Access)
  • Mobile Radio Network Planning 17GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01FDMAw Used for standard analog cellular mobile systems(AMPS, TACS, NMT etc.)w Each user is assigned a discrete slice of the RF spectrumw Permits only one user per channel since it allows the user touse the channel 100% of the time.
  • Mobile Radio Network Planning 18GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TDMAw Multiple users share RF carrier on a time slot basisw Carriers are sub-divided into timeslotsw Information flow is not continuous for an user, it is sent andreceived in "bursts"
  • Mobile Radio Network Planning 19GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA (Code Division Multiple Access)w Multiple access spread spectrum techniquew Each user is assigned a sequence code during a callw No time division; all users use the entire carrier
  • Mobile Radio Network Planning 20GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Analogue Cellular Mobile Systemsw Analogue transmission of speechw One TCH/Channelw Only FDMA (Frequency Division Multiple Access)w Different Systemss AMPS (Countries: USA)s TACS (UK, I, A, E, ...)s NMT (SF, S, DK, N, ...)s ...
  • Mobile Radio Network Planning 21GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS (Advanced Mobile Phone System)w Analogue cellular mobile telephone systemw Predominant cellular system operating in the USw Original system: 666 channels (624 voice and 42 controlchannels)w EAMPS - Extended AMPSCurrent system: 832 channels (790 voice, 42 control); hasreplaced AMPS as the US standardw NAMPS - Narrowband AMPSNew system that has three times more voice channels thanEAMPS with no loss of signal qualityw Backward compatible: if the infrastructure is designedproperly, older phones work on the newer systems
  • Mobile Radio Network Planning 22GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS - Technical objectivesTechnology FDMARF frequency band 825 - 890 MHzChannel Spacing 30 kHzCarriers 666 (832)Timeslots 1Mobile Power 0.6 - 4 WTransmission Voice, (data)HO possibleRoaming possible
  • Mobile Radio Network Planning 23GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS Advanced Mobile PhoneSystem991 10231 666 667 799ExtendedAMPSAMPSUplinkChannelnumberFrequency ofChannel(MHz)824.040825.030844.980845.010845.010Duplexdistance45 MHzDownlinkChannelnumberFrequency ofChannel(MHz)991 10231 666 667 799Extended AMPSAMPS869.040870.030889.980893.980890.010
  • Mobile Radio Network Planning 24GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS Total Access CommunicationsSystemw Analogue cellular mobile telephone systemw The UK TACS system was based on the US AMPS systemw TACS - Original UK system that has either 600 or 1000channels (558 or 958 voice channels, 42 control channels)w RF frequency band: 890 - 960Uplink: 890-915 Downlink: 935-960w Channel spacing: 25 KHz
  • Mobile Radio Network Planning 25GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS - TechnicalobjectivesTechnology FDMARF frequency band 890 - 960 MHzChannel Spacing 25 kHzCarriers 1000Timeslots 1Mobile Power 0.6 - 10 WTransmission Voice , (data)HO possibleRoaming possible
  • Mobile Radio Network Planning 26GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Different TACS-Systemsw ETACS - Extended TACSs Current UK system that has 1320 channels (1278 voice, 42control)and has replaced TACS as the UK standardw ITACS and IETACS - International (E)TACSs Minor variation of TACS to allow operation outside of the UK byallowing flexibility in assigning the control channelsw JTACS - Japanese TACSs A version of TACS designed for operation in Japanw NTACS - Narrowband TACSs New system that has three times as many voice channels asETACS with no loss of signal quality
  • Mobile Radio Network Planning 27GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS (Total Access CommunicationsSystem)1329 2047 0 23 44 323344600100011890.0125(935.0125)905(950)915(960)1st Assignment in theUK (600 channels)Organisation BOrganisation AOriginal concept (1000channels)890935889.9875(934.9875)889.9625(934.9625)872.0125(917.0125)872917Frequency ofchannel[Mhz]NumberofChannelE-TACS - 1320ChannelsBordersofchannels[Mhz]Mobile StationTX(Base StationTX)
  • Mobile Radio Network Planning 28GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why digital mobile communication ?w Easy adaptation to digital networksw Digital signaling serves for flexible adaptation to operational needsw Possibility to realize a wide spectrum of non-voice servicesw Digital transmission allows for high cellular implementation flexibilityw Digital signal processing gain results in high interference immunityw Privacy of radio transmission ensured by digital voice coding andencryptionw Cost and performance trends of modern microelectronics arein favour of a digital solution
  • Mobile Radio Network Planning 29GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM - Technical objectivesTechnology TDMA/FDMARF frequency band 890 - 960 MHzChannel Spacing 200 kHzCarriers 124Timeslots 8Mobile Power (average/max) 2 W/ 8 WBTS Power class 10 ... 40 WMS sensitivity - 102 dBmBTS sensitivity - 104 dBmTransmission Voice, dataHO possibleRoaming possible
  • Mobile Radio Network Planning 30GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT (Digital European CordlessTelephone)w European Standard for Cordless Communicationw Using TDMA-Systemw Traditional Applicationss Domestic use ("Cordless telephone")s Cordless office applicationsw Combination possible withs ISDNs GSMw High flexibility for different applications
  • Mobile Radio Network Planning 31GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT - Technical objectivesTechnology TDMA/FDMARF frequency band 1880 - 1900 MHzChannel Spacing 1.728 MHzCarriers 10Timeslots 12 (duplex)Mobile Power (average/max) 10 mW/250 mWBTS Power class 250 mWMS sensitivity -83 dBmBTS sensitivity -83 dBmTransmission Voice, dataHO possible
  • Mobile Radio Network Planning 32GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Technical objectivesw Spread spectrum technology(Code Division Multiple Access)w Several users occupy continuously one CDMA channel(bandwidth: 1.25 MHz)The CDMA channel can be re-used in every cellw Each user is addressed bys A specific code ands Selected by correlation processingw Orthogonal codes provides optimumisolation between users
  • Mobile Radio Network Planning 33GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Special Featuresw Vocoder allows variable data ratesw Soft handoverw Open and closed loop power controlw Multiple forms of diversityw Data, fax and short message services possible
  • Mobile Radio Network Planning 34GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - TechnicalobjectivesTechnology CDMARF frequency band 869-894 / 824-849or 1900 MHzChannel Spacing 1250 kHzChannels per 1250 kHz 64Mobile Power (average/max) 1-6.3 W / 6.3 WTransmission Voice, dataHO ("Soft handoff") possibleRoaming possible
  • Mobile Radio Network Planning 35GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Featuresw Standard for a frequency efficient european digital trunked radiocommunication system (defined in 1990)w Possibility of connections with simultaneous transmission of voice anddataw Encryption at two levels:s Basic level which uses the air interface encryptions End-to-end encryption (specifically intended for public safety users)w Open channel operationw "Direct Mode" possibles Communication between two MS without connecting via a BTSw MS can be used as a repeater
  • Mobile Radio Network Planning 36GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Typical Usersw Public safetys Police (State, Custom, Military, Traffic)s Fire brigadess Ambulance services ...w Railway, transport and distribution companies
  • Mobile Radio Network Planning 37GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Technical objectivesTechnology TDMA/FDMARF frequency band 380 - 400 MHzChannel Spacing 25 or 12.5 KHzCarriers not yet specifiedTimeslots 4Mobile Power (3 Classes) 1, 3, 10 WBTS Power class 0.6 - 25 WMS sensitivity -103 dBmBTS sensitivity -106 dBmTransmission Voice, data, images,short messageHO possibleRoaming possible
  • Mobile Radio Network Planning 38GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UMTS(Universal Mobile TelecommunicationSystem)w Third generation mobile communication systemw Combining existing mobile services (GSM, CDMA etc.)and fixed telecommunications servicesw More capacity and bandwidthw More services (Speech, Video, Audio, Multimedia etc.)w Worldwide roamingw "High" subscriber capacity
  • Mobile Radio Network Planning 393FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsRNP Process Overview
  • Mobile Radio Network Planning 40GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of RN Requirementsw The Request for Quotation (RfQ) from the customer prescribes therequirements mainlyw Coverages Definition of coverage probabilityq Percentage of measurements above level thresholds Definition of covered areaw Traffics Definition of Erlang per square kilometers Definition of number of TRX in a cells Mixture of circuit switched and packed switched trafficw QoSs Call success rates RxQual, voice quality, throughput rates, ping time
  • Mobile Radio Network Planning 41GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Preliminary Network Designw The preliminary design laysthe foundation to create theBill of Quantity (BoQ)s List of needed networkelementsw Geo data procurements Digital Elevation ModelDEM/Topographic maps Clutter mapw Definition of standardequipment configurationsdependent ons clutter types traffic densityw Coverage Plotss Expected receiving levelw Definition of roll out phasess Areas to be covereds Number of sites to beinstalleds Date, when the roll outtakes place.w Network architecture designs Planning of BSC and MSClocations and their linksw Frequency spectrum fromlicense conditions
  • Mobile Radio Network Planning 42GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Project Setup and Managementw This phase includes all tasks to be performed before the onsite part of the RNP process takes place.w This ramp up phase includes:s Geo data procurement if requireds Setting up ‘general rules’ of the projects Define and agree on reporting scheme to be usedq Coordination of information exchange between the different teamswhich are involved in the projects Each department/team has to prepare its part of theprojects Definition of required manpower and budgets Selection of project database (MatrixX)
  • Mobile Radio Network Planning 43GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Initial Radio Network Designw Area surveyss As well check of correctness of geo dataw Frequency spectrum partitioning designw RNP tool calibrations For the different morpho classes:q Performing of drive measurementsq Calibration of correction factor and standard deviation by comparison ofmeasurements to predicted received power values of the toolw Definition of search areas (SAM – Search Area Map)s A team searches for site locations in the defined areass The search team should be able to speak the national languagew Selection of number of sectors/TRX per site together with projectmanagement and customerw Get ‘real’ design acceptance from customer based on coverageprediction and predefined design level thresholds
  • Mobile Radio Network Planning 44GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Acquisition Procedurew Delivery of site candidatess Several site candidates shall bethe result out of the site locationsearchw Find alternative sitess If no site candidate or nosatisfactory candidate can befound in the search areas Definition of new SAMs Possibly adaptation of radionetwork designw Check and correct SAR (SiteAcquisition Report)s Location informations Land usages Object (roof top, pylon,grassland) informations Site planw Site candidate acceptance andrankings If the reported site isaccepted as candidate, thenit is ranked according to itsquality in terms ofq Radio transmissionHigh visibility on covered areaNo obstacles in the near field ofthe antennasNo interference from othersystems/antennasq Installation costsInstallation possibilitiesPower supplyWind and heatq Maintenance costsAccessibilityRental rates for objectDurability of object
  • Mobile Radio Network Planning 45GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Site Surveyw Agree on an equipment installationsolution satisfying the needs ofs RNE Radio Network Engineers Transmission planners Site engineers Site ownerw The Technical Site Survey Report(TSSR) definess Antenna type, position,bearing/orientation and tilts Mast/pole or wall mountingposition of antennass EMC rules are taken intoaccountq Radio network engineer andtransmission planner check electromagnetic compatibility (EMC) withother installed devicess BTS/Node B locations Power and feeder cable mounts Transmission equipmentinstallations Final Line Of Site (LOS)confirmation for microwave linkplanningq E.g. red balloon of around half a meterdiameter marks target locationw If the site is not acceptable or theowner disagrees with all suggestedsolutionss The site will be rejecteds Site acquisition team has toorganize a new date with thenext site from the ranking list
  • Mobile Radio Network Planning 46GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Parameter Definitionw After installation of equipmentthe basic parameter settingsare used fors Commissioningq Functional test of BTS andVSWR checks Call testsw RNEs define cell design dataw Operations field servicegenerates the basic softwareusing the cell design CAE dataw Cell design CAE data to bedefined for all cells are forexample:s CI/LAC/BSICs Frequenciess Neighborhood/cellhandover relationships Transmit powers Cell type (macro, micro,umbrella, …)
  • Mobile Radio Network Planning 47GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Design CAE Data Exchange overCOFA9156 RNOOMC1COFACIEACIEPOLOBSS Software offline production3rd PartyRNP orDatabaseA955 V5 /A9155 V6RNPA9155PRCGeneratorModuleConversion OMC2ACIE = PRC file
  • Mobile Radio Network Planning 48GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Turn On Cyclew The network is launched step by step during the TOCw A single step takes typically two or three weekss Not to mix up with rollout phases, which take months oreven yearsw For each step the RNE has to define ‘TOC Parameter’s Cells to go on airs Determination of frequency plans Cell design CAE parameterw Each step is finished with the ‘Turn On Cycle Activation’s Upload PRC/ACIE files into OMC-Rs Unlock sites
  • Mobile Radio Network Planning 49GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Verification and Drive Testw RNE performs drive measurement to compare the realcoverage with the predicted coverage of the cells.w If coverage holes or areas of high interference are detecteds Adjust the antenna tilt and orientationw Verification of cell design CAE dataw To fulfill heavy acceptance test requirements, it isabsolutely essential to perform such a drive measurement.w Basic site and area optimization reduces the probability tohave unforeseen mysterious network behavior afterwards.
  • Mobile Radio Network Planning 50GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01HW / SW Problem Detectionw Problems can be detected due to drive tests or equipment monitorings Defective equipmentq will trigger replacement by operation field services Software bugss Incorrect parameter settingsq are corrected by using the OMC or in the next TOCs Faulty antenna installationq Wrong coverage footprints of the site will trigger antenna re-alignmentsw If the problem is seriouss Lock BTSs Detailed error detections Get rid of the faults Eventually adjusting antenna tilt and orientation
  • Mobile Radio Network Planning 51GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Network Optimizationw Network wide drive measurementss It is highly recommended to perform network wide drive testsbefore doing the commercial opening of the networks Key performance indicators (KPI) are determineds The results out of the drive tests are used for basic optimizationof the networkw Basic optimizations All optimization tasks are still site relateds Alignment of antenna systems Adding new sites in case of too large coverage holess Parameter optimizationq No traffic yet -> not all parameters can be optimizedw Basic optimization during commercial services If only a small number of new sites are going on air the basicoptimization will be included in the site verification procedure
  • Mobile Radio Network Planning 52GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Acceptancew Acceptance drive testw Calculation of KPI according to acceptance requirements in contractw Presentation of KPI to the customerw Comparison of key performance indicators with the acceptancetargets in the contractw The customer acceptss the whole networks only parts of it step by stepw Now the network is ready for commercial launch
  • Mobile Radio Network Planning 53GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Further Optimizationw Network is in commercial operationw Network optimization can be performedw Significant traffic allows to use OMC based statistics byusing A9156 RNO and A9185 NPAw End of optimization depends on contract and mutualagreement between Alcatel and customers Usually, Alcatel is only involved during the firstoptimization activities directly after opening the networkcommercially
  • Mobile Radio Network Planning 543FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsCoverage Planning
  • Mobile Radio Network Planning 55GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw Geo databasesw Antennas and Cablesw Radio Propagationw Path Loss Predictionw Link Budget Calculationw Coverage Probabilityw Cell Range Calculationw Antenna Engineeringw Alcatel BSSw Coverage Improvements Antenna Diversitys Repeater Systemss High Power TRX
  • Mobile Radio Network Planning 563FL 11820 ABAA WAZZA ed01Coverage PlanningGeo Databases
  • Mobile Radio Network Planning 57GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why are geographical data neededfor Radio Network Planning ?w Propagation models dependon geographical dataw Geographical information for site acquisitions Latitude (East/West) / Longitude (North/South)s Rectangular coordinates(e.g. UTM coordinates)
  • Mobile Radio Network Planning 58GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Map Projections Different Map Projections: conical, cylindrical, planar/azimuthals Geodetic Datum: e.g. WGS 84s Transverse Mercator Projection: e.g. UTMw Types of Geospatial Datas Creation of geospatial databasess Raster data: DEM /Topography, Morphostructure/ Clutter,Buildingss Vector data: airport, coastline, border line, buildings, etc.w Geocoordinate Transformations Practical Applicationsq Converting one single pointq Compare to different geodetic datumsq Converting a list of points
  • Mobile Radio Network Planning 593FL 11820 ABAA WAZZA ed01Geo DatabasesMap Projection
  • Mobile Radio Network Planning 60GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maps are flatLongitudeLatitudex,yProblem: Earth is 3D, the maps are2D
  • Mobile Radio Network Planning 61GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mapping the earthw The Earth is a very complex shapew To map the geography of the earth,a reference model (-> Geodetic Datum) is neededw The model needs to be simple so that it is easy to usew It needs to include a Coordinate system which allowsthe positions of objects to be uniquely identifiedw It needs to be readily associated with the physical worldso that its use is intuitive
  • Mobile Radio Network Planning 62GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map ProjectionGeodetic Datume.g. WGS84, ED50Ellipsoide.g. WGS84,International 1924GeocoordinateSysteme.g. UTMMap Projectione.g. Transverse Mercator (UTM),Lambert Conformal Conic
  • Mobile Radio Network Planning 63GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic EllipsoidDefinition:A mathematical surface (an ellipserotated around the earths polaraxis) which provides a convenientmodel of the size and shape ofthe earth. The ellipsoid is chosento best meet the needs of aparticular map datum systemdesign.Reference ellipsoids are usuallydefined by semi-major (equatorialradius) and flattening (therelationship between equatorialand polar radii).
  • Mobile Radio Network Planning 64GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Global & Regional Ellipsoidsw Global ellipsoidse.g. WGS84, GRS80s Center of ellipsoid is“Center of gravity”s Worldwide consistence ofall maps around the worldw Regional ellipsoidse.g. Bessel, Clarke, Hayford, Krassovskys Best fitting ellipsoid for a part of the world(“local optimized”)s Less local deviation
  • Mobile Radio Network Planning 65GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic Datumw A Geodetic Datum is a ReferenceSystem which includes:s A local or global Ellipsoids One “Fixpoint”Attention: Referencinggeodetic coordinates tothe wrong map datum canresult in positionerrors ofhundreds of metersInfo:In most cases the shift,rotation and scale factor ofa Map Datum is relative tothe “satellite map datum”WGS84.
  • Mobile Radio Network Planning 66GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map Projectionw Cylindricals e.g. UTM,Gauss-Kruegerw Conicals e.g.LambertConformal Conicw Planar/AzimuthalInfo: In 90% of thecases we will have acylindrical projection in10% of the cases aconical projection
  • Mobile Radio Network Planning 67GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geo-Coordinate Systemw To simplify the use of maps aCartesian Coordinates isusedw To avoid negative values as False Easting value andas False Northing valueis addedw Also a scaling factor is usedto minimize the “projectionerror” over the whole areaX = EastingY = Northing
  • Mobile Radio Network Planning 68GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01WGS 84 (World Geodetic System1984)w Most needed Geodetic Datumin the world today (“Satellite Datum”)w It is the reference frame usedby the U.S. Department of Defenseis defined by the National Imageryand Mapping Agency (NIMA)w The Global Positioning System (GPS)system is based on the World GeodeticSystem 1984 (WGS-84).w Optimal adaption to the surface of the earth
  • Mobile Radio Network Planning 69GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projectionw Projection cylinder isrotated 90 degreesfrom the polar axis(“transverse”)w Geometric basisfor the UTMand theGauss-KruegerMap Projectionw ConformalMap projection
  • Mobile Radio Network Planning 70GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projection (e.g.UTM )Middle-Meridian
  • Mobile Radio Network Planning 71GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System(UUniversal TTransverse MMercator System)w 60 zones, each 6o(60 · 6o= 360o)w ±3oaround each center meridianw Beginning at 180olongitude(measured eastward fromGreenwich)Zone number = (center meridian + 183o) /6o
  • Mobile Radio Network Planning 72GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM - DefinitionsFalse Easting: 500 000 m(Middle-meridian x = 500 000 m)False Northing:Northern Hemisphere: 0 mSouthern Hemisphere: 10 000 000 mScaling Factor: 0,9996(used to minimize the“projection error” over the whole area)
  • Mobile Radio Network Planning 73GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM Zones (e.g. Europe)UTM-Zones9° 15° 21° 27° 33° 39°3°-3°-6° Middle-Meridian
  • Mobile Radio Network Planning 74GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System (2)w False origin on the centralmeridian of the zone has aneasting of 500,000 meters.w All eastings have a positivevalues for the zonew Eastings range from 100,000 to900,000 metersw The 6 Degree zone ranges from166,667 to 833,333 m, leavingabout a 0.5° overlap at eachend of the zone(valid only at the equator)w This allows for overlaps andmatching between zones
  • Mobile Radio Network Planning 75GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01
  • Mobile Radio Network Planning 76GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-Zone: 32Middle meridian: 9o(9o= 500 000 m“False Easting”)UTM-System: Example "Stuttgart"Transformation: latitude / longitude →UTM systemNorth 48o4513.5East 9o117.5y = 5 400 099 mx = 513 629 m
  • Mobile Radio Network Planning 77GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lambert Conformal Conic Projectionw Maps an ellipsoid onto a cone whose central axis coincideswith the polar axisCone touches the ellipsoid=> One standard parallel (1SP)(e.g. NTF-System in France)Cutting edges of cone and ellipsoid=> Two standard parallels (2SP)(e.g. Lambert-Projection in Austria)
  • Mobile Radio Network Planning 783FL 11820 ABAA WAZZA ed01Geo DatabasesTypes of Geospatial Data
  • Mobile Radio Network Planning 79GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geospatial data for Network Planningw DEM (Digital Elevation Model)/ Topographyw Morphostructure / Land usage / Clutterw Satellite Photos /Orthoimagesw Scanned Mapsw Background data(streets, borders,coastlines, etc. )w Buildingsw Traffic data
  • Mobile Radio Network Planning 80GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Creation of geospatial databasesSatelliteimageryDigitizing maps AerialphotographyGeospatialdata
  • Mobile Radio Network Planning 81GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parameters of a Mapw Coordinate systemw Map Projection(incl. Geodetic Datum)w Location of the map (Area …)w Scale:s macrocell planning1:50000 - 1:100000s microcell planning1:500 -1:5000w Thematicw Sourcew Date of Production
  • Mobile Radio Network Planning 82GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Raster datas DEM /Topographys Morphostructure /Land usage / Clutters Traffic densityw Vector datas Background data(streets, borders, coastlines, etc. )s BuildingsRaster- and Vectordataxy(x1,y1)(xn,yn)
  • Mobile Radio Network Planning 83GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Rasterdata / Grid dataw Pixel-oriented dataw Stored as row and columnw Each Pixel stored in one ortwo bytew Each Pixel contentsinformation(e.g. morphoclass,colour of a scanned map,elevation of a DEM)
  • Mobile Radio Network Planning 84GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Vectordataw Vector mainly used are: airport, coastline,highway, main roads, secondary roads,railway, rivers/lakesw Each vector contentss Info about kind of vector(e.g. street, coastline)s A series of several pointsEach point has a corresponded x / y -value(e.g. in UTM System or as Long/Lat)s Info about Map projection and usedGeodetic Datum(x1,y1)(xn,yn)
  • Mobile Radio Network Planning 85GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Digital Elevation Model (DEM)w Raster dataset that showsterrain features such as hillsand valleysw Each element (or pixel) inthe DEM image represents theterrain elevation at that locationw Resolution in most cases:20 m for urban areas50-100 m for other areasw DEM are typically generatedfrom topographic maps,stereo satellite images,or stereo aerial photographs
  • Mobile Radio Network Planning 86GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure / Land usage / Clutter (1)w Land usage classificationaccording to the impact onwave propagationw In most cases:7...14 morpho classesw Resolution in most cases:20 m for cities50…100m other areasfor radio networkplanning
  • Mobile Radio Network Planning 87GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure (2)w Besides the topo database the basic inputfor radio network planningw Each propagation area has differentobstacles like buildings, forest etc.Obstacles which have similar effects onpropagation conditions are classified inmorphoclassesw Each morphoclass has a correspondingvalue for the correction gainw The resolution of the morphodatabases should be adaptedto the propagation modelw Morpho correction factor for predictions:0 dB (”skyscapers") … 30 dB (”water")
  • Mobile Radio Network Planning 88GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morpho-structure0 not classifi
  • Mobile Radio Network Planning 89GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morphostructur7 forest
  • Mobile Radio Network Planning 90GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Background data (streets, borders etc.)w All kinds of informationdata like streets,borders, coastlines etc.w Necessary for orientationin plots of calculationresultsw The background data arenot needed for thecalculationof the fieldstrength, poweretc.
  • Mobile Radio Network Planning 91GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Orthophotow Georeferenced Satellite Imagew Resolution:most 10 or 20 mw Satellite: e.g. SPOT, Landsat
  • Mobile Radio Network Planning 92GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Scanned Mapsw Mainly used asbackground dataw Not used for calculationbut for localisationw Has to be geocodedto put it into a GIS(Geographic InformationSystem) e.g. a RadioNetwork Planning Tool
  • Mobile Radio Network Planning 93GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildingsw Vectordatas Outlines ofq single buildingsq building blockss Building heightss Material codeq not: roof shape
  • Mobile Radio Network Planning 94GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildings (2)w Microcell radio network planningis mainly used in urban environmentw The prediction of mircowavepropagation is calculated witha ray-tracing/launching modelw A lot of calculationsteps are needed² Optimum building databaserequired (data reduction) tominimize the pre-calculation time
  • Mobile Radio Network Planning 95GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Traffic densityw Advantageous in theinterference calculation,thus for frequencyassignment andin the calculationof average figures innetwork analysisw Raster database oftraffic densityvalues (in Erlangs) of thewhole planning areaw Resolution: 20...100 m
  • Mobile Radio Network Planning 963FL 11820 ABAA WAZZA ed01Geo DatabasesGeocoordinate transformation
  • Mobile Radio Network Planning 97GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1a)Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”Exercise: Convert following example with the program“Geotrans”:Output:Easting: 513629 mNorthing: 5400099 mDatum “WGE: World Geodetic System 1984”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)Preset of thisvalues necessaryValues, which willcalculated by program
  • Mobile Radio Network Planning 98GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1b)GEOTRANS(Geographic Translator)is an application programwhich allows you toconvert geographiccoordinates easily amonga wide variety ofcoordinate systems, mapprojections, and datums.Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)Source: http://164.214.2.59/GandG/geotrans/geotrans.html
  • Mobile Radio Network Planning 99GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2a)Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”Exercise: Convert following example with the program“Geotrans”:Output:Easting: 513549 mNorthing: 5403685 mDatum “EUR-A: EUROPEAN 1950, Western Europe”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50)(ED50 = EUR-A = European Datum 1950)Preset of thisvalues necessaryValues, which willcalculated by program
  • Mobile Radio Network Planning 100GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2b)Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50)(ED50 = EUR-A = European Datum 1950)Attention:For flat coordinates (e.g. UTM)as well as for geographiccoordinates (Long/Lat) areference called“Geodetic Datum” is necessary.Diff. X (Ex.2 - Ex.1): 69 mDiff. Y (Ex.2 - Ex.1): 200 mDifference because of different GeodeticDatums
  • Mobile Radio Network Planning 101GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3a)Example “Stuttgart” (Example 3 )Long/Lat (WGS84) => UTM (WGS84)Input:text-file with the values (list) of the longitudeand latitude of different points(How to create the inputfile see on page 3c)Output:Datum: “WGE: World Geodetic System 1984”Projection: “Universal Transverse Mercator (UTM)”Zone: 32Preset of thisvalues necessary
  • Mobile Radio Network Planning 102GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3b)Example “Stuttgart” (Example 3 )Long/Lat (WGS84)=> UTM (WGS84)
  • Mobile Radio Network Planning 103GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3c)w Example “Stuttgart” (Example 3)Long/Lat (WGS84)=> UTM (WGS84)LatitudeLongitude UTM-ZoneHemisphereEasting (x)Northing (y)Optional: different error-infos,depending on the input-datadefault: “Unk”=“unknown”Geotrans V2.2.3 Geotrans V2.2.3deg min sec deg min sec
  • Mobile Radio Network Planning 104GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Provider for Geospatial dataGeodatasupplier InternetBKS www.bks.co.ukComputaMaps www.computamaps.comGeoimage www.geoimage.frInfoterra www.infoterra-global.comIstar www.istar.frRMSI www.rmsi.com
  • Mobile Radio Network Planning 105GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Links for more detailed infosw Maps Projection Overviewhttp://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.htmlhttp://www.ecu.edu/geog/faculty/mulcahy/mp/http://www.wikipedia.org/wiki/Map_projectionw Coordinate Transformation (online)http://jeeep.com/details/coord/http://www.cellspark.com/UTM.htmlw Map Collectionhttp://www.lib.utexas.edu/maps/index.htmlw Finding out Latitude/Longitude of cities etc.http://www.maporama.com
  • Mobile Radio Network Planning 1063FL 11820 ABAA WAZZA ed01Coverage PlanningAntennas and Cables
  • Mobile Radio Network Planning 107GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Systemsw Antennasw Power dividerw Cables (jumper)w Feeder cablesw Connectorsw Clampsw Lightning protectionw Wall glandsw PlanningRxdivTxRxFeedercableEarthingkitWallglandJumper cablesFeederinstallationclampsPlugs7/16“Sockets7/16“MountingclampGroundingLightningrod AntennasEarthing kitJumpercable JumpercableMechanicalantennasupportstructure
  • Mobile Radio Network Planning 108GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Theoryw 50Ω is the impedance of the cablew 377Ω is the impedance of the airw Antennas adapt the different impedancesw They convert guided waves, into free-space waves (Hertzianwaves) and/or vice versaZ =377ΩZ =50Ω
  • Mobile Radio Network Planning 109GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Dataw Polarizations Specification due to certain wave polarization(linear/elliptic, cross-polarization)w Half power beam width (HPBW)s Related to polarization of electrical fields Vertical and Horizontal HPBWw Antenna patterns Yields the spatial radiation characteristics of theantennaw Front-to-back ratios Important for interference considerations
  • Mobile Radio Network Planning 110GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Pattern and HPBW0 dB-3 dB-10 dB0 dB-3 dB-10 dBverticalhorizontalsidelobenull directionmain beamHPBW
  • Mobile Radio Network Planning 111GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EIRPPt = 45 dBmGain =11dBiIsotropic radiated Power PtEffective isotropicradiated power:EIRP = Pt+Gain= 56 dBmV1V2 = V1radiatedpower
  • Mobile Radio Network Planning 112GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Linear Antennas: Monopole and Dipolew For the link between base station and mobile station, mostlylinear antennas are used:s Monopole antennasq MS antennas, car roof antennass Dipole antennasq Used for array antennas at base stations for increasing thedirectivity of RX and TX antennas
  • Mobile Radio Network Planning 113GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Monopole Antenna Patternw Influence of antenna length on the antenna pattern
  • Mobile Radio Network Planning 114GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Antenna with Dipole Arrayw Many dipoles are arranged in a grid layoutw Nearly arbitrary antenna patterns may be designeds Feeding of the dipoles with weighted and phase-shiftedsignalss Coupling of all dipole elements
  • Mobile Radio Network Planning 115GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Dipole ArrangementwDipolearrangementTypical flat panelantennaDipoleelementWeightedandphaseshiftedsignals
  • Mobile Radio Network Planning 116GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennaw Antenna with vertical HPBW for omni sitess Large area coveragew Advantagess Continuous coverage around the sites Simple antenna mountings Ideal for homogeneous terrainw Drawbackss No mechanical tilt possibles Clearance of antenna required
  • Mobile Radio Network Planning 117GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 2.5mw Rural road coverage with mechanical uptiltw Antennas RFS Panel Dual Polarized Antenna 872-960 MHzs APX906516-T6 Seriesw Electrical specifications Gain in dBi: 17.1s Polarization: +/-45°s HBW: 65°s VBW: 6.5°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 2475 x 306x 120s Weight in kg: 16.6HorizontalPattern
  • Mobile Radio Network Planning 118GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 1.9mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna 872-960 MHzs APX906515-T6 Seriesw Electrical specifications Gain in dBi: 16.5s Polarization: +/-45°s HBW: 65°s VBW: 9°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 1890 x 306x 120s Weight in kg: 16.6Vertical Pattern
  • Mobile Radio Network Planning 119GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 90° T2 900MHz 2.5mw Rural area with mechanical uptiltw Antennas RFS Panel Dual Polarized Antenna872-960 MHzs APX909014-T6 Seriesw Electrical specifications Gain in dBi: 15.9s Polarization: +/-45°s HPBW: 90°s VBW: 7°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 2475 x306 x 120s Weight in kg: 15.5Vertical Pattern
  • Mobile Radio Network Planning 120GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T0 900MHz 2.0mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 872-960 MHzs AP906516-T0 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: Verticals HBW: 65°s VBW: 8.5°s Electrical downtilt: 0°w Mechanical specifications Dimensions HxWxD in mm: 1977 x 265x 130s Weight in kg: 10.9Vertical Pattern
  • Mobile Radio Network Planning 121GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T0 900MHz 2.0mw Rural Areaw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 872-960 MHzs AP909014-T0 Seriesw Electrical specifications Gain in dBi: 16.0s Polarization: Verticals HBW: 65°s VBW: 8.5°s Electrical downtilt: 0°w Mechanical specifications Dimensions HxWxD in mm: 1977 x 265x 130s Weight in kg: 9.5Vertical Pattern
  • Mobile Radio Network Planning 122GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 1800MHz 1.3mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186515-T6 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: +/-45°s HBW: 65°s VBW: 7°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 1310 x198 x 50s Weight in kg: 5.6Vertical Pattern
  • Mobile Radio Network Planning 123GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.3mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186515-T2 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: +/-45°s HBW: 65°s VBW: 7°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1310 x198 x 50s Weight in kg: 5.6Vertical Pattern
  • Mobile Radio Network Planning 124GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.9mw Highwayw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186516-T2 Seriesw Electrical specifications Gain in dBi: 18.3s Polarization: +/-45°s HBW: 65°s VBW: 4.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1855 x 198x 50s Weight in kg: 8.6Vertical Pattern
  • Mobile Radio Network Planning 125GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T2 1800MHz 1.3mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 1710-1880 MHzs AP186516-T2 Seriesw Electrical specifications Gain in dBi: 17.0s Polarization: Verticals HBW: 65°s VBW: 7.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1310 x 198x 50s Weight in kg: 4.7HorizontalPattern
  • Mobile Radio Network Planning 126GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T2 1800MHz 1.9mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 1710-1880 MHzs AP189016-T2 Seriesw Electrical specifications Gain in dBi: 17.0s Polarization: Verticals HBW: 90°s VBW: 5.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1855 x 198x 50s Weight in kg: 6.0Vertical Pattern
  • Mobile Radio Network Planning 127GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed017/8" CELLFLEX® Low-Loss CoaxialCablew Feeder Cables 7/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF78-50J Standards LCF78-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 3.87dB/100ms Average power in kW: 2.65w Electrical specification 1800MHzs Attenuation: 5.73dB/100ms Average power in kW: 1.79w Mechanical specifications Cable weight kgm: 0.53s Minimum bending radiusq Single bend in mm: 120q Repeated bends in mm: 250s Bending moment in Nm:13.0s Recommended clampspacing: 0.8m
  • Mobile Radio Network Planning 128GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-1/4" CELLFLEX® Coaxial Cablew Feeder Cables 1-1/4" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF114-50J Standards LCF114-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 3.06dB/100ms Average power in kW: 3.56w Electrical specification 1800MHzs Attenuation: 4.61dB/100ms Average power in kW: 2.36w Mechanical specifications Cable weight kgm: 0.86s Minimum bending radiusq Single bend in mm: 200q Repeated bends in mm: 380s Bending moment in Nm:38.0s Recommended clampspacing: 1.0m
  • Mobile Radio Network Planning 129GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-5/8" CELLFLEX® Coaxial Cablew Feeder Cables 1-5/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF158-50J Standards LCF158-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 2.34dB/100ms Average power in kW: 4.97w Electrical specification 1800MHzs Attenuation: 3.57dB/100ms Average power in kW: 3.26w Mechanical specifications Cable weight kgm: 1.26s Minimum bending radiusq Single bend in mm: 200q Repeated bends in mm: 508s Bending moment in Nm:46.0s Recommended clampspacing: 1.2m
  • Mobile Radio Network Planning 130GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011/2" CELLFLEX® Jumper Cablew CELLFLEX® LCF12-50J Jumperss Feeder Cableq LCF12-50J CELLFLEX® Low-Loss Foam-Dielectric CoaxialCables Connectorsq 7/16” DIN male/femaleq N male/femaleq Right angles Molded version available in1m, 2m, 3mw Mechanical specifications Minimum bending radiusq Repeated bends in mm: 125w Electrical specification 900MHzs Attenuation: 0.068db/ms Total losses withconnectors are 0.108dB,0.176dB and 0.244dBw Electrical specification1800MHzs Attenuation: 0.099dB/ms Total losses withconnectors are 0.139dB,0.238dB and 0.337dB
  • Mobile Radio Network Planning 1313FL 11820 ABAA WAZZA ed01Coverage PlanningRadio Propagation and Path LossPrediction
  • Mobile Radio Network Planning 132GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Propagation effectsw Free space lossw Fresnel ellipsoidw Reflection, Refraction, Scatterings in the atmospheres at a boundary to another materialw Diffractions at small obstacless over round earthw Attenuations Rain attenuations Gas absorptionw Fading
  • Mobile Radio Network Planning 133GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01ϕP0∆ hReflectionw Pr = Rh/v ⋅ P0w Rh/v = f(ϕ , ε , σ , ∆ h)horizontal reflectionfactorvertical reflectionfactorangle of incidencepermittivityconductivitysurface roughnessRhRvϕεσ∆hPr
  • Mobile Radio Network Planning 134GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Refractionk = 4 / 3k = 1 k = 2 / 3k =t r u e e a r t hRay paths with different k over trueearth∞w Considered via an effectiveearth radius factor kRadio path plotted as a straight line bychanging the earths radiusk = 4 / 3k = 1k = 2 / 3k =r a d io p a th∞
  • Mobile Radio Network Planning 135GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diffractionw Occurs at objects which sizes are in the order of the wavelength λw Radio waves are ‘bent’ or ‘curved’ around objectss Bending angle increases if object thickness is smallercompared to λs Influence of the object causes an attenuation: diffraction lossdiffractedradiobeamsshadowzoneobstacleradiobeam
  • Mobile Radio Network Planning 136GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fadingw Caused by delay spread of original signals Multi path propagations Time-dependent variations in heterogeneity of environments Movement of receiverw Short-term fading, fast fadings This fading is characterised by phase summation andcancellation of signal components, which travel on multiplepaths. The variation is in the order of the consideredwavelength.s Their statistical behaviour is described by the Rayleighdistribution (for non-LOS signals) and the Rice distribution(for LOS signals), respectively.s In GSM, it is already considered by the sensitivity values,which take the error correction capability into account.
  • Mobile Radio Network Planning 137GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fading typesw Mid-term fading, lognormal fadings Mid-term field strength variations caused by objects inthe size of 10...100m (cars, trees, buildings). Thesevariations are lognormal distributed.w Long-term fading, slow fadings Long-term variations caused by large objects like largebuildings, forests, hills, earth curvature (> 100m). Likethe mid-term field strength variations, these variationsare lognormal distributed.
  • Mobile Radio Network Planning 138GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Signal Variation due to Fading-70-60-50-40-30-20-1000.12.85.48.010.613.215.918.521.123.726.329.031.634.236.839.442.144.747.349.9Distance [m]ReceivedPower[dBm]Lognormal fadingRaleygh fadingFading hole
  • Mobile Radio Network Planning 139GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal FadingLognormal fading (typical 20 dBloss by entering a village)Fading holeLognormal fading (enteringa tunnel)
  • Mobile Radio Network Planning 140GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Free Space Lossw The simplest form of wave propagation is the free-space propagationw The according path loss can be calculated with the following formulaw Path Loss in Free Space Propagations L free space losss d distance between transmitter and receiver antennas f operating frequencyLdkmfMHzfreespace = + ⋅ + ⋅32 4 20 20. log log
  • Mobile Radio Network Planning 141GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoidw The free space loss formula can only be applied if the direct line-of-sight (LOS) between transmitter and receiver is not obstructedw This is the case, if a specific region around the LOS is cleared fromany obstaclesw The region is called Fresnel ellipsoidTransmitterReceiverLOS
  • Mobile Radio Network Planning 142GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoid2121ddddr+⋅⋅=λw The Fresnel ellipsoid is the setof all points around the LOSwhere the total length of theconnecting lines to thetransmitter and the receiver islonger than the LOS length byexactly half a wavelengthw It can be shown that thisregion is carrying the mainpower flow from transmitter toreceiverTransmitter ReceiverLOSLOS + λ /2Fresnel zone
  • Mobile Radio Network Planning 143GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction1st FresnelzonerBTSMSd1 d2h0line ofsightpath ofdiffractedwaved1 d2h0replaced obstacle(knife edge)h0 = height of obstacle overline of sightd1, d2 = distance of obstaclefrom BTS and MS
  • Mobile Radio Network Planning 144GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction FunctionKnife-edge diffraction function-505101520253035-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3Clearance of Fresnel ellipsoid (v)F(v)[dB]Additional diffraction loss F(v)v: clearance parameter, v=-h0/rNote: h0 = 0 ⇒v =0 ⇒L = 6 dB
  • Mobile Radio Network Planning 145GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Computers: the "Final Solution" for WavePropagation Calculations?w Exact field solution requires too much computer resources!s Too much details required for inputs Exact calculation too time-consuming² Field strength prediction rather than calculationw Requirements for field strength prediction modelss Reasonable amount of input datas Fast (it is very important to see the impact of changes in thenetwork layout immediately)s Accurate (results influence the hardware cost directly)² Tradeoff required (accurate results within a suitable time)² Parameter tuning according to real measurements should bepossible
  • Mobile Radio Network Planning 146GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CCIR Recommendationw The CCIR Recommendations providevarious propagation curvess Based on Okumura (1968)s Example (CCIR Report 567-3):Median field strength in urbanareaFrequency = 900 MHzhMS = 1.5 mDashed line: free spacew How to use this experience in fieldstrength prediction models?² Model which fits the curves incertain ranges →Hatas modelwas modified later by the EuropeanCooperation in Science and Technology(COST): COST 231 Hata/Okumura
  • Mobile Radio Network Planning 147GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mobile Radio PropagationFree-space propagation (Fresnel zone not obstructed) →L ~d2Fresnel zone heavily obstructed near the mobile station→L ~ d3.7d
  • Mobile Radio Network Planning 148GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Terrain Modelingw Topographys Effective antenna heights Knife edge diffractionq single obstaclesq multiple obstaclesw Surface shape/Morpho-structures Correction factors forHata-Okumura formula
  • Mobile Radio Network Planning 149GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Effect of Morphostructure on Propagation LossOpen area Open areaUrban areaDistanceFieldstrengthurban areaopen area
  • Mobile Radio Network Planning 150GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Path loss (Lu) is calculated (in dB) as follows:Lu= A1 + A2 log(f) + A3 log(hBTS) + (B1 + B2log(hBTS)) log dw The parameters A1, A2, A3, B1 and B2 can be user-defined.Default values are proposed in the table below:Hata-Okumura for GSM 900Parameters Okumura-Hataf< 1500 MHzCost-HataF>1500 MHzA1 69.55 46.30A2 26.16 33.90A3 -13.82 -13.82B1 44.90 44.90B2 -6.55 -6.55
  • Mobile Radio Network Planning 151GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CORRECTIONS TO THE HATA FORMULAw As described above, the Hata formula is valid for urban environment and areceiver antenna height of 1.5m. For other environments and mobile antennaheights, corrective formulas must be applied.Lmodel1=Lu-a(hMS) for large city and urban environmentsLmodel1=Lu-a(hMS) -2log² (f/28) -5.4 for suburban areaLmodel1=Lu -a(hMS) - 4.78log² (f)+ 18.33 log(f) – 40.94 for rural areaa(hMS) is a correction factor to take into account a receiver antenna height differentfrom 1.5m. Environments A(hMS)Rural/Small city (1.1log(f) – 0.7)hMS – (1.56log(f) -0.8)Large city 3.2log² (11.75hMS) – 4.97te: When receiver antenna height equals 1.5m, a(hMS) is close to 0 dB regardless of freque
  • Mobile Radio Network Planning 152GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura for GSM 900w Formula valid for frequency range: 150…1000 MHzLmorpho [dB] Morpho/surface shape-Correction factor0 dB: ‘Skyscrapers’->27 dB: ‘open area’f [MHz] Frequency (150 - 1000 MHz)hBTS [m] Height of BTS (30 - 200 m)hMS [m] Height of Mobile (1 - 10m)d [km] Distance between BTS and MS (1 - 20 km)Power law exponent shown coloredLossHata = 69.55 + 26.16 log (f) - 13.82 log (hBTS)- a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorphoa (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) - 0.8)
  • Mobile Radio Network Planning 153GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura GSM 1800w Formula is valid for frequency range: 1500...2000 MHzw Hata’s model is extended for GSM 1800s Modification of original formula to the new frequency rangew For cells with small ranges the COST 231 Walfish-Ikegami model ismore preciselyLossHata = 46.3 + 33.9 log (f) - 13.82 log (hBTS)- a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorphoa (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) -0.8)
  • Mobile Radio Network Planning 154GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Alcatel Propagation Modelw Using of effective antenna height in the Hata-Okumuraformula:Τheff = f(α , d, hBTS , hMS )
  • Mobile Radio Network Planning 155GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Exercise ‘Path Loss’w Scenarios Height BTS = 40ms Height MS = 1.5ms D (BTS to MS) = 2000mw 1. Calculate free space loss fors A.) f=900MHzs B.) f=1800MHzw 2. Calculate the path loss for f = 900MHzs A.) Morpho class ‘skyscraper’s B.) Morpho class ‘open area’w 3. Calculate the path loss for f = 1800MHzs A.) Morpho class ‘skyscraper’s B.) Morpho class ‘open area’
  • Mobile Radio Network Planning 1563FL 11820 ABAA WAZZA ed01Coverage PlanningLink Budget CalculationCoverage ProbabilityCell Range
  • Mobile Radio Network Planning 157GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maximum Propagation Loss (Downlink)Feeder Cable LossLcable = 3 dBBTS Antenna GainGantBS = 16.5 dBiEffective Isotropic Radiated PowerEIRPBTS = 59.5 dBmMS Antenna GainGantMS = 2 dBiInternal LossesLint = 2 dBALCATEL EvoliumTMPropagationLossLpropMinimum Received PowerPRX,min,MS = -102 dBmMaximum allowed downlink propagation loss: Lprop,max = EIRPBTS - PRX,min,MS = 161.5 dBMS RXSensitivity-102 dBmOutput Powerat antennaconnector46.0 dBm
  • Mobile Radio Network Planning 158GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Max. allowed uplink propagation loss: Lprop,max = EIRPMS - PRX,min,BTS = 157.5 dBWith antenna diversity gain of 3dB: Lprop,max,AD = EIRPMS - PRX,min,BTS + GAD = 160.5 dBWith TMA compensating cable loss: Lprop,max,AD,TMA = EIRPMS - PRX,min,BTS + GAD + GTMA = 163.5dBMaximum Propagation Loss (Uplink)Feeder Cable LossLcable = 3 dBBTS Antenna GainGantBS = 16.5 dBiMinimum ReceivedPowerPRX,min,BTS = -124.5 dBmMS Antenna GainGantMS = 2 dBiInternal LossesLint = 2 dBALCATEL EvoliumTMPropagationLossLpropEIRPMS = 33 dBmMS TX Power33 dBmReceivingsensitivity atant. conn.-111 dBm
  • Mobile Radio Network Planning 159GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Link Budget (1)GSM900 MacroEvolium EvolutionA9100 BTSdB133,0dB133,0Max. PathlossdBm-87,0dBm-104,0Isotr. Rec. Power:dB0,0Antenna Pre-Ampl.dB0,0dB0,0Degradation (no FH)90,9%dB8,0dB8,0Lognormal Margin 50%→dB3,0dB3,0Interferer MargindB3,0Diversity GaindBi2,0dBi11,0Antenna GaindB2,0dB3,0Cables, Connectors LossdB4,0Body/Indoor LossdBm-102,0dBm-104,0Rec. SensitivityDownlinkUplinkRXdBm46,0dBm29,0EIRPdBi11,0dBi2,0Antenna GaindB4,0Body/Indoor LossdB3,0dB2,0Cable,Connectors LossdBm38,0dBm33,0Output PowerdB3,0dB0,0Comb+Filter Loss, Tol.dBm41,0dBm33,0Internal PowerDownlinkUplinkTXBS to MSMS to BS
  • Mobile Radio Network Planning 160GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM1800 Link Budget
  • Mobile Radio Network Planning 161GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Additional Losses OverviewLoss type Reason ValueIndoor loss Electrical properties of wall material 20dB (3...30dB)Incar loss Brass influencing radio waves 7dB (4...10dB)Body loss Absorption of radio waves by thehuman body3dB (0...8dB)Interferer margin Both signal-to-noise ratio and C/I low 3 dBLognormal margin Receiving the minimum field strengthwith a higher probabilityAccording toprobability
  • Mobile Radio Network Planning 162GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation aspectsw Penetration Lossw Multiple Refractionw Multiple Reflectionw Exact modeling ofindoor environmentnot possiblew Practical solution:empirical model!
  • Mobile Radio Network Planning 163GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation: empirical modeldAdditional Loss in [dB] relative to loss atvertical incidencePower relative to power atd=0ϕd05101520253035061218243036424854606672788490Angle of incidence in degreeAdditionalattenuationindB
  • Mobile Radio Network Planning 164GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor PenetrationIncident waveIncident waveLindoor = 3 ... 15 dBLindoor = 13 ... 25 dBLindoor = ∞ dB (deep basement)Lindoor = 17 ... 28 dB-2.7 dB / floor(1st ... 10th floor)-0.3 dB / floor(11th ... 100th floor)Lindoor = 7 ... 18 dB(ground floor)w Depending on environmentw Line-of-sight to antenna?w Interior unknown² general assumptions
  • Mobile Radio Network Planning 165GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (1)Measuredattenuationversus time for atest personwalkingaround in ananechoic chamber
  • Mobile Radio Network Planning 166GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (2)Head modeled as sphereCalculation modelNear field of MS antenna•without head•with head
  • Mobile Radio Network Planning 167GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (3)Indirect measured fieldstrength penetrated intothe head (horizontal cut)Test equipment for indirectfield strength measurements
  • Mobile Radio Network Planning 168GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Marginw In GSM, the defined minimum carrier-to-interferer ration(C/I) threshold of 9 dB is only valid if the received serversignal is not too weak.w In the case that e.g. the defined system threshold for theBTS of -111dBm is approached, a higher value of C/I isrequired in order to maintain the speech quality.w According to GSM, this is done by taking into account acorrection of 3 dB.
  • Mobile Radio Network Planning 169GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Degradation (no FH)w GSM uses a frame correction system, which works withchecksum coding and convolutional codes.w Under defined conditions, this frame correction workssuccessfully and copes even with fast fading types asRayleigh or Rician fading.w For lower mobile speed or stationary use, the fading has abigger influence on the bit error rate and hence the speechquality is reduced.w In such a case, a degradation margin must be applied. Themargin depends on the mobile speed and the usage of slowfrequency hopping, which can improve the situation for slowmobiles again.
  • Mobile Radio Network Planning 170GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diversity Gainw This designates the optional usage of a second receiverantenna.w The second antenna is placed in a way, which providessome decorrelation of the received signals.w In a suitable combiner, the signals are processed in order toachieve a sum signal with a smaller fading variation range.w Depending on the receiver type, the signal correlation, andthe antenna orientation, a diversity gain from 2…6 dB ispossible.
  • Mobile Radio Network Planning 171GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal marginw Lognormal margin is also called fading marginw Due to fading effects, the minimum isotropic power is only received with a certain probabilitys Signal statistics, lognormal distribution with median power value Fmed and standard deviation σ (sigma)w Without any margin, the probability is 50%, which is not a sufficient value in order to provide a good call success rate.w A typical design goal should be a coverage probability of 90...95%. The following normalised table can be applied tofind fading margins for different values of σ . The fading margin is calculated by multiplying the value of k (in the table)with the standard deviation:w Lognormal/Fading Margin = kσ .k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞CoverageProbability0% 30% 50% 84% 90% 95% 97.7%99% 100%k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞CoverageProbability0% 30% 50% 84% 90% 95% 97.7%99% 100%kk -∞-∞ -0.5-0.5 00 11 1.31.3 1.651.65 22 2.332.33 +∞+∞CoverageProbabilityCoverageProbability0%0% 30%30% 50%50% 84%84% 90%90% 95%95% 97.7%97.7%99%99% 100%100%
  • Mobile Radio Network Planning 172GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (1)100 m100mBSxField strength at location xlognormally distributedarround Fmedian
  • Mobile Radio Network Planning 173GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (2)00,050,10,150,20,250,3received signal level F [dBm]PDFLocal coverage probability: Pcov = P [ F > Fthreshold ]σFmedianFthresholdArea representing thecoverage probability
  • Mobile Radio Network Planning 174GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01For what Radius R is the average coverage probability in thecell area 95% ?Calculation of Coverage Radius Rr = distance between BTS and MSFrec = received powerσ = Standard deviationF rec,thrF recFrec,med (r)0 rσRR<Pcov (R)> = = 0.95∫20ππ R²Pcov (r) dr!Frec,med (r) = EIRP - LossHata (r)Loss Hata = f(hBS , hMS , f, r) + KmorPcov (r)= P(Frec (r) > Frec,thr )R = f (hBS , hMS , f, Kmor , EIRP, Frec,thr )
  • Mobile Radio Network Planning 175GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Probability00,50,951Pcov (r)R rPcov = P ( Frec > Frec,thr )
  • Mobile Radio Network Planning 176GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Ranges and Hata Correction FactorsArea Coverage Probability70%75%80%85%90%95%100%0,0 1,5 3,0 4,5 6,0 7,5 9,0 10,5d [km]Pcov155150145140135130125120115110ReferencePathloss [dB]Calculation conditions:Correction = 3; Sigma = 7hBS = 30 m; hMS = 1.7m; f = 900 MhzClutter type Cor [dB] σ[dB]Skyscrapers 0 6Dense urban 2 6Medium urban 4 7Lower urban 6 7Residential 8 6Industrial zone 10 10Forest 8 8Agricultural 20 6Low tree density 15 8Water 27 5Open area 27 6
  • Mobile Radio Network Planning 177GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Conventional BTS ConfigurationALCATEL EvoliumTMTX →45.4 dBmRX →-109dBmTXTXandRX w 1 BTSw Omnidirectional antenna for both TX and RX² Coverage Range R0² Coverage Area A0R0A0
  • Mobile Radio Network Planning 178GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Improvement by Antenna DiversityALCATEL EvoliumTMTX →45.4 dBmRX →-109dBmTXRXDIVRXandTXw 1 BTSw Omnidirectional antennass one for both RX and TXs one for RXDIVw Antenna diversity gain (2...6 dB)s Example: 3 dB² Coverage rangeRDiv = 1.23 · R0² Coverage areaADiv = 1.5 · A0R0RDivA0ADiv
  • Mobile Radio Network Planning 179GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation Patterns and Range3 antennas at sector site,Gain: 18 dBi, HPBW: 65°Resulting antenna footprint ("cloverleaf")compared to an 11 dBi omni antennaomnisector
  • Mobile Radio Network Planning 180GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna Diversity andSectorizationTXRXDIVw 3 BTSw Directional antennas (18 dBi)w Antenna diversity (3 dB)² Max. coverage rangeRsec,div = 1.95 · R0² Coverage areaAsec,div = 3 · A0ALCATELEvoliumTMALCATELEvoliumTMALCATELEvoliumTMR0Rsec,divAsec,div
  • Mobile Radio Network Planning 181GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna PreamplifierTXRXDIVw 3 BTSw Directional antennas (18 dBi)w Antenna diversity (3 dB)w Antenna preamplifier (3dB)² Max. coverage rangeRsec,div,pre = 2.22 · R0² Coverage areaAsec,div,pre = 3.9 · A0w General:Asec = g · A0g: Area gain factorR0Rsec,div,preAsec,div,preALCATELEvoliumTMALCATELEvoliumTMALCATELEvoliumTM
  • Mobile Radio Network Planning 1823FL 11820 ABAA WAZZA ed01Coverage PlanningAntenna Engineering
  • Mobile Radio Network Planning 183GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennasw Applications Large area coverages Umbrella cell for micro cell layerw Advantagess Continuous coverage around the sites Simple antenna mountings Ideal for homogeneous terrainw Drawbackss No mechanical tilt possibles Clearance of antenna requireds Densification of network difficult
  • Mobile Radio Network Planning 184GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Sector Antennaw Antenna with horizontal HPBW of e.g. 90° or 65°w Advantagess Coverage can be focussed on special areass Low coverage of areas of no interest (e.g. forest)s Allows high traffic loads Additional mechanical downtilt possibles Wall mounting possiblew Drawbackss More frequencies needed per site compared to omnisitess More hardware neededs Lower coverage area per sector
  • Mobile Radio Network Planning 185GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Typical Applicationsw Wide horizontal beam width (e.g. 90°)s For areas with few reflecting and scattering objects (ruralarea)s Area coverage for 3-sector sitess Sufficient cell overlap to allow successful handoversw Small horizontal beam width (e.g. 65°)s For areas with high scattering (city areas)s Coverage between sectors by scattering and by adjacentsites (mostly site densification in urban areas)
  • Mobile Radio Network Planning 186GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Tiltw Downtilting of the Antenna main beam related to thehorizontal linew Goals:s Reduction of overshoots Removal of insular coverages Lowering the interferences Coverage improvement of the near area (indoorcoverage)s Adjustment of cell borders (handover zones)w Mechanical / Electrical or Combined downtilt
  • Mobile Radio Network Planning 187GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mechanical Downtiltw Advantagess Later adjustment of vertical tilt possibles Antenna diagram is not changed, i.e. nulls and sidelobes remain in their position relative to the mainbeams Cost effective (single antenna type may be used)s Fast adjustments possiblew Drawbackss Side lobes are less tilteds Accurate adjustment is difficults Problems for sites with difficult access
  • Mobile Radio Network Planning 188GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Electrical Downtiltw Advantagess Same tilt for bothmain and side lobess Antenna mounting is more simple→no adjustment errorsw Drawbackss Introduction of additional antenna types necessarys New antenna installation at the site if downtilting isintroduceds Long antenna optimization phases Adjustment of electrical tilt mostly not possibleτ = 0τ = tτ = 2 tτ = 3 tτ = delay timedowntilt angle
  • Mobile Radio Network Planning 189GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Combined Downtiltw Combination of both mechanical and electrical downtilts High electrical downtilt: Distinct range reduction insidelobe direction (interference reduction)s Less mechanical uptilt in main beam directionw Choose sector antennas with high electrical downtilt(6°...8°) and apply mechanical uptilt installation foroptimum coverage range in main beam direction
  • Mobile Radio Network Planning 190GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Assessment of Required Tiltsw Required tilt is estimated using Geometrical Opticsw Consideration ofs Vertical HPBW of the antennas Antenna height above grounds Height difference antenna/location to be covereds Morpho-structure in the vicinity of the antennas Topography between transmitter and receiver locationw Tilt must be applied for both TX and RX antennas!
  • Mobile Radio Network Planning 191GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Inter Site Distance in Urban Areaw Using sectorized sites withantennas of 65° horizontal halfpower beam widths The sidelobe isapproximately reduced by10dB.s This is a reduction of cellrange to 50%.w The inter site distancecalculation factor depends ons Type of antennas Type of morpho classq Multi path propagationq Scatteringq Sigma (fading variations)X XA B0.5* R2R2
  • Mobile Radio Network Planning 192GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban AreaCell range R2Mainbeam0.5* R2SidelobeTilt 2 Tilt 2Site A Site BInter Site Distance A-B = 1.5* R2
  • Mobile Radio Network Planning 193GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban Areaw The upper limit of the vertical half power beam widthis directed towards the ground at maximum cell ranges Upper –3dB point of the vertical antenna patternw To be used in areas withs Multi path propagation conditions Good scattering of the beamw Aims Reduction of interferencew Optimizations Coverage Optimization in isolated cases using less downtilts Interference Reduction in isolated cases using more downtilt
  • Mobile Radio Network Planning 194GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Suburban and Rural Areaw Downtilt planning fors Suburbans Rurals Highway Coveragew The main beam is directed towards the ground at maximumcell rangeMain beamMain beamCell range R1 Cell range R1Tilt 1 Tilt 1Inter Site Distance C-D = 2* R1Site C Site D
  • Mobile Radio Network Planning 195GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna configurationsw Application of Duplexers Consists of a TX/RX Filter and a combiner² one antenna can be savedw Tower Mounted Amplifier (TMA)s Increase Uplink Sensitivitys TMA needs to have TX bypass=> in case of duplexer usagew Diversitys Space diversitys Polarization diversityRx/TxRxTxDuplexFilterTo BTS
  • Mobile Radio Network Planning 196GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Antenna Configurations for Omni and Sector SitesRxTxRxdivTower mounting for omni antennas Tower mounting fordirectional antennasPole mounting forroof-top mountingPole mounting for wallor parapet mounting
  • Mobile Radio Network Planning 197GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Three Sector Antenna Configurationwith AD
  • Mobile Radio Network Planning 198GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Engineering Rulesw Distortion of antenna pattern: No obstacles withins Antenna near field ranges HPBW Rule plus security margin of 20°s First fresnel ellipsoid range (additional losses!)w TX-RX Decoupling to avoid blocking and intermodulations Required minimum separation of TX - RX antennasdependent on antenna configuration (e.g. duplexer ornot)w Diversity gains Required antenna separation for space diversity
  • Mobile Radio Network Planning 199GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Distortion of antenna patternw Antenna Near Field Range: Rmin = 2D²/λs D = Aperture of antenna (e.g. 3m)s => Rmin = 60 / 120m for GSM / DCSw HPBW Rule with securtiy margin of 20° and tilt αRoof Top = Obstacleϕϕ = HPBW/2 + 20° + αDHD[m] 1 5 10H[m] 0.5 2.5 5HPBW = 8°, α = 2°
  • Mobile Radio Network Planning 200GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Tx-Rx Decoupling (1)TXRXfusefintf[MHz]P [dBm]fuse fint-101-13n*200kHzPoutPinReceiverCharacteristicPblockP1dBw Out of Band Blocking Requirement (GSM Rec. 11.21)s GSM 900 = +8 dBms GSM 1800 = 0 dBmw Required Decoupling (n = number of transmitters)s TX-TX = 20 dBs TX-RX GSM = 30 + 10 log (n) dBs TX-RX DCS = 40 + 10 log (n) dB
  • Mobile Radio Network Planning 201GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (2)w Horizontal separation (Approximation)IH=22+20log(dH/λ )-(GT+GR) [dB]dHIsolation for Horizontal Separation - omni 11dBi152025303540451.72.73.74.75.76.77.78.79.710.410.811.211.61212.412.813.213.61414.414.815.2Separation [m]Isolation[dB] GSM1800GSM900
  • Mobile Radio Network Planning 202GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (3)w Vertical separation (Approximation)IV=28+40log(dV/λ) [dB]dvdmMastIsolation for Ve rtical Separa tion0102030405060700.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Se paration [m ]Isolation[dB]GSM1800GSM900
  • Mobile Radio Network Planning 203GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Required separation for max. diversity gain = F(λ )Space DiversitydHRXA RXB dVRXARXBFor a sufficient low correlation coefficient ρ < 0.7:dH = 20λ => GSM 900: 6m / GSM1800: 3mdV = 15λ => GSM 900: 4.5m / GSM1800: 2.25m
  • Mobile Radio Network Planning 204GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Power Dividerw Power dividers connect severalantennas to one feeder cablew For combination of individualantenna patterns for arequested configurations Quasi-omni configurations Bidirectional configuration(road coverage)4-to-1 Power splitter(6 dB loss)To BTS:Receiver inputTo BTS: Duplexer output(TX plus RX diversity)Quasi-OmniConfiguration
  • Mobile Radio Network Planning 205GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Power dividers Also called "power splitter" or "junction box"s Passive device (works in both (transmit andreceive) direction)3 dBPinPin2Pin2Pin34.5 dBPinPin3Pin36 dBPinPin4Pin4Pin4Pin4
  • Mobile Radio Network Planning 206GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Example:PowerSplitter
  • Mobile Radio Network Planning 207GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (1)w Radial Arrangementof 6 Panel Antennas with horizontal beamwidth = 105 °gain = 16.5 dBi, mast radius = 0.425 m, mounting radius= 0.575 m
  • Mobile Radio Network Planning 208GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (2)w Example 2: Quasi Omni Arrangementof 3 antennas with horizontal beamwidth = 105 °, gain=13.5 dBi,mounting radius = 4 m
  • Mobile Radio Network Planning 209GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (3)w Example 3: Skrew Arrangementof 4 Panel Antennas with horizontalbeamwidth = 65 °,gain = 12.5 dBi, mast radius = 1 m,mounting radius = 1.615 m
  • Mobile Radio Network Planning 210GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feedersw Technical summaryw Inner conductor: Copper wirew Dielectric: Low densityfoam PEw Outer conductor: Corrugatedcopper tubew Jacket: Polyethylene (PE)blackInner conductorOuter conductorDielectric Jacket
  • Mobile Radio Network Planning 211GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder Installation Set and Connectors1Cable Clamps2Antenna Cable3Double Bearing4Counterpart5Anchor tape7/16 Connector:Coaxial ConnectorRobustGood RF-Performance
  • Mobile Radio Network Planning 212GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Type Minimum bending radius Jacket(outer diameter)Weight (m) Recommendedclamp spacingSingle bending Repeated bendingLCF 1/2’’ 70 mm 210 mm 16 mm 0.35 kg 0.6 mLCF 7/8’’ 120 mm 360 mm 28 mm 0.62 kg 0.8 mLCF 1 5/8’’ 300 mm 900 mm 49.7 mm 1.5 kg 1.2 mThese values are based on feeder types with an impedance of 50 ohmsGSM 900 GSM 1800 GSM 1900Type Attenuation/100 m [dB]Recommendedmax length [m]Attenuation/100 m [dB]Recommendedmax length [m]Attenuation/100 m [dB]Recommendedmax length [m]LCF 1/2“ 6.6 45 10.3 30 10.6 28LCF 7/8“ 4.0 75 6.0 50 6.3 47LCF 1_5/8“ 2.6 115 4.0 75 4.2 71Feeder Parameters
  • Mobile Radio Network Planning 213GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder attenuation (1)w Main contribution is given by feeder losss Feeder Cable 4dB/100m => length 50m Loss =2.0dBs Jumper Cable 0.066dB/1m => 5m Loss =0.33dBs Insertion Loss of connector and power splitter < 0.1dBs Total Loss 2.0dB+2x0.33dB+5x0.1dB+0.1dB=3.26dBw Cable type is trade off betweens Handling flexibilitys Costs Attenuation
  • Mobile Radio Network Planning 214GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiating Cablesw Provide coverage in Tunnels, buildings, along side tracks orlinesw Principle: Radiate a weak but constant electromagnetic wavew Suitable for coverage over longer distances (Repeater)w Fieldstrength distribution more constant as with antennasFFThrRepeaterFFThrTerminat-ing Load
  • Mobile Radio Network Planning 215GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Components are shown with black linesBTSTxRxRadiatingcableTerminationloadEarthingkitMounting clipswith50 mm wall standoffN-connectionsJumpercabel1-leg radiating cablesystemComponents of a radiating cablesystem
  • Mobile Radio Network Planning 216GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01-40-50-60-70-80-90-100-110[dBm]Cable attenuationbetween the antennasRadiating cable fieldstrengthAntenna field strengthDistanceComparison of field strength: Radiating cable andstandard antenna
  • Mobile Radio Network Planning 217GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Example of aradiating cablein a tunnel
  • Mobile Radio Network Planning 218GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Microwave antennas, feeders andaccessoriesw Microwave point to point systems use highly directional antennasw Gainwith G = gain over isotropic, in dBiA = area of antenna aperturee = antenna efficiencyw Used antenna typess parabolic antennas high performance antennas horn lens antennas horn antennaGA e= 1042lgπλ
  • Mobile Radio Network Planning 219GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parabolic antennaw Parabolic dish, illuminated by a feed hornat its focusw Available sizes: 1’ (0.3 m) up to 16’ (4.8m)w Sizes over 4’ seldom used due toinstallation restrictionsw Single plane polarized feed vertical (V) orhorizontal (H)w Also: dual polarized feeder (DP), withseparate V and H connections (lowergain)w Front-to-back ratios of 45 dB not highenough for back-to-back configuration onthe same frequencyw Antenna patterns are absolutelynecessary for interference calculations
  • Mobile Radio Network Planning 220GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01High performance antennaw Similar to common parabolic antenna,except for attached cylindrical shieldw Improvement of front-to-back ratio andwide angle radiation discriminationw Available in same sizes as parabolic,single or dual polarizedw Substantially bigger, heavier, and moreexpensive than parabolic antennasw Allow back-to-back transmission at thesame frequency in both directions(refer to interference calculation)
  • Mobile Radio Network Planning 221GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Horn antennaswHorn lens antennas For very high frequencies > 25 GHzs Replacement for small parabolicantennas (1’)s Same electrical data, but easier toinstall due to size and weightwHorn reflector antennas Large parabola, energy from the feedhorn is reflected at right angle (90°)s Gain like 10’ parabolic antenna (60dBi), but higher front-to-back ratios >70 dBsBig and heavy, requires a complex installation proceduresOnly used on high capacity microwave backbones (e.g. MSC-MSC interconnections)
  • Mobile Radio Network Planning 222GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specific Microwave Antenna Parameters(1)w Cross polarization discrimination (XPD)s highest level of cross polarisation radiation relativeto the main beam; should be > 30 dB for parabolicantennasw Inter-port isolations isolation between the two ports of dual polarisedantennas; typical value: better than 35 dBw Return loss (VSWR)s Quality value for the adaption of antennaimpedance to the impedance of the connectioncables Return loss is the ratio of the reflected power to thepower fed at the antenna input (typical> 20 dB)
  • Mobile Radio Network Planning 223GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Radiation pattern envelope (RPE)s Tolerance specification for antenna pattern (specification ofantenna pattern itself not suitable due to manufacturingproblems)s Usually available from manufacturer in vertical and horizontalpolarisation (worst values of several measurements)w Weightw Wind loadSpecific Microwave Antenna Parameters(2)
  • Mobile Radio Network Planning 224GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Data sheet 15 GHzParabolic antenna 15 GHz High performance antenna 15 GHzBandw idth (G H z) 14.4 - 15.3514.4 - 15.3514.4 - 15.35M odel num ber PA 2 - 144 PA 4 - 144 PA 6 - 144N om inal diam eter (m ) 0.6 1.2 1.8(ft) 2 4 6H alf-pow er beam w idth (deg) 2.3 1.2 0.8G ain low band (dBi) 36.2 42.3 45.8G ain m id band (dBi) 36.5 42.5 46.0G ain high band (dBi) 36.7 42.8 46.3Front-to-back ratio (dB) 42 48 52Cross polar discrim ination(dB) 28 30 30Return loss (dB) 26 26 28W eight (kg) 19 43 73W indloadElevation adjustm ent (deg) +/- 5 +/- 5 +/- 5B andw idth (G H z) 14.4 - 15.3514.4 - 15.3514.4 - 15.35M odel num ber D A 2 - 144D A 4 - 144D A 6 - 144N om inal diam eter (m ) 0.6 1.2 1.8(ft) 2 4 6H alf-pow er beam w idth (deg) 2.3 1.2 0.8G ain low band (dB i) 36.2 42.3 45.8G ain m id band (dB i) 36.5 42.5 46.0G ain high band (dB i) 36.7 42.8 46.3Front-to-back ratio (dB ) 65 68 68C ross polar discrim ination(dB ) 28 30 30R eturn loss (dB ) 26 26 26W eight (kg) 28 55 130W indloadE levation adjustm ent (deg) +/- 12 +/- 12 +/- 12
  • Mobile Radio Network Planning 225GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation pattern envelope
  • Mobile Radio Network Planning 226GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (1)w Coaxial cables or waveguides (according to frequency)w Most important characteristic: loss and return lossw Coaxial cabless Used between 10 MHz and 3 GHzs Dielectric material: foam or airs Parameters of common coaxial cables:type dielectric diameter(mm)loss(dB/100m)powerrating (kW)bendingradius (mm)LCF 1/2’ CU2Y foam 16.0 10,9 / 2 GHz 0.47 20013.8 / 3 GHzLCF 7/8’ CU2Y foam 28.0 6.5 / 2 GHz 0.95 3608.5 / 3 GHzLCF 1 5/8’ CU2Y foam 49.7 4.4 / 2 GHz 1.7 3805.6 / 3 GHz
  • Mobile Radio Network Planning 227GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (2)w Waveguidess Used for frequency bands above 2.7 GHzs Three basic types available: circular, elliptical andrectangularw Rigid circular waveguides Very low losss Supports two orthogonal polarisationss Capable to carry more than one frequency bands Usually, short components of this type are useds Disadvantages: cost, handling and moding problems
  • Mobile Radio Network Planning 228GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (3)w Elliptical semiflexible waveguidess Acceptable loss, good VSWR performances Low cost and easy to installs Various types optimised for many frequency bands up to 23GHzs Used for longer distances (easy and flexible installation)s Can be installed as a "single run" (no intermediate flanges)type loss /100 m FrequencyEW 34 2.0 4 GHzEW 52 4.0 6GHzEW 77 5.8 8GHzEW 90 10.0 11 GHzEW 220 28.0 23 GHz
  • Mobile Radio Network Planning 229GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (4)w Solid and flexible rectangular waveguidesw Solid rectangular waveguidess Combination of low VSWR and low losss High cost and difficult to installs Used for realising couplers, combiners, filterstype loss /100 m FrequencyWR 229 2.8 4 GHzWR159 4.5 6GHzWR112 8.5 8GHzWR 90 11.7 11 GHzWR 75 15.0 13 GHz
  • Mobile Radio Network Planning 230GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (5)w Flexible rectangular waveguidess Worse VSWR and losses than for solid waveguidess Often used in short lengths (<1 m), where positionbetween connection points depends on actualinstallation places Common applications: connection of microwavesystem to antenna (close together on rooftops ortowers) for frequencies >13 Ghztype loss / m FrequencyPDR140 0.5 15GHzPDR180 1 18 GHzPDR220 2 23 GHz
  • Mobile Radio Network Planning 231GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna feeder systems (1)w Direct radiating systems Most commonly used forfrequencies up to 13 Ghzs Depending on acceptedfeeder loss/length, higherfrequencies may be possibles Excessive attenuation andcosts in long runs of waveguides Occurence of echodistortion due to mismatchin long runs of waveguidepossible
  • Mobile Radio Network Planning 232GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna feeder systems (2)w Periscope antenna systems Used forq considerable antenna heightsq waveguide installation problemss Negligible wave guide cost and easyinstallations System gain is a function of antenna andreflector size, distance and frequencys Used above 4 GHz , because reflector sizeis prohibitive for lower frequencies
  • Mobile Radio Network Planning 233GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna feeder systems (3)w Combined antenna with transceivers Antenna and transceiver are combinedas a single unit to cut out wave guideloss (higher frequencies)s Units are mounted on top of a mast andconnected to multiplex equipment viacable
  • Mobile Radio Network Planning 2343FL 11820 ABAA WAZZA ed01Alcatel BSS (Examples)BSSBSSBTSBSCBTSBSSBSSBTSBSC BTSBSSBSSBTSBSC BTS
  • Mobile Radio Network Planning 235GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Architecture of BTS - Evolium EvolutionA9100s 3 levelsAntennacoupling levelTRX levelBCF level Station unit moduleAbis interfaceAbbreviationsBCF Base station Control FunctionTRX TransceiverAntenna network stageANcAir interfaceCombiner stage (ANy)Combiner stage (ANy)TRXTRX TRXTRX TRXTRX TRXTRXTRXTRX TRXTRX TRXTRX TRXTRX TRXTRX TRXTRX TRXTRX TRXTRXAntenna network stageANc
  • Mobile Radio Network Planning 236GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EVOLIUMTMA9100 Base Station (1)w The Antenna network Combiner (ANc)- combining modeDuplexerFilter FilterLNASplitterSplitter SplitterWBCDuplexerFilter FilterLNASplitterSplitterSplitter WBCAntenna ATXA, RX A, RXBdivAntenna BTXB, RX B, RXAdivTX RX RXdivTRX 1TX RX RXdivTRX 2Rxdiv RX TXTRX 4Rxdiv RX TXTRX 3
  • Mobile Radio Network Planning 237GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EVOLIUMTMA9100 Base Station (2)w The Antenna network Combiner (ANc)- bypass modeDuplexerFilter FilterLNASplitterSplitter SplitterWBCDuplexerFilter FilterLNASplitterSplitterSplitter WBCAntenna ATXA, RXA, RXBdivAntenna BTXB, RXB, RXAdivTX RX RXdivTRX 1Rxdiv RX TXTRX 2By-passfunctionBy-passfunction
  • Mobile Radio Network Planning 238GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EVOLIUMTMA9100 Base Station (3)wANy: Twin Wide Band Combiner Stagew2 types of AnyFor GSM 900 and GSM 1800, two versions each are available:Splitter SplitterWBC SplitterSplitter WBCTXA RXA RXAdivTX RX RXdivTRX 1TX RX RXdivTRX 2Rxdiv RX TXTRX 4Rxdiv RX TXTRX 3RXBdiv RXB TXBBand Variant Function3BK 07237 AAxx Up to four standard TRX, up to two high-power TRXGSM 9003BK 07237 ABxx Up to four standard TRX, up to four high-power TRX3BK 07245 AAxx Up to four standard TRX, up to two high-power TRXGSM 18003BK 07245 ABxx Up to four standard TRX, up to four high-power TRX
  • Mobile Radio Network Planning 239GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EVOLIUMTMBTS Features (1)w Standard Features according to GSMs DR (Dual Rate), EFR (Enhanced Full Rate coder), AMR (Adaptive Multi Rate) requiresthat the BSS software release and the other network elements also support thesecodecss HW supports GSM 850, E-GSM, GSM 900, GSM 1800 and GSM 1900 bandss Multi Band Capabilities (supporting of 850/1800 TRX, 850/1900TRX, and, 900 /1800can be located in the same cabinet)s All known A5 algorithms to be supported; HW provisions donew Standard Features due to new Architecture and new SW Releasess SUS (Station Unit Sharing)Only one central control unit (SUM) for all BTS per cabinets Multiband BTS (GSM 900/1800) in one cabinets Static (Release 4) and statistical (Release 6) submultiplexing on Abisq Better use of Abis-interface capacity: More BTS/TRX to be supported in a multidrop loops Introduction of GPRS and HSCSD without HW changess EDGE compatible TRX
  • Mobile Radio Network Planning 240GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EVOLIUMTMBTS Features (2)w Features specific to Radio Performances TX Output Powers RX Sensitivity: -111 dBm certified(GSM request: -104 dBm)s Synthesized Frequency Hopping as general solutionq Standard RF hopping modeq Pseudo baseband RF hopping modes Antenna Diversity in generalq Two antennas per sectorq One cross-polarized antennas Duplexer (TX and RX on one antenna)as general solution
  • Mobile Radio Network Planning 241GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Generic Configurations for A9100 G4BTSw The configurations for indoor (MBI) and outdoor (MBO) cabinetare presented in the next slidesw larger configurations with more than one cabinet can be derivedfrom the tablesw configurations are valid for EDGE capable TRX (Evolution step 2)w availability of multiband configurations other than GSM 900 /GSM 1800 must be checked with product management(authorization required)w Notation:s BBU - Battery Backup Units BATS - Small Battery Backups LBBU - Large Battery Backup Unit
  • Mobile Radio Network Planning 242GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Generic configurations for cabinets MBI(1)RACKCONFIGURATIONTYPE DC ACw/oBBUACwithBATSACwithLBBUGSM850GSM900GSM1800GSM1900StandardconfigurationsMBI3 1x1...4 X X (2) X X XMBI3 1x1...8 X (2) X X (1)MBI3 2x1...2 X X (2) X X XMBI3 2x1...4 X (2) X X (1)MBI3 3x1 X X (2) X X XMBI3 3x1...2 X (2) X X XMBI5 1x1...8 X X X X X X X XMBI5 1x9...12 X X X (2) X X (1)MBI5 2x1...4 X (2) X X XMBI5 2x1...6 X X X X X X (1)MBI5 1x1...8+1x1...4 X X X (2) X XMBI5 3x1...2 X (2) X X XMBI5 3x1...4 X X X X X X (1)MBI5 4x1…3 X X X X (1)MBI5 2x4+2x2 X X X X (1)(1)RestrictionsforGSM1900:(1) Upto+45ºCambient temperaturepossibleif maximum6 TREsinMBI3, 10 TREsinMBI5(2) Limitationto+40ºCotherwise(+45ºCpossibleif power is reducedto28W( Pmax –2dB))(2)Notingenericlist, butpossible(checkwithSDorproductmanagementbeforeuse)
  • Mobile Radio Network Planning 243GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Generic configurations for cabinets MBI(2) RACKCONFIGURATION TYPE DC AC w/oBBUAC withBATSAC withLBBUGSM850GSM900GSM1800GSM1900Low Losses configurationsMBI3 1x3...4 X X X (2) X X XMBI5 1x3...8 X X X X (2) X X XMBI5 1x9...12 X X X (2) X X (1)MBI5 2x3...6 X (2) X X (1)High Power configurationsMBI3 2x1 X X X X XMBI5 1x1...4 X X X X XMBI5 2x1...4 X X X X XMBI5 3x1...3 X X X X XExtended Cells configurationsMBI5 1x1...4LL/1x1...4 X X X X XMBI5 1x1...4/1x1...4 with TMA X X X X X(1) Restrictions for GSM 1900:(1) Up to +45ºC ambient temperature possible if maximum 6 TREs in MBI3, 10 TREs inMBI5(2) Limitation to +40ºC otherwise (+45ºC possible if power is reduced to 28W ( Pmax –2dB))(2) Not in generic list, but possible (check with SD or product management before use)
  • Mobile Radio Network Planning 244GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Generic configurations for cabinets MBO(1) RACKCONFIGURATION TYPE DC AC w/oBBUAC withBBUGSM850GSM900GSM1800GSM1900Standard configurationsCBO 1x1…2 X (1) X (2) (1)CBO 2x1 X (1) X (2) (1)MBO1 1x1...6 X XMBO1 1x1...8 X X X XMBO1 2x1...3 X XMBO1 2x1...4 X X X XMBO1 3x1...2 X X X X XMBO2 1x9...12 X X X X XMBO2 2x1...6 X X X X XMBO2 1x1...8+1x1...4 X X X X XMBO2 3x1...4 X X X X XMBO2 4x1…3 X X X X XMBO2 2x4 + 2x2 X X X X X(1) CBO for GSM 850 and GSM 1900 are planned for 2004. For availability, check with SD or theproduct management (authorization required).(2) CBO for GSM 1800 planned for Q4 2003 (check with SD)
  • Mobile Radio Network Planning 245GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Generic configurations for cabinets MBO(2) RACKCONFIGURATION TYPE DC AC w/oBBUAC withBBUGSM850GSM900GSM1800GSM1900Low Losses configurationsMBO1 1x5...6 X XMBO1 1x5...8 X X X XMBO2 2x3...6 X X X X XMBO2 3x3...4 X X X X XHigh Power configurationsCBO 1x1…2 X X (2)CBO 2x1 X X (2)MBO1 1x1...4 X X XMBO1 2x1...2 X X XMBO1 3x1...2 X X XMBO2 2x1…4 X X XMBO2 3x1…4 X X X(1) CBO for GSM 850 and GSM 1900 are planned for 2004. For availability, check with SD or theproduct management (authorization required).(2) CBO for GSM 1800 planned for Q4 2003 (check with SD)
  • Mobile Radio Network Planning 246GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TRX Typesw This slide is referring only to Evolium macro BTS A9100w Overview on TRX types of A9100 Evolium Evolution BTS(G4)Module Outputpowername GMSK 8PSKEvolutionStep1TRGM GSM900 35Watts 45.44dBmTRDM GSM1800 35Watts 45.44 dBmTRDH GSM1800 60Watts 47.78 dBmEvolutionStep2TRAL GSM850 45Watts 46.53 dBm 15Watts 41.76dBmTRAG GSM900 45Watts 46.53 dBm 15Watts 41.76dBmTAGH GSM900 60Watts 47.78 dBm 25Watts 43.98dBmTRAD GSM1800 35Watts 45.44 dBm 12Watts 40.79dBmTADH GSM1800 60Watts 47.78 dBm 25Watts 43.98dBmTRAP GSM1900 45Watts 46.53 dBm 25Watts 43.98 dBm
  • Mobile Radio Network Planning 247GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BTS Output Powerw What is monitored during validation is the BTS output powerat antenna connectorw The individual losses for duplexer, combiner and internalcabling are not systematically measuredw for detailed info consult the BTS product description
  • Mobile Radio Network Planning 248GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feature Power Balancingw G4 BTS it is allowed to use TRXs of different power withinthe same sector, or to use of different combining path forTRX belonging to the same sector.w Reason: the G4 BTS is able to detect unbalancedlosses/powers within a sector and automatically compensateit for GMSK modulation.w Consequence: All TRX connected to one ANc areautomatically adjusted to the GMSK output power of theweakest TRX (required for BCCH recovery)
  • Mobile Radio Network Planning 249GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Split Featurew Principles Cell Split allows to provide one logical cell with one commonBCCH over several BTS cabinets. The cabinets must besynchronizedw Benefitss Same number of TRX in fewer rackss No need to touch/modify the configuration of existing BTS(cabling)s Take full benefit of 12 TRX per cabinetw Drawback: more complex antenna systemw Applicationss Multi-band cellss Configuration extension of sites by adding TRXs Large configurationsw Condition: BTS must be synchronized
  • Mobile Radio Network Planning 250GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Influence of Cell Split feature on BTSconfigurationsw One slave cabinet can only have one masterw One master can control three slave cabinetsCabinet 14 TRXGSM 900Master4 TRXGSM 900MasterCabinet 24 TRXGSM 900Master4 TRXGSM 1800Slave4 TRXGSM 1800Slave4 TRXGSM 1800SlaveCabinet 34 TRXGSM 1800Slave4 TRXGSM 1800Slave4 TRXGSM 1800SlaveCabinet 16 TRXGSM 900Master6 TRXGSM 1800MasterCabinet 26 TRXGSM 900Master6 TRXGSM 1800MasterCabinet 42 TRXGSM 1800Slave2 TRXGSM 1800SlavePossible cell split configuration Not allowed cell split configuration
  • Mobile Radio Network Planning 251GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Split Example: Deployment ofmulti-band cellsBTS 1 BTS 1 BTS 24TRX4TRX4TRX4TRX4TRX4TRXGSM 900 GSM 9002TRX2TRX2TRXGSM1800cell1cell3cell2cell3cell2cell14TRX4TRX4TRXGSM 9004 TRX 9002TRX 18004 TRX 9002TRX 18004 TRX 9002TRX 1800BTS 1 BTS1 BTS 2cell1cell3cell2cell2cell1cell3With cell split:- No antenna re-cabling- No TRX moving- Connection tothe first BTSwhile the BTS isworking- Short serviceinterruptionduring radio conf.changeWith cell split:- No antenna re-cabling- No TRX moving- Connection tothe first BTSwhile the BTS isworking- Short serviceinterruptionduring radio conf.changeWithout cell split:- Complete re-configurationWithout cell split:- Complete re-configuration
  • Mobile Radio Network Planning 252GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Split Example: Migration tomultiband cellsw Example: Migration from multiband BSS (single BCCH) tomultiband cells (dual BCCH)w No more limitation to have the 900 and the 1800 TRX‘s installedinside the same cabinet4TRX4TRX4TRXGSM 9004TRX4TRX4TRXGSM1800BTS 1 BTS 2Cell 3Cell 2Cell 14TRX4TRX4TRXGSM 900BTS 1Cell 1Cell 3Cell 24TRX4TRX4TRXGSM 1800BTS 2Cell 4Cell 6Cell 5
  • Mobile Radio Network Planning 253GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Split Example: High PowerConfiguration
  • Mobile Radio Network Planning 254GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BTS 1 (with900 or 1800TRX)4TRX4TRX4TRXBTS 1 (with 12 TRX900 or 1800)BTS 2 (with 6 TRX900 or 1800)4TRX4TRX4TRXLinkedBTS2 TRX4TRXcell1cell2cell3 cell3cell2cell1Two shared sectorsCell Split Example: Configurationextensionw 3x4 sector cells extended to cell 1(6 TRX), cell 2 (4 TRX),cell 3 (8 TRX)
  • Mobile Radio Network Planning 255GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed014TRX4TRX4TRX 4TRX4TRX4TRXBCCHBTS 1 BTS 2Without cell split:-3 racks with 8TRX/sector, emptyspaceWith cell split:-2 racks with 12 TRX,8 TRX per sectorWithout cell split:-3 racks with 8TRX/sector, emptyspaceWith cell split:-2 racks with 12 TRX,8 TRX per sectorCell Split Example: Largeconfigurationsw 3x8 TRX with 2 racks:w 16 TRX’s per cell
  • Mobile Radio Network Planning 256GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor BTS Rack Layout
  • Mobile Radio Network Planning 257GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Outdoor BTS Rack Layout
  • Mobile Radio Network Planning 258GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed013 Level Architecture
  • Mobile Radio Network Planning 259GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Micro BTS typesw EVOLIUM A910 Micro Base Station (internal reference M4M)s still operational in a large numbers is being out phaseds up to 6 TRX-esw M5M EVOLIUM A9110 Micro-BTS (M5M)s Introduced in Q3 2003s up to 12 TRX-ess site configurations can mix older A910 with newer A9110-Es support for GPRS and EDGE (release dependent)
  • Mobile Radio Network Planning 260GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical DataA910(2 TRX)A9110(2 TRX)Frequency band GSM 850, E-GSM,GSM900, GSM 1800, GSM1900GSM 850, E-GSM,GSM900, GSM 1800, GSM1900Tx output power(at antenna connector)Up to 4.5 W 7 WRx sensitivity -107 dBm -110 dBmRadio FH Yes yesTemperature range (max.) 55 °C 55 °CMax. power consumption 130 W 145 WSize (volume) 54 litres 54 litresWeight 39.6 kg (incl. connectionbox)32.5
  • Mobile Radio Network Planning 261GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Evolium™ BSC Characteristicsw Capacitys Maximum physical capacity: 352 FR TRX or 176 DR TRX in 255 BTSs Traffic and signalling capacity: up to 1500 erlang->∅13,5 erl/BTS trafficcapacityw Flexibilitys 6 Abis interfaces per SM module with integrated cross connect functions Integrated in BSC subracks (no cabling), 100% Alcatels No BSC internal recabling for network extensions/modificationsw Compactnesss Maximum BSC configuration in three standard Alcatel 1000 S12 cabinets(90 cm width, 52 cm depth)w Technologys Two stage Alcatel 1000 S12 switching technologys Distributed processing in trunk control units and processing resourcess Same application SW running on both BSC generations
  • Mobile Radio Network Planning 262GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BSC ArchitectureBIUATCUCTCUCTCUCTCUCTCUCTCUCTCUCTCUCASDTCCDTCCDTCCDTCCDTCCDTCCDTCCASDTCCCPRC CPRC CPRC CPRC CPRC CPRC CPRC CPRCAS6 xG.703AbisI/F2 xG.703AtermuxedI/FAbis TSU Ater TSUCommon Functions TSUGroup Switch8 Planes2 StagesTSCATSLASMBASMBQ1 busBroadcast busself-routing, non-blocking
  • Mobile Radio Network Planning 263GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BSC Rack LayoutsA-BIS TSUAIRBAFFLEA-BIS TSUGSGSCOMMON TSUTSCAClockStage 1Stage 2Stage 2 Stage 2A-BIS TSUGroup Switch GS GSA-TER TSUA-TER TSU A-TER TSUA-BIS TSUStage 2A-BIS TSUAIRBAFFLEA-BIS TSUGSGSA-BIS TSUTSCAClockStage 1Stage 2Stage 2 Stage 2A-BIS TSUGroup Switch GS GSA-TER TSUA-TER TSU A-TER TSUA-BIS TSUStage 2A-BIS TSUAIRBAFFLEA-BIS TSUGSA-BIS TSUTSCAClockStage 1A-BIS TSUA-TER TSUA-TER TSU A-TER TSUA-BIS TSUw 6 Configurations possibleCabinet #1 Cabinet #2 Cabinet #3
  • Mobile Radio Network Planning 2643FL 11820 ABAA WAZZA ed01Coverage PlanningCoverage Improvement
  • Mobile Radio Network Planning 2653FL 11820 ABAA WAZZA ed01Coverage ImprovementAntenna Diversity
  • Mobile Radio Network Planning 266GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diversityw Purposes Improvement in fadingprobability statisticss  leads to a better totalsignal level or better totalS/N ratiow Principles Combining signals withsame information fromdifferent signal branchesw Demandss correlation betweendifferent signal branchesshould be loww Combining methodss Selection Diversitys Maximum RatioCombinings Equal Gain Combining
  • Mobile Radio Network Planning 267GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Time [sec]Fieldstrength[dBm]0.1 0.2 0.3 0.4-80-90-100Antenna 1 Antenna 2Selection Diversity (1)w Principles selection of the highestbaseband signal-to-noiseratio (S/N) or of thestrongest signal (S+N)w Correlation of signal levelss a lower correlationbetween signal levels ofdifferent branchesimproves the total signallevelw  Correlation of signal levelsshould be low
  • Mobile Radio Network Planning 268GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Time [sec]Fieldstrength[dBm]0.1 0.2 0.3 0.4-80-90-100Antenna 1Antenna 2Selection Diversity (2)w Difference in signal levels a high difference in signallevels of two branchesdoesn’t improve the totalsignal levelw  Difference in signal levelsshould be low
  • Mobile Radio Network Planning 269GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Selection Diversity (3)w Theoretical diversity gains 10dB for two-branchdiversity at the 99%reliability levels 16dB for four branches atthe 99% reliability levelw  The theoretical diversitygain doesn’t improve linearwith the number of branches
  • Mobile Radio Network Planning 270GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Equal Gain Combining (1)w Principles cophase signal branchess sum up signalsw  Coherent addition of signalsand incoherent addition ofnoisesw Theoretical diversity gains 11dB for two-branchdiversity at the 99%reliability level
  • Mobile Radio Network Planning 271GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Equal Gain Combining (2)w Difference in signal levels Assuming equal noise inthe branches, the higherthe difference in signallevels is, the higher is theloss of S/N ratio of thebetter signal branch aftersummationw  Difference in signal levelsshould be loww Correlation of signal levelss a lower correlationbetween signal levels ofdifferent branchesimproves the total S/Nratiow  Correlation of signal levelsshould be low
  • Mobile Radio Network Planning 272GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maximum Ratio Combining (1)w Principles weight signalsproportionally to their S/Nratioss cophase signal branchess sum up the weightedsignalsw  Coherent addition of signalsand incoherent addition ofnoisesw  Improved S/N
  • Mobile Radio Network Planning 273GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Correlation of signal levelss a lower correlationbetween signal levels ofdifferent branchesimproves the total S/Nratiow  Correlation of signal levelsshould be lowMaximum Ratio Combining (2)w Difference in signal levels Assuming equal noise inthe branches, the higherthe difference in signallevels is, the higher is theloss of S/N ratio of thebetter signal branch aftersummations comparing to equal ratiocombining, this combiningreduces influence ofworse signal branchesw  Difference in signal levelsshould be low
  • Mobile Radio Network Planning 274GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Comparison of combining methodsw Improvement of average SNRfrom a diversity combinercompared to one branchs (a) Maximum RatioCombinings (b) Equal Gain Combinings (c) Selection Diversityw  The maximum ratiocombining, which is used inthe ALCATEL BTS, gives thebest statistical reduction ofany known linear diversitycombiner.
  • Mobile Radio Network Planning 275GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Enhanced Diversity Combining (1)w Principle:s 2 algorithmsq Beam forming algorithm (available also for MRC)q Interference reduction algorithm (new)s best efficiency when the useful signal and the interferingsignals come from different directions.w Requirements to benefit from this feature:s Hardware: G4 TRE (Edge capable TRX) installed in EvoliumEvolution BTS step1 resp. step 2 (internal name: G3 resp.G4)s Software release: from B6.2 onwardss For a maximum gain: antenna engineering rules respectedq Correct antenna choice for the considered environmentq Correct antenna spacings and orientations (in case of space diversity)
  • Mobile Radio Network Planning 276GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Enhanced Diversity Combining (2)w The values in the right column are due to the featureEnhanced Diversity Combining, Selective Beam-formingCombiningAntennadiversitygainrecommendationfor linkbudgetEnvironment Evolutionstep1,Evolutionstep2uptoB5Evolutionstep2sinceB6.2Urban, denseurban 5dB 6dBResidential, suburban 3.5dB 5dBRural (horizontal spacediversity) 3dB 3.5dB
  • Mobile Radio Network Planning 277GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diversity systems in Mobile RadioNetworksw Two diversity systems areused in Mobile Radio Networks:s Space DiversitySpace Diversityq horizontalq verticals Polarization DiversityPolarization DiversitydHRXA RXB+45°-45°RXA RXB
  • Mobile Radio Network Planning 278GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Space DiversitySystemss Diversity gain depends on spatial separation ofantennasdHRXA RXBdVRXARXBHorizontal separation(e.g. Roof Top)Verticalseparation(e.g. Mast)For Optimum Diversity GaindH = 20λ dV = 15λGSM900 = 6m GSM900= 4.5mGSM1800 = 3m GSM1800 =2.25m
  • Mobile Radio Network Planning 279GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w The larger the separation the higher the diversity gainw Prefer horizontal separation (more effective)w The higher the antenna the higher the requiredseparation, rule: d > h/10w Highest diversity gain from the "broadside”w  Select orientation of diversity setup according toorientation of cell / traffichdOptimumdiversityGainSpace Diversity - General Rules
  • Mobile Radio Network Planning 280GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Achievable Diversity Gainw Depends on fading conditionss Varies in between 2.5 - 6dBs Higher diversity gain in areas with multipathpropagation (urban and suburban areas)w General rule: consider diversity gain with 3dB in the linkbudget
  • Mobile Radio Network Planning 281GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Horizontal / vertical polarization:Hor/Ver AntennaPolarization of +/- 45°:cross polarized antennaor Slant antennaBig Advantage: Only one panel antenna is required toprofit from diversity gain using this configurationV H +45°-45°RXA RXB RXA RXBPolarization Diversityw Diversity gain in using orthogonal orientated antennas
  • Mobile Radio Network Planning 282GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DiversityGainmultipath-propagationreflection,diffractionreception withreception witha hor / verpolarisedantennaa X-polarisedantennaEVEHEX2EX1G = f( ρ ,∆ )Time [sec]Ex1 or EvEx2 or EhPrinciple of Polarization Diversity
  • Mobile Radio Network Planning 283GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Air Combiningw Featuress only one TX per antennas combining signals "on air"and not in a combiners 3dB combiner loss can besaved to increasecoveragew Can be realized withs two vertical polarizedantennass one cross polarized panelantennaTX1 TX2TX1 TX2
  • Mobile Radio Network Planning 284GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Air Combining with PolarizationDiversityw One antenna systems cross polarized antennasrecommended forurban/suburban area (lessspace req.)No Air combiningBandfilter if De-coupling too lowAir combiningRecommended forEvolium BTSV HDUPL BFTX RXA RXBDUPLTX1 RX1 TX2 RX2RX2D RX1DDUPLor1 TRX 2 TRX
  • Mobile Radio Network Planning 285GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Air Combining with Space Diversityw Two antenna systems Vertical or horizontalspacing (recommendedfor rural area)RXA RXB TXor orRXARXBTX
  • Mobile Radio Network Planning 286GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Decoupling of Signal Branchesw One antenna system: TX / RX decoupling cannot be achievedby spatial separationw Decoupling between both polarization branches needs to besufficiently high to avoids blocking problemss intermodulation problemsw Required decoupling valuess G2 BTS: 30 dBs Evolium A9100 BTS: 25dB (Integrated duplexer Anx)
  • Mobile Radio Network Planning 287GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cross Polarized or Hor/Ver Antenna? (1)w Receiving Applications same diversity gain for cross polarized and hor/verantennass in urban and suburban area polarization diversity gainpolarization diversity gainequal to space diversity gainspace diversity gain (2.5 - 6dB)s negligible polarization diversity gainpolarization diversity gain in rural areas (notrecommended)s accordingly consider polarization diversity gainpolarization diversity gain with 3dBin the link budget
  • Mobile Radio Network Planning 288GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cross Polarized or Hor/Ver Antenna? (2)w Transmission Application: Aircombinings 3dB loss whentransmittinghorizontal/verticalpolarized (use ofcombiner)s 1-2dB losses whentransmitting at 45°(optimum antenna isstraighten vertically)s Air combining onlyrecommended with crosspolarized antenna3dB2dB
  • Mobile Radio Network Planning 289GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Conclusion on Antenna Diversityw Rural Areass installation space not limiteds apply Space Diversity (higher gain)w Urban and Suburban Areas apply space or polarization diversitys use cross polarized antennas for air combiningw Diversity Gains consider diversity gain in link budget with 3dB
  • Mobile Radio Network Planning 2903FL 11820 ABAA WAZZA ed01Coverage ImprovementRepeater SystemsBTS (donor cell)repeateroriginal service areaarea covered byrepeater
  • Mobile Radio Network Planning 291GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater ApplicationBTS (donor cell)repeateroriginal service areaarea covered byrepeater
  • Mobile Radio Network Planning 292GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater Block DiagramRequired Isolation > 70…90 dB
  • Mobile Radio Network Planning 293GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater Applicationsw Coverage Improvement of Cells (‘Cell Enhancer’)s removal of coverage holes caused byq topography (hills, ravines, ...)q man made obstaclesw Provision of tunnel coverages street, railway tunnelss underground stationsw Provision of indoor coverage at places of low additionaltraffic
  • Mobile Radio Network Planning 294GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater Typesw Channel selective repeaterss high selectivity of certainchannelss high traffic areas, smallcell sizesw Band selective repeaterss adjustment to operator’sfrequency bands no (accidental) usage bycompetitorsw Broad band repeaterss low cost solution for lowtraffic areas (ruralenvironment)s medium to high repeatergainw Personal repeaterss low gains broad bands indoor coverageimprovement for certainrooms
  • Mobile Radio Network Planning 295GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antennatodonor cellRepeaterRadiatingcableTunnelRepeater for Tunnel Coveragew Choice of repeater type due tos tunnel dimensionss wall materialsw feeding bys directional antennass leaky feeder cablesw long tunnelss chains of severalrepeaterss fiber optic backbone forrepeater feeding
  • Mobile Radio Network Planning 296GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Personal repeaterAntennatodonor cellFiber opticdistributionRemoteunitsMaster unitRadiatingcableRepeater for Indoor coveragew For smaller buildingss Compensation for walllosses, window losses (heatinsulated windows)s Low cost personal repeatersinstalled in certain roomsw For larger buildings (shoppingmalls, convention centers, sportcenters)s multispot transmissionusingq co-axial distribution networkq fiber-optic distribution network
  • Mobile Radio Network Planning 297GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Planning Aspectsw Repeater does not provide additional traffic capacitys risk of blocking if additional coverage area catches moretraffics  possible carrier upgrading requiredw Repeater causes additional signal delays delay: 4..8µ s ¡ max. cell range of 35 km reduced by 1to 2kms special care needed for total delay of repeater chain!s delayed signal and original signal could cause outage inurban environment if total delay exceeds 16 ... 22µ s
  • Mobile Radio Network Planning 298GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater Gain Limitation (1)w Intermodulation products should be lows when amplifier reaches saturation point,intermodulation products go upw Signal to noise ratio should be highs when amplifier reaches saturation point, signal to noiseratio is getting worsew Antenna isolation between transmission and receivingantenna should be highs if signal feedback from transmission antenna toreceiving antenna is too high, amplifier goes intosaturation
  • Mobile Radio Network Planning 299GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Repeater Gain Limitation (2)Pin Poutgain78 dBisolation90 dBPback =Pin - 12 dBs Repeater gain limited by antennaisolation:GRepeater < IDonor,Repeater - M M (Margin) ~ 12 dBMeasure isolation after installation
  • Mobile Radio Network Planning 300GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Intermodulation Productsw A Non-linear systems produces higher-order intermodulationproducts as soon as output power reachesthe saturation pointw Parameters 1 dB compression points 3rd order intercept point (ICP3)s Intermodulation reduction (IMR)s Amplifier back-offw GSM900/GSM1800 requirementss IM products ≤ -36 dBm ors IM distance > 70 dBc whichever is higher
  • Mobile Radio Network Planning 301GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Uplink Loss = Downlink Loss ⇒Uplink Gain = Downlink Gain!Repeater Link BudgetDifferent gains may be needed in Up- and Downlink ifthe sensitivity of the repeater is worse than thesensitivity of the BTS!Downlink Path Unit ValueReceived power at repeater dBm -65Link antenna gain dBi +19Cable loss dB -2Repeater input power dBm -48Repeater gain dB +78Repeater output power dBm 30Cable loss dB -2Repeater antenna gain dBi +18EIRP dBm 46
  • Mobile Radio Network Planning 302GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Example:RepeaterMR402
  • Mobile Radio Network Planning 303GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01High Power TRXsw High Power TRXs: solution for coverage improvementw HP must be used together with TMA: due to unbalanced LinkBudgetw A9100 BTS supportss High Power TRXs Medium Powers TRX type is chosen by:q environment conditionsq required data throughput (GPRS/EDGE)TX power of EVOLIUM™ Evolution step 2 TRX :Frequency band TX output power, GMSK TX output power, 8-PSK (EDGE)GSM 900 HP 60 W = 47.8 dBm 25 W = 44.0 dBmGSM 1800 HP 60 W = 47.8 dBm 25 W = 44.0 dBm
  • Mobile Radio Network Planning 304GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed013x6 TRXs High Power Configurationw Configuration made with EVOLIUM™ A9100 Base Stationw Obs:s All TRX are HPs The configuration is using cell split featureCabinet1(High power 3x3TRX)Sector3: 1x6 TRXSector2: 1x6 TRXSector1: 1x6 TRXCabinet2(High power 3x3TRX)No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3No-com-biningANcHPTRX1 HPTRX 2Combi-ningMPTRX 3
  • Mobile Radio Network Planning 305GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mixed TRX Configurationw BTS EVOLIUM™ supports a mix of:s EVOLIUM™ TRX (TRE) - supports GSM/GPRS and EDGEs EVOLIUM™ Evolution step 2 TRX (TRA) with Medium Powers EVOLIUM™ Evolution step 2 TRX (TRA) with High PowerTRETRETRAMPTRAHPHardware configurationLogical cellTRX1 (BCCH)TRX2 (1 SDCCH)TRX3TRX4Packet VoiceAllocation
  • Mobile Radio Network Planning 3063FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsTraffic Planning & FrequencyPlanning
  • Mobile Radio Network Planning 307GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Traffic Capacityw Network evolutionw Cell structuresw Frequency Reusew Cell Planning - Frequency Planningw Interference Probabilityw Carrier typesw Multiple Reuse Pattern MRPw Intermodulationw Manual Frequency Planningw BSIC Planningw Capacity Enhancement Techniques
  • Mobile Radio Network Planning 3083FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningTraffic Capacityk(k+1)µλkµλ0 1µλn-1 nλnµ
  • Mobile Radio Network Planning 309GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Telephone Systemsubscriber1234line to PSTNsub 1sub 2sub 3sub 4timeobservation period, e.g.main busy hour (MBH)blocked callattemptsParameters:λ : arrival rate [1/h]µ : release rate [1/h]1/µ : mean holding time [sec]"offered" traffic = # of calls arriving in MBH ×mean holding timeρ = λ × 1/µ [Erlang]automaticswitch
  • Mobile Radio Network Planning 310GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Offered Traffic and Traffic Capacityw Handled Traffic, Traffic Capacity: Tw Blocking Probability, Grade of Service (GoS): pblock = R / ρw System load: τ = T / n, i.e. T < nLoss System(n slots)HandledTraffic (T)OfferedTraffic (ρ )Rejected Traffic (R)T = ρ - R
  • Mobile Radio Network Planning 311GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of Erlangw ERLANG : Unit used to quantify trafficT = (resource usage duration)/(total observation duration) [ERLANG]
  • Mobile Radio Network Planning 312GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Call Mix and Erlang Calculationw CALL MIX EXAMPLEq 350 call/hourq 3 LU/callq TCH duration : 85 secq SDCCH duration : 4,5 secw ERLANG COMPUTATIONq TCH = (350 * 85)/3600 = 8,26 ERLANGq SDCCH = [ (350 + 350*3) * 4,5 ] / 3600 = 1.75 ERLANG
  • Mobile Radio Network Planning 313GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of Erlang Bw ERLANG B LAWw Relationship betweenq Offered trafficq Number of resourcesq Blocking rate
  • Mobile Radio Network Planning 314GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w call request arrival rate (and leaving) is not stables number of resources = average number of requestsmean durations is sometime not sufficent => probability of blockingw => Erlang B laws Pblock : blocking probabilitys N : number of resourcess E : offered traffic [Erlang]s Calculated with Excel - Makro or Table
  • Mobile Radio Network Planning 315GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Erlang´s Formulaw How to calculate the traffic capacity T?w Basics: Markov Chain (queue statistics)w Calculation of the blocking probability using Erlang´sformula (Erlang B statistics):w Varation of ρ until pblock reached: ρ → Tpn iblockn iin= ∑=ρ ρ! !0p0 p12µµλpiλpnnµp23µno callestablishedichannelsoccupiedallchannelsoccupied
  • Mobile Radio Network Planning 316GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Blocking Probability (Erlang B)Nr. of Blocking Probability Erlang Bchannels 0.1% 0.2% 0.5% 1% 2% 3% 4% 5% 10% 15% 20% 50%1 0.001 0.002 0.005 0.010 0.020 0.031 0.042 0.053 0.111 0.176 0.250 1.0002 0.046 0.065 0.105 0.153 0.223 0.282 0.333 0.381 0.595 0.796 1.000 2.7323 0.194 0.249 0.349 0.455 0.602 0.715 0.812 0.899 1.271 1.602 1.930 4.5914 0.439 0.535 0.701 0.869 1.092 1.259 1.399 1.525 2.045 2.501 2.945 6.5015 0.762 0.900 1.132 1.361 1.657 1.875 2.057 2.218 2.881 3.454 4.010 8.4376 1.146 1.325 1.622 1.909 2.276 2.543 2.765 2.960 3.758 4.445 5.109 10.3897 1.579 1.798 2.157 2.501 2.935 3.250 3.509 3.738 4.666 5.461 6.230 12.3518 2.051 2.311 2.730 3.128 3.627 3.987 4.283 4.543 5.597 6.498 7.369 14.3209 2.557 2.855 3.333 3.783 4.345 4.748 5.080 5.370 6.546 7.551 8.522 16.29410 3.092 3.427 3.961 4.461 5.084 5.529 5.895 6.216 7.511 8.616 9.685 18.27311 3.651 4.022 4.610 5.160 5.842 6.328 6.727 7.076 8.487 9.691 10.857 20.25412 4.231 4.637 5.279 5.876 6.615 7.141 7.573 7.950 9.474 10.776 12.036 22.23813 4.831 5.270 5.964 6.607 7.402 7.967 8.430 8.835 10.470 11.867 13.222 24.22414 5.446 5.919 6.663 7.352 8.200 8.803 9.298 9.730 11.473 12.965 14.413 26.21215 6.077 6.582 7.376 8.108 9.010 9.650 10.174 10.633 12.484 14.068 15.608 28.20116 6.721 7.258 8.099 8.875 9.828 10.505 11.059 11.544 13.500 15.176 16.807 30.19117 7.378 7.946 8.834 9.652 10.656 11.368 11.952 12.461 14.522 16.289 18.010 32.18218 8.046 8.644 9.578 10.437 11.491 12.238 12.850 13.385 15.548 17.405 19.216 34.17319 8.724 9.351 10.331 11.230 12.333 13.115 13.755 14.315 16.579 18.525 20.424 36.16620 9.411 10.068 11.092 12.031 13.182 13.997 14.665 15.249 17.613 19.647 21.635 38.15921 10.108 10.793 11.860 12.838 14.036 14.885 15.581 16.189 18.651 20.773 22.848 40.15322 10.812 11.525 12.635 13.651 14.896 15.778 16.500 17.132 19.692 21.901 24.064 42.14723 11.524 12.265 13.416 14.470 15.761 16.675 17.425 18.080 20.737 23.031 25.281 44.14224 12.243 13.011 14.204 15.295 16.631 17.577 18.353 19.031 21.784 24.164 26.499 46.13725 12.969 13.763 14.997 16.125 17.505 18.483 19.284 19.985 22.833 25.298 27.720 48.13230 16.684 17.606 19.034 20.337 21.932 23.062 23.990 24.802 28.113 30.995 33.840 58.11335 20.517 21.559 23.169 24.638 26.435 27.711 28.758 29.677 33.434 36.723 39.985 68.09940 24.444 25.599 27.382 29.007 30.997 32.412 33.575 34.596 38.787 42.475 46.147 78.08845 28.447 29.708 31.656 33.432 35.607 37.155 38.430 39.550 44.165 48.245 52.322 88.07950 32.512 33.876 35.982 37.901 40.255 41.933 43.316 44.533 49.562 54.029 58.508 98.072
  • Mobile Radio Network Planning 317GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BTS Traffic Capacity (Full Rate)Number of Speech Traffic (Erlang B) Signalling Traffic (Erlang B)TRX SDCCH TCH 1% 2% 5% 0.1% 0.2% 0.5%1 4 7 2.501 2.935 3.738 0.439 0.535 0.7012 8 14 7.352 8.2 9.73 2.051 2.311 2.733 8 22 13.651 14.896 17.132 2.051 2.311 2.734 16 29 19.487 21.039 23.833 6.721 7.258 8.0995 16 37 26.379 28.254 31.64 6.721 7.258 8.0996 24 44 32.543 34.682 38.557 12.243 13.011 14.2047 24 52 39.7 42.124 46.533 12.243 13.011 14.2048 32 59 46.039 48.7 53.559 18.205 19.176 20.678
  • Mobile Radio Network Planning 3183FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningNetwork Evolution
  • Mobile Radio Network Planning 319GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Evolution - Coverage Approachw The roll out of a network is dedicated to provide coveragew Network design changes rapidlyw Planning method must be flexible and fast (group method)w Manual frequency planning possible
  • Mobile Radio Network Planning 320GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Evolution - Capacity Approach(1)w With the growing amount of subscribers, the need for moreinstalled capacity is risingw Possible Solutions:s Installing more TRXs on the existing BTSs Implementing additional sitesw Discussion!
  • Mobile Radio Network Planning 321GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Evolution - Capacity Approach(2)w Installing more TRXs - Advantagess No site search/acquisition processs No additional sites to rent (saves cost)s Trunking efficiency ³ Higher capacity per cellw Installing more TRXs - Disadvantagess More antennas on roof top (Air combining)s Additional losses if WBC has to be usedq Less (indoor) coverages More frequencies per site neededs Tighter reuse necessary ³ decreasing quality
  • Mobile Radio Network Planning 322GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Evolution - Capacity Approach(3)w Implementing additional sites - Advantagess Reuse can remain the same (smaller cell sizes)s Needs less frequency spectrumq higher spectrum efficiencyw Implementing additional sites - Disadvantagess Additional site cost (rent)s Re-design of old cells necessary (often not done)
  • Mobile Radio Network Planning 3233FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningCell Structures
  • Mobile Radio Network Planning 324GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Structures and Qualityw Frequency re-use in cellular radio networkss allow efficient usage of the frequency spectrums but causes interference² Interdependence ofs Cell sizes Cluster sizes Re-use distances Interference levels Network Qualityinterfererregion
  • Mobile Radio Network Planning 325GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed017 Cell Re-use Cluster (Omni Sites)12 3476 5 12 3476 5RD
  • Mobile Radio Network Planning 326GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed0112 Cell Re-use Cluster (Omni Sites)5 641 2 37 8 91 0 1 1 1 2D
  • Mobile Radio Network Planning 327GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed013x3 Cell Re-use Cluster (Sector Site)
  • Mobile Radio Network Planning 328GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed014x3 Cell Re-use Cluster (Sector Site)
  • Mobile Radio Network Planning 329GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Irregular (Real) Cell Shapes12 345657Network BorderCoverageHole Island
  • Mobile Radio Network Planning 3303FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningFrequency Reuse
  • Mobile Radio Network Planning 331GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Frequency Spectrumw GSM 900s DL: 935-960 MHz UL: 890-915 MHzs 200 kHz channel spacing ´ 124 channelss ARFCN 1 - 124w E-GSMs DL: 925-935 MHz UL: 880-890 MHzs 200 kHz channel spacing ´ Additional 50 channelss ARFCN 0, 975 - 1023w GSM 850s DL: 869-894 MHz UL: 824-849 MHzs 200 kHz channel spacing ´ 124 channelss ARFCN: 128 - 251w GSM 1800s DL: 1805-1880 MHz UL: 1710-1785 MHzs 200 kHz channel spacing ´ 374 channelss ARFCN 512 - 885
  • Mobile Radio Network Planning 332GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Impact of limited Frequency Spectrumw Bandwidth is an expensive resourcew Best usage necessaryw Efficient planning necessary to contain good QoS when thetraffic in the network is increasings smaller reuses MRP usages implementation of concentric cells / microcells/dualbands implementation of Frequency Hoppingq Basebandq Synthezised
  • Mobile Radio Network Planning 333GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01What is frequency reuse?w As the GSM spectrum is limited, frequencies have to bereused to provide enough capacityw The more often a frequency is reused within a certainamount of cells, the smaller the frequency reusew Aim:Minimizing the frequency reuse for providing more capacityw REUSE CLUSTER:Area including cells which do not reuse the same frequency(or frequency group)
  • Mobile Radio Network Planning 334GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RCS and ARCS (1)w Reuse Cluster Size - RCSs If all cells within the reuse cluster have the same amount ofTRXs, the reuse per TRX layer can be calculated:cellTRXBRCS/#=cellTRXBARCS/#=w Average Reuse Cluster Size - ARCSs If the cells are different equiped, the average number ofTRXs has to be used for calculating the average reusecluster size:
  • Mobile Radio Network Planning 335GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RCS and ARCS (2)w The ARCS is giving the average reuse of the network whenusing the whole bandwidth and all TRXs per cellw E.g: if we want to have the reuse of all non hopping TCHTRXs, we have to use the dedicated bandwidth and theaverage number of non hopping TCH TRXs per cell to getthe ARCS of this layer type.w Each cell has only one BCCH. Therefore the BCCH reuse isan RCS and not an ARCS!
  • Mobile Radio Network Planning 336GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Reuse Cluster Size (1)w Sectorized sitesw 4 sites per reuse clusterw 3 cells per sitew REUSE Cluster Size:4X3 =12 1 234 567 8910 11121 234 567 8910 1112
  • Mobile Radio Network Planning 337GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Reuse Cluster Size (2)w Sectorized sitesw 3 sites per reuse clusterw 3 cells per sitew REUSE Cluster Size3X3 = 91 234 567 891 234 567 89
  • Mobile Radio Network Planning 338GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Reuse DistanceRCSRfD ⋅⋅⋅= 3=cellssectorized-three32cellsionalomnidirect1fre-use distancecell Acell Binterfererregion
  • Mobile Radio Network Planning 339GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Frequency Reuse Distancesite A site Bdistance DRD = distance between cell sites with the same frequenciesR = service radius of a cellB = number of frequencies in total bandwidthRCS = reuse cluster size, i.e. one cell uses B/RCS frequenciesIn hexagonal cell geometry: D/R = f · 3 RCSomni cells: f=1; sector cells: f=2/3Examples (omni):RCS = 7: D/R = 4.6RCS = 9: D/R = 5.2RCS =12:D/R = 6.0Received PowerFrecσC/IFrec,A Frec,B0
  • Mobile Radio Network Planning 340GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Frequency Reuse: Examplew No sectorizationw 7 cells per clusters BCCH RCS = 7w TCH Reuse: Depending on BWand Number of installed TRXsper cellw Example:s B= 26s 4TRXs per cellinterfererregion631726=−−=GuardBCCHRCSTCHRCSTCHRCSBCCH
  • Mobile Radio Network Planning 3413FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningCell Planning - Frequency Planning
  • Mobile Radio Network Planning 342GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Planning - Frequency Planning (1)w Can frequency planning be seen independently from cellplanning?Discussion
  • Mobile Radio Network Planning 343GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Planning - Frequency Planning (2)w Bad cell plannings Island coverage ³ disturbing the reuse patterns Big overlap areas ³ bigger reuse necessaryw Good cell plannings Sharp cell borders ³ good containment offrequencys Small overlap areas ³ tighter reuse possible
  • Mobile Radio Network Planning 344GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Influencing Factors on Frequency ReuseDistancew Topographys Hilly terrain ³ Usage of natural obstacles to define sharpcell borders ³ tighter frequency reuse possibles Flat terrain ³ Achieveable reuse much more dependenton the accurate cell designw Morphologys Water ³ low attenuation ³ high reusedistances City ³ high attenuation ³ low reusedistance
  • Mobile Radio Network Planning 345GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Conclusionw In cellular mobile networks, the frequency reuse pattern has adirect influence on the interference and hence the network qualityw Regular hexagonal patterns allow the deduction of engineeringformulasw In real networks, cell sizes and shapes are irregular due tos Variation in traffic densitys Topographys Land usage² Engineering formulas allow the assessment of the network qualityand worst-case considerations, but the real situation must beproved!
  • Mobile Radio Network Planning 346GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Examples for different frequencyreusesw Big city in the south of Africa:s BCCH reuse 26q Irregular cell designq Mixed morphologyq Lots of waterq Flat terrain plus some high sitesw Big city in eastern Europes BCCH reuse 12q Regular cell designq Flat areaq Only urban environment
  • Mobile Radio Network Planning 3473FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningInterference Probability
  • Mobile Radio Network Planning 348GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Theory (1)w C/I restrictionss 9dB for co-channel interferences -9 dB for adjacent channel interferencedistance DRReceived PowerP recσC/IPrec, A Prec, B0
  • Mobile Radio Network Planning 349GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Theory (2)Probability density function [%]0,0%1,0%2,0%3,0%4,0%5,0%C/I [dB]→C/ImedC/IthrMarginInterferer probability [%]0%20%40%60%80%100%-20 -15 -10 -5 0 5 10 15 20C/I - C/Ithr[dB]w Interference probabilitys C/Imed is the calculated carrier tointerference ratio at a certain location (pixel)ARCS Pint[%]6.5..9.0 107.0..9.5 7.58.5..11.0 5.012.0..16.0 2.5
  • Mobile Radio Network Planning 350GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference ProbabilityPint = P ( C/I < C/I thr )00,10,20,30,40,50,60,70,80,91P intDistance from servingcellDRCPDF - Cumulative Probability Density Function
  • Mobile Radio Network Planning 351GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Probability dependenton Average Reuse Cluster Size(ARCS)ARCS =# of frequencies in used bandwidthaverage # of carriers per cellPint [%]ARCS0369125 10 15 20 25Examples:Pint [%] ARCS106.5...97.57...9.558.5...112.512...16
  • Mobile Radio Network Planning 3523FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningCarrier TypesMultiple Reuse PatternIntermodulation
  • Mobile Radio Network Planning 353GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Carrier Types - BCCH carrierw BCCH frequency is on air all the timew If there is no traffic/signaling on TS 1 to 7³ dummy bursts are transmittedw PC (Power Control) and DTX (Discontinuous Transmission)are not allowedw Important for measurements of the mobile
  • Mobile Radio Network Planning 354GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Carrier Types - TCH carrierw PC allowed and recommended for UL and DLs Reduction of transmit power according to the actualpath losss Careful parameter tuning for DL necessaryw DTX allowed and recommended for UL and DLs Discontinuous Transmissions If there is no speech, nothing is transmitteds Generation of comfort noise at receiving mobilew TCH not in use ³ no signal is transmittedw Special case: Concentric cellss Different re-uses for inner and outer zone are possible
  • Mobile Radio Network Planning 355GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Multiple reuse pattern (1)w For different types of carriers, different interferencepotential is expectedw As the BCCH carrier has the highest interferer potentialbecause of being on air all the time and the BCCH channelitself is accepting only low interference, the REUSE on theBCCH layer is higher then on other layersw TCH layers can be planned with a smaller REUSEw Inner zones of concentric cells are able to deal with thesmallest reuse in non hopping networks
  • Mobile Radio Network Planning 356GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Multiple reuse pattern (2)w REUSE clustersfors INNER ZONElayers TCH layers BCCH layer
  • Mobile Radio Network Planning 357GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM restrictionsw Intra site minimum channel spacing ³ 2w Intra cell minimum channel spacing ³ 2 (ETSI recommends3, but with Alcatel EVOLIUM capabilities this value can beset to 2)s constrains:q Uplink power control enabledq Intra cell interference handover enabledfA1,fA2,fA3,...fB1 ,fB2 ,fB3 ,...fC1,fC2,fC3,...Frequencies fAx,fBx,fCx,… must have atleast 2 channels spacingFrequencies fx1,fx2,fx3,… must have atleast 3 channels spacing
  • Mobile Radio Network Planning 358GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Intermodulation problems (1)w IM Products GSM900s In a GSM 900 system intermodulation products of 3rdand 5th order can cause interferenceq 2 * f1,t – f2,t = f2,r / 2 * f2,t – f1,t = f1,rq 3 * f1,t – 2 * f2,t = f2,r / 3 * f2,t – 2 * f1,t = f1,rs Frequency planning must avoid fulfilling these equationss Both frequencies must be on the same duplexers To avoid intra band IM inside GSM900 the followingfrequency separations shall be avoided:q 75/112/113 channelsIM5 IM3
  • Mobile Radio Network Planning 359GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Intermodulation problems (2)w IM Products GSM1800s In a GSM 1800 system, only intermodulation products of3rd order can cause measurable interferences 2 * f1,t – f2,t = f2,r / 2 * f2,t – f1,t = f1,rs Frequency separations to be avoidedq 237/238 channelsw IM Products Dual Band (GSM900/GSM1800)s f1800,t – f900,t = f900,rs Decoupling between the GSM 1800 TX path and theGSM 900 RX path is less than 30 dB (e.g. same antennaused!)
  • Mobile Radio Network Planning 360GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Intermodulation problems (3) -Summarycarrier/antenna restrictionG3 900 1 noG3 900 2 ore more 112/113 (IM3) and 75 (IM5)G3 1800 1 noG3 1800 2 or more 237/238 (IM3) no IM5 quality degradation measurablecarrier/antennaG2 900 w/o dupl 1 no2 or more noG2 900 with dupl 1 no2 or more 112/113 (IM3) and 75 (IM5)G2 1800 w/o dupl 1 no2 or more noG2 1800 with dupl 1 no22G3 900 G2/G3 1800 f(1800,t) - f(900,t) = f(900,r)G2 900 w/o dupl G2/G3 1800 noG2 900 with dupl G2/G3 1800 f(1800,t) - f(900,t) = f(900,r)Colocated BTSsdud2(high Power) -> nodupd -> 237/238OUTSIDE Problem: Dual BandINSIDE Problem: IM3 / IM5Problem only for non hopping and BCCH carriersProblem can be solved by hopping over more than 10 frequencies
  • Mobile Radio Network Planning 361GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Treating “neighbor” cellsw Cells, which are not declared as neighbor cells but arelocated in the neighborhood may use adjacentfrequencies if it is not avoidable, but no co channelfrequenciesw Cells which are declared as neighbors, thus have HOrelationships, must not use co or adjacent frequenciess If an adjacent frequency is used, the HO will be riskyand at least audible by the user
  • Mobile Radio Network Planning 362GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Where can I find neighbor cells?w At the OMC-R for each cell a list of neighbor cells is definedw Maximum number of neighbors: 32w The list of neighbors and their frequencies is transmitted tothe mobile to be able to perform measurements on thesefrequenciesw In case of a HO cause, the HO will be performed towards thebest neighbor
  • Mobile Radio Network Planning 3633FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningManual Frequency Planning
  • Mobile Radio Network Planning 364GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Manual frequency planning (1)w No fixed methodw Free frequency assignment possible, but very timeconsuming for larger networksw For easy and fast frequency planning: use group assignmentw Example:18 channels, 2TRX per cell ¶ ARCS 9
  • Mobile Radio Network Planning 365GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Manual frequency planning (2)w GSM restrictions are automatically fulfilled, if on one siteonly groups A* or only B* are used1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18A1B1A2B2A3B3A4B4A5
  • Mobile Radio Network Planning 366GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Exercise: Manual frequency planning(3)
  • Mobile Radio Network Planning 367GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Exercise: Manual frequency planning(4)A1A2A3A2A4 A5B4B1B2 B3B1B2A1A2A3A2A4A5B2B4B1A3A2A1
  • Mobile Radio Network Planning 368GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Discussion: Subdivide Frequency Band?w Any subdivision of the frequency band is reducing thespectrum efficiency!w Separations should be avoided if possible!w As the BCCH has to be very clean, it is neverthelessrecommended to use a separated band and select a biggerreuse
  • Mobile Radio Network Planning 369GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Hint for creating a future proofed frequencyplanw If a frequency plan is implemented, using all availablefrequencies in the most efficient way, it is very difficult toimplement new sites in the future!w New sites would make a complete re-planning of thesurrounding area or the whole frequency plan necessaryw To avoid replanning every time when introducing new sites, itis recommended to keep some Joker frequencies freew These Joker frequencies can be used for new sites (especiallyBCCH TRXs) unless it is impossible to implement new siteswithout changing a big part of the frequency plan² New frequency plan necessary!
  • Mobile Radio Network Planning 370GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Implementing a frequency planw If only a few frequencies have to be changed, the changes canbe done at the OMC-Rs Disadvantage: Every cell has to be modified separately Downtime of the cell approx. 5 minutesw If lots of changes have to be done, it is of advantage to useexternal toolss Since B6.2 the complete frequency plan can be uploadedfrom the OMCs the uploaded file can be modified by the tool (A9155 PRCGenerator)s the the new plan is downloaded into the network andactivated at once
  • Mobile Radio Network Planning 3713FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningBSIC Planning
  • Mobile Radio Network Planning 372GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BSIC allocationw Together with the frequencies the Base Transceiver StationIdentity Code (BSIC) has to be plannedw The BSIC is to distinguish between cells using the sameBCCH frequencyw BSIC = NCC (3bits) + BCC (3bits)w NCC Network (PLMN) Colour Code BCC - Base Transceiver Station (BTS) Colour Codew BSIC planning is supported by the A9155 (Alcatel RadioNetwork Planning Tool)
  • Mobile Radio Network Planning 373GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BSIC Planning Rulesw The same combination BCCH/BSIC must not be used on cellinfluencing on each other (having a mutual interference <>0)w BSIC allocation rules:s Avoid using same BCCH/BSIC combination of:q neighbours cellsq second order neighbour cells (the neighbours of neighbour cell (OMClimitation))Neighbour CellBCCH:24BSIC:36Neighbour CellBCCH:24BSIC: must NOT be36Serving CellBCCH:10BSIC: anyAB C
  • Mobile Radio Network Planning 374GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Spurious RACHw Bad BSIC planning can cause SDCCH congestion cause bythe spurious RACH problem, also known as “Ghost RACH”w This problem occurs, when a mobile sends an HO accessburst to a TRX of cell A using the same frequency as anearby cell B uses on the BCCHw Both cells using the same BSIC and Training Sequence CodeTSQC, the HO access burst is understood by the cell B as aRACH for call setupw Therefore on cell B SDCCHs are allocated everytime a HOaccess burst is sent from the mobile to the cell A
  • Mobile Radio Network Planning 375GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Summaryw For optimal usage of your frequency spectrum a good celldesign is essentialw Use larger reuse for BCCH frequenciesw Use spectrum splitting only when necessary
  • Mobile Radio Network Planning 3763FL 11820 ABAA WAZZA ed01Traffic PlanningFrequency PlanningCapacity Enhancement Techniques
  • Mobile Radio Network Planning 377GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Capacity enhancement by planningw Interference reduction of cellss Check of antenna type, direction and down tiltq This is a check of cell size, border and orientations Check of proper cablingq Is TX and RX path on the same sector antenna?s Check of the frequency planq Introduction of a better frequency plan
  • Mobile Radio Network Planning 378GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Capacity enhancement by addingfeaturew Frequency hoppings Base band hoppings Synthesized frequency hoppingw Concentric cellsw Half rate
  • Mobile Radio Network Planning 379GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Capacity enhancement by adding TRXw Adding TRX to existing cellsw Multi band cellsw Concentric cells
  • Mobile Radio Network Planning 380GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Capacity enhancement by adding cellsw Adding of cells at existing site locationsw Adding new cell = adding new BCCHw Dual bands Adding cells using another frequency bandw Cell splittings Reduction of cell sizes Change of one omni cell into several cells/sector cells
  • Mobile Radio Network Planning 381GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Capacity enhancement by adding sitesw Dual band/multi band networks Adding of new sites in new frequency bandw Multi layer networks Adding of new sites in another layerq E.g. adding micro cells for outdoor coveragew Indoor coverages Adding micro cells indoor coverages Adding macro cells indoor coverage
  • Mobile Radio Network Planning 3823FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsRadio Interface
  • Mobile Radio Network Planning 383GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw GSM Air Interfacew Channel Codingw Performance Figures
  • Mobile Radio Network Planning 3843FL 11820 ABAA WAZZA ed01Quality of ServiceGSM Air Interface
  • Mobile Radio Network Planning 385GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radio ResourcesRadio Spectrum AllocationFrequency(FDMA)Time(TDMA)Timeslot0<TN<7TDMA Frames0<FN<FN_MAXCarrier Frequencies (ARFCN)CellAllocation(CA)Mobile Allocation(MA)FDMA Frequency division multiple accessTDMA Time division multiple accessARFCN Absolute radio frequency channel numberTN Timeslot numberFN Frame number
  • Mobile Radio Network Planning 386GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w FDMA and TDMA with 8 time slots per carrierw RF frequency bands (E)GSM: (880) 890 ... 915 MHz Uplink (MS →BS)(925) 935 ... 960 MHz Downlink (BS → MS)s GSM1800: 1710 ... 1785 MHz Uplink1805 ... 1880 MHz Downlinkw 200 kHz bandwidthw Number of carriers: 124 (GSM); 374 (DCS); 49 (E-GSM)GSM Transmission Principles (1)GSM: Flower (n) = 890 + 0.2 · n MHz with 1 ≤ n ≤ 124E-GSM: Flower (n) = 890 + 0.2 · n MHz with 0 ≤ n ≤ 124Flower (n) = 890 + 0.2 · (n -1024) MHz with 975 ≤ n ≤ 1023DCS : Flower (n) = 1710.2 + 0.2 · (n - 512) MHz with 512 ≤ n≤ 885(E)GSM: Fupper (n) = Flower (n) + 45 MHzDCS: Fupper (n) = Flower (n) + 95 MHz
  • Mobile Radio Network Planning 387GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Transmission Principles (2)w Channel typess Traffic Channels (TCH)q Full rateq Half rates Control Channels (CCH)q Broadcast Control Channel (BCCH)q Common Control Channel (CCCH)q Dedicated Control Channel (DCCH)w TDMA frame cycless 26 cycle for traffic channelss 51 cycle for control channels
  • Mobile Radio Network Planning 388GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Advantages of Signal ProcessingSpectrum limitationsBad propagationconditionsPtGood spectrum efficiency Good transmission qualityOperator
  • Mobile Radio Network Planning 389GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Signal Processing Chainstealing bit and FACCHspeechcodingerrorprotectioninterleaving encryption modulationradiochannelstealing bit and FACCHspeechinputspeechdecodingerrorcorrectionde-interleaving decryption demodulationspeechoutputLossNoiseInterferenceFading
  • Mobile Radio Network Planning 390GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Speech Coding260 bits speech block182 class 1 bits20 ms of coded speech78 class 2 bitssensitive to bit errorsmust be protectedrobust to bit errorswCoding algorithm: RPE-LTPs Pre-computations RPE = Regular Pulse Excitationq Model of human voice generations LTP = Long Term Predictionq Reduction of bit rate²Bit rate: 13 kBit/swCoding at fixed network: PCM A-law²Bit rate: 64 kBit/s
  • Mobile Radio Network Planning 391GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Error ProtectionMessages (signallingdata)Fire Code184bits184404ConvolutionalCoder = 1/2, K = 5456 = 24 x19456 bits in 20 ms = 22.8kbit/sConvolutionalCoder = 1/2, K = 5TailbitsParitycheckCycliccodeSpeech (full rate)TailbitsClass 1a50 bitsClass 1b132 bitsClass 278 bits= 456= 8 x 5737878503 1324260 bits
  • Mobile Radio Network Planning 392GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interleaving and TDMA Frame Mapping1 2 3 4 5 6 70 1 2 3 4 5 6 70Mappingontobursts..........Additionof stealingflags.....Interleaving...............2 x 57bitsBlock n-1 (456bits)57 bits Block n (456bits)Block n+1 (456bits)1 2 3 4 5 6 701 timeslot114bits114bits114bits114bits114bits114bits114bits114bits116bits116bits116bits116bits116bits116bits116bits116bitsburst n-3 burst n-2 burst n-1 burst n burstn+1burstn+2burstn+3burstn+4
  • Mobile Radio Network Planning 393GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EncryptionAlgorithmA3RandomnumbergeneratorAlgorithmA8IMSIKiKi RAND (128 bit)+Authenticationyes/noAlgorithmA3AlgorithmA8RANDSRES (32 bit)SIMCardKiAlgorithmA5AlgorithmA5+Kc (64 bit)+RANDKcoriginaldataoriginaldataencrypteddataencrypteddataNetwork Mobile stationAuC
  • Mobile Radio Network Planning 394GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Burst Structure0 1 2 3 4 5 6 7TDMA frame = 4.615 msDataTrainingSequenceData57 bits3 26 bits1 31 57 bitstail bits tail bitsstealing flags156.25 bit periods = 0.577 msGP GPw A burst contains one data"portion" of one timeslotw TDMA frame: timebetween two bursts withsame timeslot numberw The burst also consists of:s Guard period (GP): allows fortransition and settling timess Tail bits: allow for smallshifts in time delay(synchronisation)s Stealing flags: to indicateFACCH (control channel)datas Training sequence: forequalization purposesNormal Burst0
  • Mobile Radio Network Planning 395GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Synchronisationreceived at MS(downlink)transmitted from MS(uplink)transmitted from BTS(downlink)received at BTS(uplink)w Transmitted bursts need a travelling time (TT) to the receiverw For network access, the MS sends a (non-synchronized) shortened RACH burstw The BSS measures the TT and generates a timing advance value TA which istransmitted to the MS0 1 2 31 20 1 21 2TT TTnon-synchronized3 TSdelay0 1 2 3 4 5 6 7 0 10 1 2 3 4 5 6 7 0 10 1 2 3 4 5 6 7 0 10 1 2 3 4 5 6 7 0 1TTTTsynchronizedRACHMS delay line setting1423
  • Mobile Radio Network Planning 396GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Modulationw Gaussian minimum shift keyings Based on phase shift keyings Reduction of required bandwidthq Maximum phase change during one bit durationq Baseband filtering to achieve continuous phase changes∫cossin+xx≈90°to RF modulatorDataϕ
  • Mobile Radio Network Planning 397GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Propagation Environmentw Radio propagation is characterised by dispersive multi-path caused by reflection and scatteringw Moving MS causes Doppler spectrum→Definition of propagation models in the timedomain to allow channel simulationss TUxx (Typical Urban)s RAxx (Rural Area)s HTxx (Hilly Terrain)s xx = speed in km/hsee also GSM 05.05, 11.20,11.21
  • Mobile Radio Network Planning 398GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Equalizingw Purpose: equalizedistortions in transmissionspectrum² Adaptive filtering requireds Filter parametersdetermined out of thetraining sequences Filter parameters changefrom burst to burstw Equalizer takes advantagefrom multipathpropagation (pathdiversity)0.0010.010.10 1 2 3 4 5 6 7 8Delay of second path [chips]BERnoneAlcatelMLSEEqualizer
  • Mobile Radio Network Planning 399GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of Bit Error Ratesw FER = Frame Erasure Rates Ratio of corrupted frames, indicated by a wrong CRC(cyclic redundancy checksum) and BFI (bad frameindicator)w RBER = Residual Bit Error Rates considering corrupted frames not recognized as badframesw BER = total bit error ratew Consideration of class 1 or 2 bits →e.g. RBER1b, RBER2see also GSM 05.05, 11.20,11.21
  • Mobile Radio Network Planning 400GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01BER Quality>0.01 no communication<0.005 “bad”<0.0025 “marginal”<0.0003 “good”<0.0001 “excellent”Thresholds:C/I: 9 dBEc/No: 8 dBBTS (GSM900): -104 dBmHH (GSM900): -102 dBmBTS (GSM1800): -104 dBmHH (GSM1800): -100 dBmSpeech Quality
  • Mobile Radio Network Planning 401GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Dependence of BER on Noise and Interference (1)w Variation of BER1 over C/Iw Parameter: Ec/N0w How to find a quality figure?s BER1 for marginal speechquality: 0.25%² required C/I ≈ 9 dB for TU50environments but: signal must not beclose to noise floor!C/I [dB] →TU50BER1→
  • Mobile Radio Network Planning 402GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Frequency Hopping (1)-70-60-50-40-30-20-1000.12.85.48.010.613.215.918.521.123.726.329.031.634.236.839.442.144.747.349.9Distance [m]ReceivedPower[dBm]Lognormal fadingRaleygh fadingw Problem: specific fadingpattern for each usedfrequencyw Fast MS cope with thesituation (due to signalprocessing)w Slow MS suffer from fadingholes² Solution: change thefading pattern byfrequency hoppingFading holes
  • Mobile Radio Network Planning 403GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Frequency Hopping (2)w Variation of BER1 over Ec/N0w TU environment, flat fading, v= 0 km/h (worst case)w Parameter: number of hoppingfrequencies² Compensation with 4 hoppingfrequencies possibleEc/N0 [dB] →BER→
  • Mobile Radio Network Planning 4043FL 11820 ABAA WAZZA ed01Quality of ServiceChannel Coding0 0 0 01 1 112 2 223 3 334 4 445 556 6 67 7 7... ...
  • Mobile Radio Network Planning 405GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01The OSI Reference Modelw Definition in GSM recommendations: layers 1 to 3² Notion of "Physical" channels and "Logical" channels7654321Application layerPresentation layerSession layerTransport layerNetwork layerData link layerPhysical layerEnd system End systemTransportation system04.0408.5404.05/0608.5604.07/0808.58/4.08
  • Mobile Radio Network Planning 406GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Burst Types (1)w Normal Bursts For regular transmissionw Frequency Correction Bursts Contains 142 zeros (0) →pure sine wave² Allows synchronisation of the mobiles local oscillatorw Synchronisation Bursts Consists of an enlarged unique training sequence code (TSC)s Contains the actual FN →time synchronisationw Access Bursts Shortened burst (unique TSC and enlarged guard period)² Timeslot overlapping avoided at BTS when MS accesses networkw Dummy Bursts "Filler" for unused BCCH timeslots →BCCH permanently on airs Similar to normal burst (defined mixed bits for data, no stealingflag)
  • Mobile Radio Network Planning 407GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Burst Types (2)TB357 data bits 126 bit trainingsequence1 57 data bitsTB3Normal burstGP8.25TB3142 fixed bits (pure sine wave)TB3Frequency correction burstGP8.25TB339 data bits64 bit trainingsequence39 data bitsTB3Synchronisation burstGP8.25TB836 data bits41 bit synchronisationsequenceAccess burstenlarged GP68.25 bitTB3
  • Mobile Radio Network Planning 408GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Logical ChannelsTrafficchannelControlchannelSpeech DataTCH/FSTCH/HSTCH/F9.6TCH/F4.8TCH/F2.4TCH/H4.8TCH/H2.4CCCHBroadcastchannelAssociatedchannelDedicatedchannelFCCHSCHBCCHRACHPCHAGCHFACCHSACCHSDCCHCBCH
  • Mobile Radio Network Planning 409GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Possible Channel Combinations1234567TCH/F+FACCH/F+SACCH/TFTCH/H(0.1)+FACCH/H(0.1)+SACCH/TH(0.1)TCH/H(0.0)+FACCH/H(0.1)+SACCH/TH(0.1)+TCH/H(1.1)FCCH+SCH+BCCH+CCCHFCCH+SCH+BCCH+CCCH+SDCCH/4(0..3)+SACCH/C4(0..3)BCCH+CCCHSDCCH/8(0..7)+SACCH/C8(0..7)w CCCH = PCH+RACH+AGCHw Combination 4 and 5 is only possible on TS0 of the first (BCCH) carrierw Combination 6 is possible on TS2, TS4, or TS6 of the BCCH carrier
  • Mobile Radio Network Planning 410GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Channel Mapping (1)time.....................0 0 0 01 1 112 2 223 3 334 4 445 556 6 67 7 7one TDMAframe = 4.616 msw Information packages are always relatedto the same timeslot number!w Bursts are transmitted and receivedevery TDMA frame duration (4.616 ms)Presentation ofconsecutive TDMA frameson the vertical axis
  • Mobile Radio Network Planning 411GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Channel Mapping (2) SCHFCCH RACHSCHFCCHSCHFCCHSCHFCCHSCHFCCHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHSCHFCCHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHRACHBCCHCCCHCCCHCCCHCCCHCCCHCCCHCCCHCCCHCCCHBCCH BCCHCCCHCCCHCCCHCCCHCCCHCCCHSDCCH0SDCCH1SDCCH2SDCCH3SDCCH0SDCCH1SDCCH2SDCCH3SDCCH0SDCCH1SDCCH0SDCCH1SDCCH2SDCCH3SDCCH2SDCCH3SACCH0SACCH1SACCH2SACCH3TCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHSACCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHSACCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHTCHSDCCH0SDCCH1SDCCH2SDCCH3SDCCH4SDCCH5SDCCH6SDCCH7SACCH0SACCH1SACCH2SACCH3SACCH0SACCH1SACCH2SACCH3SDCCH0SDCCH1SDCCH2SDCCH3SDCCH4SDCCH5SDCCH6SDCCH7SACCH4SACCH5SACCH6SACCH7SDCCH0SDCCH1SDCCH2SDCCH3SDCCH4SDCCH5SDCCH6SDCCH7SACCH0SDCCH0SDCCH1SDCCH2SDCCH3SDCCH4SDCCH5SDCCH6SDCCH7SACCH1SACCH2SACCH3SACCH4SACCH5SACCH6SACCH701020304050010203040500122501225not combined BCCHdownlink uplink downlink uplink downlink uplinkcombined BCCH TCH SDCCHup/downlinkw Control channelss Follows a 51-cycles Duration: 235.4 msecs Consists mostly of fourconsecutive blockss Synchronisation withFCCH and SCHw Traffic channelss Follows a 26-cycles Duration: 120 msec
  • Mobile Radio Network Planning 412GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TDMA Frame Structure for TCHsTB357 data bits 126 bit trainingsequence1 57 data bitsTB3GP8.250 1 2 3 4 5 6 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Time slotFrameMultiframeSuperframeHyperframe51 multiframes of 120 ms duration2048 superframes of 6.12 s duration0.577 ms4.615 ms120 ms6.12 s3 h 28 m 53 s
  • Mobile Radio Network Planning 4133FL 11820 ABAA WAZZA ed01Quality of ServicePerformance Figures
  • Mobile Radio Network Planning 414GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Performance Figures (1)w Interference Probability Pints measure for co/adjacent channel interferencew Coverage Probability Pcovs measure for sufficient received powerw Call Success Rate (CSR)s CSR = "Coverage" AND (NOT "Interference“)s CSR = Pcov · (1 - Pint)w Outage Probability Pouts complementary to CSRs Pout = 1 - CSR
  • Mobile Radio Network Planning 4153FL 11820 ABAA WAZZA ed01Abbreviations
  • Mobile Radio Network Planning 416GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMR Advanced Multi Rate (TC)AMSS Aeronautical Mobile Satellite ServicesAN Antenna Network (BTS)ARCS Average Reuse Cluster SizeARFCN Absolute Radio Frequency ChannelAS Access Switch (BSC)AS Alarm Surveillance (O&M)ASMA A-ter Submultiplexer AASMB A-ter Submultiplexer BAuC Authentication CenterBC BroadcastBCU Broadcast UnitBCLA BSC Clock ABCR Broadcast RegisterBCU Broadcast UnitBCCH Broadcast Common Control Channel(GSM TS)BCF Base station Control Function (BTS)BG Border Gate (GPRS)BIE Base Station Interface EquipmentBIEC Base Station Interface Equipment (BSC)BIUA Base Station Interface Unit ABPA Back Panel AssemblyBSC Base Station ControllerBSIC Base Transceiver Station Identity CodeBSS Base Station (sub)SystemBSSGP Base Station System GPRS Protocol(GPRS)BTS Base Transceiver StationCAE Customer Application EngineeringCAL Current Alarm List (O&M)CBC Cell Broadcast CenterCBCH Cell Broadcast Channel (GSM TS)CBE Cell Broadcast EntityCCCH Common Control Channel (GSM TS)CCU Channel Coding Unit
  • Mobile Radio Network Planning 417GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MA Code Division Multiple AccessControl Element (BSC)K Control Element KernelCarrier to Interferer ratioK ClockSI Custom Large Scale Integrated circuitMA Configuration Management Application (O&M)MDA Common Memory Disk AMFA Common Memory Flash AR Common Processor (Type: CPRA, CPRC)C Cyclic Redundancy CheckCircuit Switching (Telecom)Coding Scheme (GPRS):CS-1, CS-2, CS-3, CS-4Carrier Unit (BTS)E Data Circuit Terminating EquipmentN Data Communication NetworkDownLinkDLS Data Load SegmentDMA Direct Memory AccessDRFU Dual Rate Frame UnitDRX Discontinuous Reception (GSM TS)DSE Digital Switching ElementDSN Digital Switching NetworkDTX Discontinuous Transmission (GSM TS)DTC Digital Trunk Controller(Type: DTCA, DTCC)DTE Data Terminal EquipmentEDGE Enhanced Data rates for GSM EvolutionEI Extension interfaceEML Element Management LevelEPROM Erasable Programmable Read OnlyMemoryETSI European Telecom Standard InstituteFPE Functional and Protective EarthFR Full Rate (GSM TS)
  • Mobile Radio Network Planning 418GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01R Frame Relay (Telecom)RDN Frame Relay Data Network (Telecom)U Frame Unit (BTS)W FirmwareGCR Group Call RegisterGGSN Gateway GPRS Support Node (GPRS)GMLC Gateway Mobile Location CenterGMM GPRS Mobility Management (GPRS)GMSC Gateway Mobile Switching CenterGPRS General Packet Radio ServiceGPU GPRS Packet UnitGS-1 Group Switch of stage 1 (BSC)GS-2 Group Switch of stage 2 (BSC)GSL GPRS Signalling LinkGSM Global System for Mobile CommunicationsGSM TS GSM Technical SpecificationHAL Historical Alarm List (O&M)HDSL High rate Digital Subscriber LineHDLC High Level Datalink ControlHLR Home Location RegisterHMI Human Machine InterfaceHO HandOverHR Half RateHW HardwareIDR Internal Directed RetryILCS ISDN Link ControllerIMT Installation and Maintenance Terminal(MFS)IND Indoor (BTS)IP Internet ProtocolISDN Integrated Services Data NetworkIT Intelligent TerminalLA Location Area (GSM TS)LAC Location Area Code (GSM TS)LAN Local Area NetworkLED Light Emitting DiodeLEO Low Earth Orbit (Satellite)LCS Location Services
  • Mobile Radio Network Planning 419GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01LLC Logical Link Control (GPRS)LMU Location measurement unitMA Mobile Allocation (GSM TS)MAC Medium Access Control (GPRS)MAN Metropolitan Area NetworkMAN MicroBTS Antenna Network (BTS)MCB Multiplex Channel BlockMFS Multi-BSS Fast Packet Server (GPRS)MLU Massive Logical UpdateMMI Man Machine InterfaceMO Managed Object (O&M)MRP Multiple Reuse PatternMS Mobile StationMSC Mobile Switching CenterMSUM MicroBTS Station Unit Module (BTS)NMI Non Maskable InterruptNPA Network Performance AnalyserNSS Network SubSystemNTL Network Termination LineNW NetworkOBC On Board ControllerOBCI On Board Controller InterfaceOC Originating CallODMC On Demand Measurement Campaign(O&M)O&M Operation and MaintenanceOMC Operation and Maintenance CenterOMC-R Operation and Maintenance Center -RadioOML Operation and Maintenance LinkOMU Operation and Maintenance Unit (BTS)OS Operating SystemOUT Outdoor (BTS)PBA Printed Board AssemblyPBCCH Packet Broadcast Common ControlCHannel (GPRS)PC Personal ComputerPCCCH Packet Common Control Channel(GPRS)
  • Mobile Radio Network Planning 420GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01PCH Paging CHannel (GSM TS)PCM Pulse Coded ModulationPCU Packet Control Unit (GPRS)PDCH Packet Data CHannelPDN Packet Data Network (Telecom)PDU Protocol Data Unit (generic terminology)PLL Phase Locked LoopPLMN Public Land Mobile NetworkPMA Prompt Maintenance Alarm (O&M)PMC Permanent Measurement Campaign(O&M)PPCH Packet Paging CHannel (GPRS)PRACH Packet Random Access CHannel (GPRS)Prec Received PowerPRC Provisioning Radio Configuration (O&M)PSDN Packet Switching Data Network(Telecom)PSTN Public Switching Telephone Network(Telecom)PTP-CNLS Point To Point CoNnectionLeSs datatransfer (GPRS)QoS Quality of ServiceRA Radio AccessRACH Random Access CHannel (GSM TS)RAM Random Access MemoryRCP Radio Control PointRLC Radio Link Control (GPRS)RLP Radio Link Protocol (GSM TS)RML Radio Management LevelRNO Radio Network OptimisationRNP Radio Network PlanningRSL Radio Signalling Link
  • Mobile Radio Network Planning 421GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RTS Radio Time SlotRxLev Received LevelRxQual Received QualitySACCH Slow Associated Control Channel(GSM TS)SAU Subrack assembly unit (BSC)SC Supervised Configuration (O&M)SCC Serial Communication ControllerSCP Service Control PointSCCP Signalling Connection Control PartSCSI Small Computer Systems InterfaceSDCCH Standalone Dedicated Control Channel(GSM TS)SDU Service Data Unit (generic terminology)SGSN Serving GPRS Support Node (GPRS)SIEA SCSI Interface Extension ASM SubmultiplexerSMLC Serving Mobile Location CenterSMP Service Management PointSMS Short Message ServiceSMS-CB Short Message Service - Cell BroadcastSM-GMSC Short Message Gateway Mobile SwitchingCenterSRAM Static RAMSRS SubRate SwitchSS7 Signalling System ITU-T N°7 (ex CCITT)SSD Solid State DiskSSP Service Switching PointSW SoftwareSWEL Switch ElementTBF Temporary Block Flow (GPRS)TAF Terminal Adaptor Function
  • Mobile Radio Network Planning 422GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TC TranscoderTC Terminating CallTCC Trunk Controller ChipTCH Traffic CHannel (GSM TS)TCIL TransCoder Internal LinkTCSM TransCoder / SubMultiplexer equipmentTCU TRX Control Unit (Type: TCUA, TCUC)TDMA Time Division Multiple AccessTFO Tandem Free Operation (TC)TFTS Terrestrial Flight Telecom SystemsTLD Top Level DesignTMN Telecommunication ManagementNetworkTRAC Trunk Access CircuitTRAU Transcoder and Rate Adapter UnitTRCU Transcoder UnitTRE Transceiver EquipmentTRS Technical Requirement SpecificationTRU Top Rack UnitTRX TransceiverTS Time SlotTS Technical Specification (GSM TS)TSS Time Space SwitchTSCA Transmission Sub-System Controller A(BSC)TSU Terminal Sub Unit (BSC)TU Terminal Unit (BSC)UL UpLinkUMTS Universal Mobile Transmission SystemUSSD Unstructured Supplementary Services DataVBS Voice Broadcast ServiceVGCS Voice Group Code ServiceVLR Visitor Location RegisterVPLMN Visited PLMNVSWR Voltage Standing Wave Ratio (BTS)WAN Wide Area NetworkWAP Wireless Application ProtocolWBC Wide Band Combiner