Mobile Radio Network Planning 13FL 11820 ABAA WAZZA ed01GSM Radio Network EngineeringFundamentalsPrerequisite: Introductio...
Mobile Radio Network Planning 2GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw RNP Process Overvieww ...
Mobile Radio Network Planning 33FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsIntroduction
Mobile Radio Network Planning 4GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Standardizationw Documentationw Radi...
Mobile Radio Network Planning 53FL 11820 ABAA WAZZA ed01IntroductionStandardizationDocumentation
Mobile Radio Network Planning 6GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01www.3GPP.org organizational partnersw Project ...
Mobile Radio Network Planning 7GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Specification Group TSG
Mobile Radio Network Planning 8GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications and Releasesw GSM/Edge Releases...
Mobile Radio Network Planning 9GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications out of Release 1999s TR 01.04 A...
Mobile Radio Network Planning 103FL 11820 ABAA WAZZA ed01IntroductionRadio Network ArchitectureMobile Phone Systems
Mobile Radio Network Planning 11GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network ArchitectureHLR GCRAuCEB CDFGHIAb...
Mobile Radio Network Planning 12GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Gc GGSN-HLR IP/SS7LAPDm(GSM specific)GsGbUm (...
Mobile Radio Network Planning 13GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01OMC-RBSSBTSBTSAlcatel9135MFSSSP+ RCPBSCSGSNOM...
Mobile Radio Network Planning 14GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network Elementsw Base Station System BSS...
Mobile Radio Network Planning 15GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RF SpectrumSystem TotalBandwidthUplinkfrequen...
Mobile Radio Network Planning 16GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Access Methodsw FDMA (Frequency Division Mult...
Mobile Radio Network Planning 17GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01FDMAw Used for standard analog cellular mobil...
Mobile Radio Network Planning 18GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TDMAw Multiple users share RF carrier on a ti...
Mobile Radio Network Planning 19GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA (Code Division Multiple Access)w Multipl...
Mobile Radio Network Planning 20GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Analogue Cellular Mobile Systemsw Analogue tr...
Mobile Radio Network Planning 21GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS (Advanced Mobile Phone System)w Analogue...
Mobile Radio Network Planning 22GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS - Technical objectivesTechnology FDMARF ...
Mobile Radio Network Planning 23GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS Advanced Mobile PhoneSystem991 10231 666...
Mobile Radio Network Planning 24GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS Total Access CommunicationsSystemw Analo...
Mobile Radio Network Planning 25GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS - TechnicalobjectivesTechnology FDMARF f...
Mobile Radio Network Planning 26GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Different TACS-Systemsw ETACS - Extended TACS...
Mobile Radio Network Planning 27GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS (Total Access CommunicationsSystem)1329 ...
Mobile Radio Network Planning 28GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why digital mobile communication ?w Easy adap...
Mobile Radio Network Planning 29GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM - Technical objectivesTechnology TDMA/FDM...
Mobile Radio Network Planning 30GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT (Digital European CordlessTelephone)w Eu...
Mobile Radio Network Planning 31GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT - Technical objectivesTechnology TDMA/FD...
Mobile Radio Network Planning 32GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Technical objectivesw Spread spectrum ...
Mobile Radio Network Planning 33GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Special Featuresw Vocoder allows varia...
Mobile Radio Network Planning 34GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - TechnicalobjectivesTechnology CDMARF f...
Mobile Radio Network Planning 35GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Featuresw Standard for a frequency ef...
Mobile Radio Network Planning 36GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Typical Usersw Public safetys Police ...
Mobile Radio Network Planning 37GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Technical objectivesTechnology TDMA/F...
Mobile Radio Network Planning 38GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UMTS(Universal Mobile TelecommunicationSystem...
Mobile Radio Network Planning 393FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsRNP Process Overview
Mobile Radio Network Planning 40GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of RN Requirementsw The Request fo...
Mobile Radio Network Planning 41GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Preliminary Network Designw The preliminary d...
Mobile Radio Network Planning 42GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Project Setup and Managementw This phase incl...
Mobile Radio Network Planning 43GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Initial Radio Network Designw Area surveyss A...
Mobile Radio Network Planning 44GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Acquisition Procedurew Delivery of site ...
Mobile Radio Network Planning 45GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Site Surveyw Agree on an equipment ...
Mobile Radio Network Planning 46GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Parameter Definitionw After installatio...
Mobile Radio Network Planning 47GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Design CAE Data Exchange overCOFA9156 RN...
Mobile Radio Network Planning 48GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Turn On Cyclew The network is launched step b...
Mobile Radio Network Planning 49GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Verification and Drive Testw RNE perform...
Mobile Radio Network Planning 50GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01HW / SW Problem Detectionw Problems can be de...
Mobile Radio Network Planning 51GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Network Optimizationw Network wide driv...
Mobile Radio Network Planning 52GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Acceptancew Acceptance drive testw Ca...
Mobile Radio Network Planning 53GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Further Optimizationw Network is in commercia...
Mobile Radio Network Planning 543FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsCoverage Planning
Mobile Radio Network Planning 55GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw Geo databasesw Antenn...
Mobile Radio Network Planning 563FL 11820 ABAA WAZZA ed01Coverage PlanningGeo Databases
Mobile Radio Network Planning 57GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why are geographical data neededfor Radio Net...
Mobile Radio Network Planning 58GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Map Projections Different Map Proje...
Mobile Radio Network Planning 593FL 11820 ABAA WAZZA ed01Geo DatabasesMap Projection
Mobile Radio Network Planning 60GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maps are flatLongitudeLatitudex,yProblem: Ear...
Mobile Radio Network Planning 61GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mapping the earthw The Earth is a very comple...
Mobile Radio Network Planning 62GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map ProjectionGeodetic Datume.g. WGS84, ED50E...
Mobile Radio Network Planning 63GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic EllipsoidDefinition:A mathematical s...
Mobile Radio Network Planning 64GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Global & Regional Ellipsoidsw Global ellipsoi...
Mobile Radio Network Planning 65GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic Datumw A Geodetic Datum is a Referen...
Mobile Radio Network Planning 66GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map Projectionw Cylindricals e.g. UTM,Gauss-K...
Mobile Radio Network Planning 67GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geo-Coordinate Systemw To simplify the use of...
Mobile Radio Network Planning 68GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01WGS 84 (World Geodetic System1984)w Most need...
Mobile Radio Network Planning 69GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projectionw Projection cy...
Mobile Radio Network Planning 70GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projection (e.g.UTM )Midd...
Mobile Radio Network Planning 71GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System(UUniversal TTransverse MMercator S...
Mobile Radio Network Planning 72GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM - DefinitionsFalse Easting: 500 000 m(Mid...
Mobile Radio Network Planning 73GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM Zones (e.g. Europe)UTM-Zones9° 15° 21° 27...
Mobile Radio Network Planning 74GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System (2)w False origin on the centralme...
Mobile Radio Network Planning 75GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01
Mobile Radio Network Planning 76GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-Zone: 32Middle meridian: 9o(9o= 500 000 m...
Mobile Radio Network Planning 77GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lambert Conformal Conic Projectionw Maps an e...
Mobile Radio Network Planning 783FL 11820 ABAA WAZZA ed01Geo DatabasesTypes of Geospatial Data
Mobile Radio Network Planning 79GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geospatial data for Network Planningw DEM (Di...
Mobile Radio Network Planning 80GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Creation of geospatial databasesSatelliteimag...
Mobile Radio Network Planning 81GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parameters of a Mapw Coordinate systemw Map P...
Mobile Radio Network Planning 82GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Raster datas DEM /Topographys Morphostructu...
Mobile Radio Network Planning 83GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Rasterdata / Grid dataw Pixel-oriented dataw ...
Mobile Radio Network Planning 84GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Vectordataw Vector mainly used are: airport, ...
Mobile Radio Network Planning 85GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Digital Elevation Model (DEM)w Raster dataset...
Mobile Radio Network Planning 86GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure / Land usage / Clutter (1)w L...
Mobile Radio Network Planning 87GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure (2)w Besides the topo databas...
Mobile Radio Network Planning 88GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morpho-structure0 not class...
Mobile Radio Network Planning 89GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morphostructur7 forest
Mobile Radio Network Planning 90GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Background data (streets, borders etc.)w All ...
Mobile Radio Network Planning 91GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Orthophotow Georeferenced Satellite Imagew Re...
Mobile Radio Network Planning 92GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Scanned Mapsw Mainly used asbackground dataw ...
Mobile Radio Network Planning 93GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildingsw Vectordatas Outlines ofq single bu...
Mobile Radio Network Planning 94GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildings (2)w Microcell radio network planni...
Mobile Radio Network Planning 95GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Traffic densityw Advantageous in theinterfere...
Mobile Radio Network Planning 963FL 11820 ABAA WAZZA ed01Geo DatabasesGeocoordinate transformation
Mobile Radio Network Planning 97GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1a)Example “Stut...
Mobile Radio Network Planning 98GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1b)GEOTRANS(Geog...
Mobile Radio Network Planning 99GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2a)Input:Longitu...
Mobile Radio Network Planning 100GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2b)Example “Stu...
Mobile Radio Network Planning 101GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3a)Example “Stu...
Mobile Radio Network Planning 102GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3b)Example “Stu...
Mobile Radio Network Planning 103GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3c)w Example “S...
Mobile Radio Network Planning 104GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Provider for Geospatial dataGeodatasupplier ...
Mobile Radio Network Planning 105GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Links for more detailed infosw Maps Projecti...
Mobile Radio Network Planning 1063FL 11820 ABAA WAZZA ed01Coverage PlanningAntennas and Cables
Mobile Radio Network Planning 107GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Systemsw Antennasw Power dividerw Ca...
Mobile Radio Network Planning 108GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Theoryw 50Ω is the impedance of the ...
Mobile Radio Network Planning 109GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Dataw Polarizations Specification du...
Mobile Radio Network Planning 110GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Pattern and HPBW0 dB-3 dB-10 dB0 dB-...
Mobile Radio Network Planning 111GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EIRPPt = 45 dBmGain =11dBiIsotropic radiated...
Mobile Radio Network Planning 112GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Linear Antennas: Monopole and Dipolew For th...
Mobile Radio Network Planning 113GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Monopole Antenna Patternw Influence of anten...
Mobile Radio Network Planning 114GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Antenna with Dipole Arrayw Many dipole...
Mobile Radio Network Planning 115GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Dipole ArrangementwDipolearrangementTypical ...
Mobile Radio Network Planning 116GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennaw Antenna with vertical HPBW for...
Mobile Radio Network Planning 117GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 2.5mw Rural road coverage wi...
Mobile Radio Network Planning 118GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 1.9mw Dense urban areaw Ante...
Mobile Radio Network Planning 119GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 90° T2 900MHz 2.5mw Rural area with mechan...
Mobile Radio Network Planning 120GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T0 900MHz 2.0mw Highwayw Antennas RFS ...
Mobile Radio Network Planning 121GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T0 900MHz 2.0mw Rural Areaw Antennas R...
Mobile Radio Network Planning 122GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 1800MHz 1.3mw Dense urban areaw Ant...
Mobile Radio Network Planning 123GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.3mw Dense urban areaw Ant...
Mobile Radio Network Planning 124GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.9mw Highwayw Antennas RFS...
Mobile Radio Network Planning 125GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T2 1800MHz 1.3mw Highwayw Antennas RFS...
Mobile Radio Network Planning 126GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T2 1800MHz 1.9mw Highwayw Antennas RFS...
Mobile Radio Network Planning 127GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed017/8" CELLFLEX® Low-Loss CoaxialCablew Feeder...
Mobile Radio Network Planning 128GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-1/4" CELLFLEX® Coaxial Cablew Feeder Cable...
Mobile Radio Network Planning 129GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-5/8" CELLFLEX® Coaxial Cablew Feeder Cable...
Mobile Radio Network Planning 130GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011/2" CELLFLEX® Jumper Cablew CELLFLEX® LCF12...
Mobile Radio Network Planning 1313FL 11820 ABAA WAZZA ed01Coverage PlanningRadio Propagation and Path LossPrediction
Mobile Radio Network Planning 132GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Propagation effectsw Free space lossw Fresne...
Mobile Radio Network Planning 133GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01ϕP0∆ hReflectionw Pr = Rh/v ⋅ P0w Rh/v = f(ϕ...
Mobile Radio Network Planning 134GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Refractionk = 4 / 3k = 1 k = 2 / 3k =t r u e...
Mobile Radio Network Planning 135GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diffractionw Occurs at objects which sizes a...
Mobile Radio Network Planning 136GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fadingw Caused by delay spread of original s...
Mobile Radio Network Planning 137GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fading typesw Mid-term fading, lognormal fad...
Mobile Radio Network Planning 138GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Signal Variation due to Fading-70-60-50-40-3...
Mobile Radio Network Planning 139GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal FadingLognormal fading (typical 20...
Mobile Radio Network Planning 140GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Free Space Lossw The simplest form of wave p...
Mobile Radio Network Planning 141GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoidw The free space loss formu...
Mobile Radio Network Planning 142GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoid2121ddddr+⋅⋅=λw The Fresnel...
Mobile Radio Network Planning 143GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction1st FresnelzonerBTSMSd...
Mobile Radio Network Planning 144GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction FunctionKnife-edge di...
Mobile Radio Network Planning 145GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Computers: the "Final Solution" for WaveProp...
Mobile Radio Network Planning 146GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CCIR Recommendationw The CCIR Recommendation...
Mobile Radio Network Planning 147GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mobile Radio PropagationFree-space propagati...
Mobile Radio Network Planning 148GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Terrain Modelingw Topographys Effective ante...
Mobile Radio Network Planning 149GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Effect of Morphostructure on Propagation Los...
Mobile Radio Network Planning 150GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Path loss (Lu) is calculated (in dB) as fo...
Mobile Radio Network Planning 151GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CORRECTIONS TO THE HATA FORMULAw As describe...
Mobile Radio Network Planning 152GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura for GSM 900w Formula v...
Mobile Radio Network Planning 153GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura GSM 1800w Formula is v...
Mobile Radio Network Planning 154GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Alcatel Propagation Modelw Using of effectiv...
Mobile Radio Network Planning 155GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Exercise ‘Path Loss’w Scenarios Height BTS =...
Mobile Radio Network Planning 1563FL 11820 ABAA WAZZA ed01Coverage PlanningLink Budget CalculationCoverage ProbabilityCell...
Mobile Radio Network Planning 157GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maximum Propagation Loss (Downlink)Feeder Ca...
Mobile Radio Network Planning 158GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Max. allowed uplink propagation loss: Lprop,...
Mobile Radio Network Planning 159GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Link Budget (1)GSM900 MacroEvolium Evolution...
Mobile Radio Network Planning 160GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM1800 Link Budget
Mobile Radio Network Planning 161GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Additional Losses OverviewLoss type Reason V...
Mobile Radio Network Planning 162GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation aspectsw Penetration Loss...
Mobile Radio Network Planning 163GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation: empirical modeldAddition...
Mobile Radio Network Planning 164GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor PenetrationIncident waveIncident wave...
Mobile Radio Network Planning 165GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (1)Measuredattenuationversus time ...
Mobile Radio Network Planning 166GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (2)Head modeled as sphereCalculati...
Mobile Radio Network Planning 167GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (3)Indirect measured fieldstrength...
Mobile Radio Network Planning 168GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Marginw In GSM, the defined min...
Mobile Radio Network Planning 169GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Degradation (no FH)w GSM uses a frame correc...
Mobile Radio Network Planning 170GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diversity Gainw This designates the optional...
Mobile Radio Network Planning 171GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal marginw Lognormal margin is also c...
Mobile Radio Network Planning 172GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (1)100 m1...
Mobile Radio Network Planning 173GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (2)00,050...
Mobile Radio Network Planning 174GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01For what Radius R is the average coverage pr...
Mobile Radio Network Planning 175GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Probability00,50,951Pcov (r)R rPcov...
Mobile Radio Network Planning 176GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Ranges and Hata Correction FactorsA...
Mobile Radio Network Planning 177GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Conventional BTS ConfigurationALCATEL Evoliu...
Mobile Radio Network Planning 178GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Improvement by Antenna DiversityALC...
Mobile Radio Network Planning 179GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation Patterns and Range3 antennas at se...
Mobile Radio Network Planning 180GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna Diversity andSectoriz...
Mobile Radio Network Planning 181GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna PreamplifierTXRXDIVw ...
Mobile Radio Network Planning 1823FL 11820 ABAA WAZZA ed01Coverage PlanningAntenna Engineering
Mobile Radio Network Planning 183GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennasw Applications Large area cover...
Mobile Radio Network Planning 184GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Sector Antennaw Antenna with horizontal HPBW...
Mobile Radio Network Planning 185GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Typical Applicationsw Wide horizontal beam w...
Mobile Radio Network Planning 186GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Tiltw Downtilting of the Antenna mai...
Mobile Radio Network Planning 187GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mechanical Downtiltw Advantagess Later adjus...
Mobile Radio Network Planning 188GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Electrical Downtiltw Advantagess Same tilt f...
Mobile Radio Network Planning 189GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Combined Downtiltw Combination of both mecha...
Mobile Radio Network Planning 190GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Assessment of Required Tiltsw Required tilt ...
Mobile Radio Network Planning 191GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Inter Site Distance in Urban Areaw Using sec...
Mobile Radio Network Planning 192GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban AreaCell range R2Mainbeam0...
Mobile Radio Network Planning 193GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban Areaw The upper limit of t...
Mobile Radio Network Planning 194GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Suburban and Rural Areaw Downtil...
Mobile Radio Network Planning 195GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna configurationsw Application of Duple...
Mobile Radio Network Planning 196GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Antenna Configurations for Omni and Sector...
Mobile Radio Network Planning 197GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Three Sector Antenna Configurationwith AD
Mobile Radio Network Planning 198GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Engineering Rulesw Distortion of ant...
Mobile Radio Network Planning 199GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Distortion of antenna patternw Antenna Near ...
Mobile Radio Network Planning 200GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Tx-Rx Decoupling (1)TXRXfusefintf[MHz]P [dBm...
Mobile Radio Network Planning 201GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (2)w Horizontal separation ...
Mobile Radio Network Planning 202GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (3)w Vertical separation (A...
Mobile Radio Network Planning 203GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Required separation for max. diversity gai...
Mobile Radio Network Planning 204GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Power Dividerw Power dividers connect severa...
Mobile Radio Network Planning 205GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Power dividers Also called "power splitter...
Mobile Radio Network Planning 206GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Example:PowerSplitter
Mobile Radio Network Planning 207GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (1)w Radial Arrangement...
Mobile Radio Network Planning 208GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (2)w Example 2: Quasi O...
Mobile Radio Network Planning 209GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (3)w Example 3: Skrew A...
Mobile Radio Network Planning 210GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feedersw Technical summaryw Inner conductor:...
Mobile Radio Network Planning 211GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder Installation Set and Connectors1Cable...
Mobile Radio Network Planning 212GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Type Minimum bending radius Jacket(outer dia...
Mobile Radio Network Planning 213GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder attenuation (1)w Main contribution is...
Mobile Radio Network Planning 214GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiating Cablesw Provide coverage in Tunnel...
Mobile Radio Network Planning 215GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Components are shown with black linesBTSTx...
Mobile Radio Network Planning 216GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01-40-50-60-70-80-90-100-110[dBm]Cable attenua...
Mobile Radio Network Planning 217GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Example of aradiating cablein a tunnel
Mobile Radio Network Planning 218GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Microwave antennas, feeders andaccessoriesw ...
Mobile Radio Network Planning 219GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parabolic antennaw Parabolic dish, illuminat...
Mobile Radio Network Planning 220GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01High performance antennaw Similar to common ...
Mobile Radio Network Planning 221GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Horn antennaswHorn lens antennas For very hi...
Mobile Radio Network Planning 222GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specific Microwave Antenna Parameters(1)w Cr...
Mobile Radio Network Planning 223GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Radiation pattern envelope (RPE)s Toleranc...
Mobile Radio Network Planning 224GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Data sheet 15 GHzParabolic antenna 15 GHz Hi...
Mobile Radio Network Planning 225GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation pattern envelope
Mobile Radio Network Planning 226GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (1)w Coaxial cables or waveguides (a...
Mobile Radio Network Planning 227GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (2)w Waveguidess Used for frequency ...
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
98780537 gsm-fundamentals
Upcoming SlideShare
Loading in …5
×

98780537 gsm-fundamentals

3,184 views
3,010 views

Published on

Published in: Business, Technology
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,184
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
227
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

98780537 gsm-fundamentals

  1. 1. Mobile Radio Network Planning 13FL 11820 ABAA WAZZA ed01GSM Radio Network EngineeringFundamentalsPrerequisite: Introduction to theAlcatel GSM Network
  2. 2. Mobile Radio Network Planning 2GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw RNP Process Overvieww Coverage Planningw Traffic Planning and FrequencyPlanningw Radio Interface / Quality of Servicew Abbreviationsw P. 3w P. 39w P. 54w P.306w P.382w P.416
  3. 3. Mobile Radio Network Planning 33FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsIntroduction
  4. 4. Mobile Radio Network Planning 4GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Standardizationw Documentationw Radio Network Architecturew Mobile Phone Systems
  5. 5. Mobile Radio Network Planning 53FL 11820 ABAA WAZZA ed01IntroductionStandardizationDocumentation
  6. 6. Mobile Radio Network Planning 6GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01www.3GPP.org organizational partnersw Project supported bys ARIB Association of RadioIndustries and Businesses (Japan)s CWTS China WirelessTelecommunication Standardgroups ETSI EuropeanTelecommunications StandardsInstituts T1 Standards Committee T1Telecommunication (US)s TTA TelecommunicationsTechnology Association (Korea)s TTC TelecommunicationTechnology Committee (Japan)w The Organizational Partners shalldetermine the general policy andstrategy of 3GPP and perform thefollowing tasks:s Approval and maintenance ofthe 3GPP scopes Maintenance the PartnershipProject Descriptions Taking decisions on the creationor cessation of TechnicalSpecification Groups, andapproving their scope and termsof references Approval of OrganizationalPartner funding requirementss Allocation of human andfinancial resources provided bythe Organizational Partners tothe Project Co-ordination Group
  7. 7. Mobile Radio Network Planning 7GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Specification Group TSG
  8. 8. Mobile Radio Network Planning 8GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications and Releasesw GSM/Edge Releases: http://www.3gpp.org/specs/releases.htms TR 41.103 GSM Phase 2+ Release 5q Freeze date: March - June 2002s TR 41.102 GSM Phase 2+ Release 4q Freeze date: March 2001s TR 01.01 Phase 2+ Release 1999q Freeze date: March 2000w For the latest specification status information please go to the 3GPPSpecifications database:http://www.3gpp.org/ftp/Information/Databases/Spec_Status/w The latest versions of specifications can be found onftp://ftp.3gpp.org/specs/latest/
  9. 9. Mobile Radio Network Planning 9GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specifications out of Release 1999s TR 01.04 Abbreviations and acronymss TS 03.22 Functions related to Mobile Station (MS) in idle modeand group receive modes TR 03.30 Radio Network Planning Aspectss TS 04.04 Layer 1 - General Requirementss TS 04.06 Mobile Station - Base Stations System (MS - BSS)Interface Data Link (DL) Layer Specifications TS 04.08 Mobile radio interface layer 3 specifications TS 05.05 Radio Transmission and Receptions TS 05.08 Radio Subsystem Link Controls TS 08.06 Signalling Transport Mechanism Specification for theBase Station System - Mobile Services Switching Centre (BSS-MSC) Interfaces TS 08.08 Mobile-services Switching Centre - Base Station system(MSC-BSS) Interface Layer 3 Specification
  10. 10. Mobile Radio Network Planning 103FL 11820 ABAA WAZZA ed01IntroductionRadio Network ArchitectureMobile Phone Systems
  11. 11. Mobile Radio Network Planning 11GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network ArchitectureHLR GCRAuCEB CDFGHIAbisBCDEFGHIPSTNISDNBTS- BSCMSC-VLR(SM-G)MSC-HLRHLR-VLR(SM-G)MSC-MSC (SS7 basic)+MAPMSC-EIRVLR-VLRHLR-AuCMSC-GCRMSC-PSTN (SS7 basic)+ TUPorISUPMSC-ISDNLapD(ISDN type)GSM Circuit-switching:(BSSAP = BSSMAP +DTAP)A BSC - MSC (SS7 basic)+BSSAPBTSLapDm(GSM specific)Um(Radio)MS- BTSBSCBSCMSCMSCBTSPSTN /ISDNMSVLR VLR EIRAuC
  12. 12. Mobile Radio Network Planning 12GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Gc GGSN-HLR IP/SS7LAPDm(GSM specific)GsGbUm (Radio)Gi GGSN-Data Network IPMSBSS - SGSNGr SS7SGSN-HLRGf SS7SGSN-EIRSGSN-MSC/VLRGnSGSN-GGSN IPIPSGSN-SGSNMS - BTSGsGfGrGnGnGc SS7GSM Packet-switching(GPRS/EDGE):BSSGPBSSwithPCUBSSwithPCUHLR EIRDataNetworkSGSNGGSNSGSNMSC
  13. 13. Mobile Radio Network Planning 13GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01OMC-RBSSBTSBTSAlcatel9135MFSSSP+ RCPBSCSGSNOMC-RMSA bis A terTCGbAGGSNGnOMC-GNSSGPRS CN
  14. 14. Mobile Radio Network Planning 14GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM Network Elementsw Base Station System BSSs Base Transceiver StationBTSs Base Station ControllerBSCw Terminal Equipments Mobile Station MSw Operation and MaintenanceCenter-Radio OMC-Rw Network Subsystem NSSs Mobile Services SwitchingCenter MSCs Visitor Location Register VLRs Home Location Register HLRs Authentication Center AuCs Equipment Identity RegisterEIRw Operation and Maintenance CenterOMCw Multi-BSS Fast Packet Server(GPRS) MFSw Serving GPRS Support Node SGSNw Gateway GPRS Support NodeGGSN
  15. 15. Mobile Radio Network Planning 15GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01RF SpectrumSystem TotalBandwidthUplinkfrequencyband /MHzDownlinkfrequencyband /MHzCarrierSpacingGSM 450 2x7.5MHz 450.4-457.6 460.4-467.6 200 kHzGSM 480 2x7.2MHz 478.8-486 488.8-496 200 kHzGSM 850 2x25MHz 824-849 869-894 200 kHzGSM 900 2x25MHz 890-915 935-960 200 kHzE-GSM 2x35MHz 880-915 925-960 200 kHzDCS 1800(GSM)2x75MHz 1710-1785 1805-1880 200 kHzPCS 1900(GSM)2x60MHz 1850-1910 1930-1990 200 kHz
  16. 16. Mobile Radio Network Planning 16GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Access Methodsw FDMA (Frequency Division Multiple Access)w TDMA (Time Division Multiple Access)w CDMA (Code Division Multiple Access)
  17. 17. Mobile Radio Network Planning 17GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01FDMAw Used for standard analog cellular mobile systems(AMPS, TACS, NMT etc.)w Each user is assigned a discrete slice of the RF spectrumw Permits only one user per channel since it allows the user touse the channel 100% of the time.
  18. 18. Mobile Radio Network Planning 18GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TDMAw Multiple users share RF carrier on a time slot basisw Carriers are sub-divided into timeslotsw Information flow is not continuous for an user, it is sent andreceived in "bursts"
  19. 19. Mobile Radio Network Planning 19GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA (Code Division Multiple Access)w Multiple access spread spectrum techniquew Each user is assigned a sequence code during a callw No time division; all users use the entire carrier
  20. 20. Mobile Radio Network Planning 20GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Analogue Cellular Mobile Systemsw Analogue transmission of speechw One TCH/Channelw Only FDMA (Frequency Division Multiple Access)w Different Systemss AMPS (Countries: USA)s TACS (UK, I, A, E, ...)s NMT (SF, S, DK, N, ...)s ...
  21. 21. Mobile Radio Network Planning 21GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS (Advanced Mobile Phone System)w Analogue cellular mobile telephone systemw Predominant cellular system operating in the USw Original system: 666 channels (624 voice and 42 controlchannels)w EAMPS - Extended AMPSCurrent system: 832 channels (790 voice, 42 control); hasreplaced AMPS as the US standardw NAMPS - Narrowband AMPSNew system that has three times more voice channels thanEAMPS with no loss of signal qualityw Backward compatible: if the infrastructure is designedproperly, older phones work on the newer systems
  22. 22. Mobile Radio Network Planning 22GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS - Technical objectivesTechnology FDMARF frequency band 825 - 890 MHzChannel Spacing 30 kHzCarriers 666 (832)Timeslots 1Mobile Power 0.6 - 4 WTransmission Voice, (data)HO possibleRoaming possible
  23. 23. Mobile Radio Network Planning 23GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01AMPS Advanced Mobile PhoneSystem991 10231 666 667 799ExtendedAMPSAMPSUplinkChannelnumberFrequency ofChannel(MHz)824.040825.030844.980845.010845.010Duplexdistance45 MHzDownlinkChannelnumberFrequency ofChannel(MHz)991 10231 666 667 799Extended AMPSAMPS869.040870.030889.980893.980890.010
  24. 24. Mobile Radio Network Planning 24GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS Total Access CommunicationsSystemw Analogue cellular mobile telephone systemw The UK TACS system was based on the US AMPS systemw TACS - Original UK system that has either 600 or 1000channels (558 or 958 voice channels, 42 control channels)w RF frequency band: 890 - 960Uplink: 890-915 Downlink: 935-960w Channel spacing: 25 KHz
  25. 25. Mobile Radio Network Planning 25GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS - TechnicalobjectivesTechnology FDMARF frequency band 890 - 960 MHzChannel Spacing 25 kHzCarriers 1000Timeslots 1Mobile Power 0.6 - 10 WTransmission Voice , (data)HO possibleRoaming possible
  26. 26. Mobile Radio Network Planning 26GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Different TACS-Systemsw ETACS - Extended TACSs Current UK system that has 1320 channels (1278 voice, 42control)and has replaced TACS as the UK standardw ITACS and IETACS - International (E)TACSs Minor variation of TACS to allow operation outside of the UK byallowing flexibility in assigning the control channelsw JTACS - Japanese TACSs A version of TACS designed for operation in Japanw NTACS - Narrowband TACSs New system that has three times as many voice channels asETACS with no loss of signal quality
  27. 27. Mobile Radio Network Planning 27GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TACS (Total Access CommunicationsSystem)1329 2047 0 23 44 323344600100011890.0125(935.0125)905(950)915(960)1st Assignment in theUK (600 channels)Organisation BOrganisation AOriginal concept (1000channels)890935889.9875(934.9875)889.9625(934.9625)872.0125(917.0125)872917Frequency ofchannel[Mhz]NumberofChannelE-TACS - 1320ChannelsBordersofchannels[Mhz]Mobile StationTX(Base StationTX)
  28. 28. Mobile Radio Network Planning 28GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why digital mobile communication ?w Easy adaptation to digital networksw Digital signaling serves for flexible adaptation to operational needsw Possibility to realize a wide spectrum of non-voice servicesw Digital transmission allows for high cellular implementation flexibilityw Digital signal processing gain results in high interference immunityw Privacy of radio transmission ensured by digital voice coding andencryptionw Cost and performance trends of modern microelectronics arein favour of a digital solution
  29. 29. Mobile Radio Network Planning 29GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM - Technical objectivesTechnology TDMA/FDMARF frequency band 890 - 960 MHzChannel Spacing 200 kHzCarriers 124Timeslots 8Mobile Power (average/max) 2 W/ 8 WBTS Power class 10 ... 40 WMS sensitivity - 102 dBmBTS sensitivity - 104 dBmTransmission Voice, dataHO possibleRoaming possible
  30. 30. Mobile Radio Network Planning 30GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT (Digital European CordlessTelephone)w European Standard for Cordless Communicationw Using TDMA-Systemw Traditional Applicationss Domestic use ("Cordless telephone")s Cordless office applicationsw Combination possible withs ISDNs GSMw High flexibility for different applications
  31. 31. Mobile Radio Network Planning 31GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01DECT - Technical objectivesTechnology TDMA/FDMARF frequency band 1880 - 1900 MHzChannel Spacing 1.728 MHzCarriers 10Timeslots 12 (duplex)Mobile Power (average/max) 10 mW/250 mWBTS Power class 250 mWMS sensitivity -83 dBmBTS sensitivity -83 dBmTransmission Voice, dataHO possible
  32. 32. Mobile Radio Network Planning 32GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Technical objectivesw Spread spectrum technology(Code Division Multiple Access)w Several users occupy continuously one CDMA channel(bandwidth: 1.25 MHz)The CDMA channel can be re-used in every cellw Each user is addressed bys A specific code ands Selected by correlation processingw Orthogonal codes provides optimumisolation between users
  33. 33. Mobile Radio Network Planning 33GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - Special Featuresw Vocoder allows variable data ratesw Soft handoverw Open and closed loop power controlw Multiple forms of diversityw Data, fax and short message services possible
  34. 34. Mobile Radio Network Planning 34GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CDMA - TechnicalobjectivesTechnology CDMARF frequency band 869-894 / 824-849or 1900 MHzChannel Spacing 1250 kHzChannels per 1250 kHz 64Mobile Power (average/max) 1-6.3 W / 6.3 WTransmission Voice, dataHO ("Soft handoff") possibleRoaming possible
  35. 35. Mobile Radio Network Planning 35GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Featuresw Standard for a frequency efficient european digital trunked radiocommunication system (defined in 1990)w Possibility of connections with simultaneous transmission of voice anddataw Encryption at two levels:s Basic level which uses the air interface encryptions End-to-end encryption (specifically intended for public safety users)w Open channel operationw "Direct Mode" possibles Communication between two MS without connecting via a BTSw MS can be used as a repeater
  36. 36. Mobile Radio Network Planning 36GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Typical Usersw Public safetys Police (State, Custom, Military, Traffic)s Fire brigadess Ambulance services ...w Railway, transport and distribution companies
  37. 37. Mobile Radio Network Planning 37GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TETRA - Technical objectivesTechnology TDMA/FDMARF frequency band 380 - 400 MHzChannel Spacing 25 or 12.5 KHzCarriers not yet specifiedTimeslots 4Mobile Power (3 Classes) 1, 3, 10 WBTS Power class 0.6 - 25 WMS sensitivity -103 dBmBTS sensitivity -106 dBmTransmission Voice, data, images,short messageHO possibleRoaming possible
  38. 38. Mobile Radio Network Planning 38GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UMTS(Universal Mobile TelecommunicationSystem)w Third generation mobile communication systemw Combining existing mobile services (GSM, CDMA etc.)and fixed telecommunications servicesw More capacity and bandwidthw More services (Speech, Video, Audio, Multimedia etc.)w Worldwide roamingw "High" subscriber capacity
  39. 39. Mobile Radio Network Planning 393FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsRNP Process Overview
  40. 40. Mobile Radio Network Planning 40GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Definition of RN Requirementsw The Request for Quotation (RfQ) from the customer prescribes therequirements mainlyw Coverages Definition of coverage probabilityq Percentage of measurements above level thresholds Definition of covered areaw Traffics Definition of Erlang per square kilometers Definition of number of TRX in a cells Mixture of circuit switched and packed switched trafficw QoSs Call success rates RxQual, voice quality, throughput rates, ping time
  41. 41. Mobile Radio Network Planning 41GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Preliminary Network Designw The preliminary design laysthe foundation to create theBill of Quantity (BoQ)s List of needed networkelementsw Geo data procurements Digital Elevation ModelDEM/Topographic maps Clutter mapw Definition of standardequipment configurationsdependent ons clutter types traffic densityw Coverage Plotss Expected receiving levelw Definition of roll out phasess Areas to be covereds Number of sites to beinstalleds Date, when the roll outtakes place.w Network architecture designs Planning of BSC and MSClocations and their linksw Frequency spectrum fromlicense conditions
  42. 42. Mobile Radio Network Planning 42GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Project Setup and Managementw This phase includes all tasks to be performed before the onsite part of the RNP process takes place.w This ramp up phase includes:s Geo data procurement if requireds Setting up ‘general rules’ of the projects Define and agree on reporting scheme to be usedq Coordination of information exchange between the different teamswhich are involved in the projects Each department/team has to prepare its part of theprojects Definition of required manpower and budgets Selection of project database (MatrixX)
  43. 43. Mobile Radio Network Planning 43GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Initial Radio Network Designw Area surveyss As well check of correctness of geo dataw Frequency spectrum partitioning designw RNP tool calibrations For the different morpho classes:q Performing of drive measurementsq Calibration of correction factor and standard deviation by comparison ofmeasurements to predicted received power values of the toolw Definition of search areas (SAM – Search Area Map)s A team searches for site locations in the defined areass The search team should be able to speak the national languagew Selection of number of sectors/TRX per site together with projectmanagement and customerw Get ‘real’ design acceptance from customer based on coverageprediction and predefined design level thresholds
  44. 44. Mobile Radio Network Planning 44GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Acquisition Procedurew Delivery of site candidatess Several site candidates shall bethe result out of the site locationsearchw Find alternative sitess If no site candidate or nosatisfactory candidate can befound in the search areas Definition of new SAMs Possibly adaptation of radionetwork designw Check and correct SAR (SiteAcquisition Report)s Location informations Land usages Object (roof top, pylon,grassland) informations Site planw Site candidate acceptance andrankings If the reported site isaccepted as candidate, thenit is ranked according to itsquality in terms ofq Radio transmissionHigh visibility on covered areaNo obstacles in the near field ofthe antennasNo interference from othersystems/antennasq Installation costsInstallation possibilitiesPower supplyWind and heatq Maintenance costsAccessibilityRental rates for objectDurability of object
  45. 45. Mobile Radio Network Planning 45GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Technical Site Surveyw Agree on an equipment installationsolution satisfying the needs ofs RNE Radio Network Engineers Transmission planners Site engineers Site ownerw The Technical Site Survey Report(TSSR) definess Antenna type, position,bearing/orientation and tilts Mast/pole or wall mountingposition of antennass EMC rules are taken intoaccountq Radio network engineer andtransmission planner check electromagnetic compatibility (EMC) withother installed devicess BTS/Node B locations Power and feeder cable mounts Transmission equipmentinstallations Final Line Of Site (LOS)confirmation for microwave linkplanningq E.g. red balloon of around half a meterdiameter marks target locationw If the site is not acceptable or theowner disagrees with all suggestedsolutionss The site will be rejecteds Site acquisition team has toorganize a new date with thenext site from the ranking list
  46. 46. Mobile Radio Network Planning 46GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Parameter Definitionw After installation of equipmentthe basic parameter settingsare used fors Commissioningq Functional test of BTS andVSWR checks Call testsw RNEs define cell design dataw Operations field servicegenerates the basic softwareusing the cell design CAE dataw Cell design CAE data to bedefined for all cells are forexample:s CI/LAC/BSICs Frequenciess Neighborhood/cellhandover relationships Transmit powers Cell type (macro, micro,umbrella, …)
  47. 47. Mobile Radio Network Planning 47GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Cell Design CAE Data Exchange overCOFA9156 RNOOMC1COFACIEACIEPOLOBSS Software offline production3rd PartyRNP orDatabaseA955 V5 /A9155 V6RNPA9155PRCGeneratorModuleConversion OMC2ACIE = PRC file
  48. 48. Mobile Radio Network Planning 48GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Turn On Cyclew The network is launched step by step during the TOCw A single step takes typically two or three weekss Not to mix up with rollout phases, which take months oreven yearsw For each step the RNE has to define ‘TOC Parameter’s Cells to go on airs Determination of frequency plans Cell design CAE parameterw Each step is finished with the ‘Turn On Cycle Activation’s Upload PRC/ACIE files into OMC-Rs Unlock sites
  49. 49. Mobile Radio Network Planning 49GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Site Verification and Drive Testw RNE performs drive measurement to compare the realcoverage with the predicted coverage of the cells.w If coverage holes or areas of high interference are detecteds Adjust the antenna tilt and orientationw Verification of cell design CAE dataw To fulfill heavy acceptance test requirements, it isabsolutely essential to perform such a drive measurement.w Basic site and area optimization reduces the probability tohave unforeseen mysterious network behavior afterwards.
  50. 50. Mobile Radio Network Planning 50GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01HW / SW Problem Detectionw Problems can be detected due to drive tests or equipment monitorings Defective equipmentq will trigger replacement by operation field services Software bugss Incorrect parameter settingsq are corrected by using the OMC or in the next TOCs Faulty antenna installationq Wrong coverage footprints of the site will trigger antenna re-alignmentsw If the problem is seriouss Lock BTSs Detailed error detections Get rid of the faults Eventually adjusting antenna tilt and orientation
  51. 51. Mobile Radio Network Planning 51GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Basic Network Optimizationw Network wide drive measurementss It is highly recommended to perform network wide drive testsbefore doing the commercial opening of the networks Key performance indicators (KPI) are determineds The results out of the drive tests are used for basic optimizationof the networkw Basic optimizations All optimization tasks are still site relateds Alignment of antenna systems Adding new sites in case of too large coverage holess Parameter optimizationq No traffic yet -> not all parameters can be optimizedw Basic optimization during commercial services If only a small number of new sites are going on air the basicoptimization will be included in the site verification procedure
  52. 52. Mobile Radio Network Planning 52GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Network Acceptancew Acceptance drive testw Calculation of KPI according to acceptance requirements in contractw Presentation of KPI to the customerw Comparison of key performance indicators with the acceptancetargets in the contractw The customer acceptss the whole networks only parts of it step by stepw Now the network is ready for commercial launch
  53. 53. Mobile Radio Network Planning 53GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Further Optimizationw Network is in commercial operationw Network optimization can be performedw Significant traffic allows to use OMC based statistics byusing A9156 RNO and A9185 NPAw End of optimization depends on contract and mutualagreement between Alcatel and customers Usually, Alcatel is only involved during the firstoptimization activities directly after opening the networkcommercially
  54. 54. Mobile Radio Network Planning 543FL 11820 ABAA WAZZA ed01GSM Radio Network Engineering FundamentalsCoverage Planning
  55. 55. Mobile Radio Network Planning 55GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Introductionw Geo databasesw Antennas and Cablesw Radio Propagationw Path Loss Predictionw Link Budget Calculationw Coverage Probabilityw Cell Range Calculationw Antenna Engineeringw Alcatel BSSw Coverage Improvements Antenna Diversitys Repeater Systemss High Power TRX
  56. 56. Mobile Radio Network Planning 563FL 11820 ABAA WAZZA ed01Coverage PlanningGeo Databases
  57. 57. Mobile Radio Network Planning 57GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Why are geographical data neededfor Radio Network Planning ?w Propagation models dependon geographical dataw Geographical information for site acquisitions Latitude (East/West) / Longitude (North/South)s Rectangular coordinates(e.g. UTM coordinates)
  58. 58. Mobile Radio Network Planning 58GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Contentsw Map Projections Different Map Projections: conical, cylindrical, planar/azimuthals Geodetic Datum: e.g. WGS 84s Transverse Mercator Projection: e.g. UTMw Types of Geospatial Datas Creation of geospatial databasess Raster data: DEM /Topography, Morphostructure/ Clutter,Buildingss Vector data: airport, coastline, border line, buildings, etc.w Geocoordinate Transformations Practical Applicationsq Converting one single pointq Compare to different geodetic datumsq Converting a list of points
  59. 59. Mobile Radio Network Planning 593FL 11820 ABAA WAZZA ed01Geo DatabasesMap Projection
  60. 60. Mobile Radio Network Planning 60GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maps are flatLongitudeLatitudex,yProblem: Earth is 3D, the maps are2D
  61. 61. Mobile Radio Network Planning 61GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mapping the earthw The Earth is a very complex shapew To map the geography of the earth,a reference model (-> Geodetic Datum) is neededw The model needs to be simple so that it is easy to usew It needs to include a Coordinate system which allowsthe positions of objects to be uniquely identifiedw It needs to be readily associated with the physical worldso that its use is intuitive
  62. 62. Mobile Radio Network Planning 62GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map ProjectionGeodetic Datume.g. WGS84, ED50Ellipsoide.g. WGS84,International 1924GeocoordinateSysteme.g. UTMMap Projectione.g. Transverse Mercator (UTM),Lambert Conformal Conic
  63. 63. Mobile Radio Network Planning 63GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic EllipsoidDefinition:A mathematical surface (an ellipserotated around the earths polaraxis) which provides a convenientmodel of the size and shape ofthe earth. The ellipsoid is chosento best meet the needs of aparticular map datum systemdesign.Reference ellipsoids are usuallydefined by semi-major (equatorialradius) and flattening (therelationship between equatorialand polar radii).
  64. 64. Mobile Radio Network Planning 64GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Global & Regional Ellipsoidsw Global ellipsoidse.g. WGS84, GRS80s Center of ellipsoid is“Center of gravity”s Worldwide consistence ofall maps around the worldw Regional ellipsoidse.g. Bessel, Clarke, Hayford, Krassovskys Best fitting ellipsoid for a part of the world(“local optimized”)s Less local deviation
  65. 65. Mobile Radio Network Planning 65GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geodetic Datumw A Geodetic Datum is a ReferenceSystem which includes:s A local or global Ellipsoids One “Fixpoint”Attention: Referencinggeodetic coordinates tothe wrong map datum canresult in positionerrors ofhundreds of metersInfo:In most cases the shift,rotation and scale factor ofa Map Datum is relative tothe “satellite map datum”WGS84.
  66. 66. Mobile Radio Network Planning 66GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Map Projectionw Cylindricals e.g. UTM,Gauss-Kruegerw Conicals e.g.LambertConformal Conicw Planar/AzimuthalInfo: In 90% of thecases we will have acylindrical projection in10% of the cases aconical projection
  67. 67. Mobile Radio Network Planning 67GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geo-Coordinate Systemw To simplify the use of maps aCartesian Coordinates isusedw To avoid negative values as False Easting value andas False Northing valueis addedw Also a scaling factor is usedto minimize the “projectionerror” over the whole areaX = EastingY = Northing
  68. 68. Mobile Radio Network Planning 68GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01WGS 84 (World Geodetic System1984)w Most needed Geodetic Datumin the world today (“Satellite Datum”)w It is the reference frame usedby the U.S. Department of Defenseis defined by the National Imageryand Mapping Agency (NIMA)w The Global Positioning System (GPS)system is based on the World GeodeticSystem 1984 (WGS-84).w Optimal adaption to the surface of the earth
  69. 69. Mobile Radio Network Planning 69GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projectionw Projection cylinder isrotated 90 degreesfrom the polar axis(“transverse”)w Geometric basisfor the UTMand theGauss-KruegerMap Projectionw ConformalMap projection
  70. 70. Mobile Radio Network Planning 70GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Transverse Mercator Projection (e.g.UTM )Middle-Meridian
  71. 71. Mobile Radio Network Planning 71GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System(UUniversal TTransverse MMercator System)w 60 zones, each 6o(60 · 6o= 360o)w ±3oaround each center meridianw Beginning at 180olongitude(measured eastward fromGreenwich)Zone number = (center meridian + 183o) /6o
  72. 72. Mobile Radio Network Planning 72GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM - DefinitionsFalse Easting: 500 000 m(Middle-meridian x = 500 000 m)False Northing:Northern Hemisphere: 0 mSouthern Hemisphere: 10 000 000 mScaling Factor: 0,9996(used to minimize the“projection error” over the whole area)
  73. 73. Mobile Radio Network Planning 73GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM Zones (e.g. Europe)UTM-Zones9° 15° 21° 27° 33° 39°3°-3°-6° Middle-Meridian
  74. 74. Mobile Radio Network Planning 74GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-System (2)w False origin on the centralmeridian of the zone has aneasting of 500,000 meters.w All eastings have a positivevalues for the zonew Eastings range from 100,000 to900,000 metersw The 6 Degree zone ranges from166,667 to 833,333 m, leavingabout a 0.5° overlap at eachend of the zone(valid only at the equator)w This allows for overlaps andmatching between zones
  75. 75. Mobile Radio Network Planning 75GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01
  76. 76. Mobile Radio Network Planning 76GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01UTM-Zone: 32Middle meridian: 9o(9o= 500 000 m“False Easting”)UTM-System: Example "Stuttgart"Transformation: latitude / longitude →UTM systemNorth 48o4513.5East 9o117.5y = 5 400 099 mx = 513 629 m
  77. 77. Mobile Radio Network Planning 77GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lambert Conformal Conic Projectionw Maps an ellipsoid onto a cone whose central axis coincideswith the polar axisCone touches the ellipsoid=> One standard parallel (1SP)(e.g. NTF-System in France)Cutting edges of cone and ellipsoid=> Two standard parallels (2SP)(e.g. Lambert-Projection in Austria)
  78. 78. Mobile Radio Network Planning 783FL 11820 ABAA WAZZA ed01Geo DatabasesTypes of Geospatial Data
  79. 79. Mobile Radio Network Planning 79GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Geospatial data for Network Planningw DEM (Digital Elevation Model)/ Topographyw Morphostructure / Land usage / Clutterw Satellite Photos /Orthoimagesw Scanned Mapsw Background data(streets, borders,coastlines, etc. )w Buildingsw Traffic data
  80. 80. Mobile Radio Network Planning 80GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Creation of geospatial databasesSatelliteimageryDigitizing maps AerialphotographyGeospatialdata
  81. 81. Mobile Radio Network Planning 81GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parameters of a Mapw Coordinate systemw Map Projection(incl. Geodetic Datum)w Location of the map (Area …)w Scale:s macrocell planning1:50000 - 1:100000s microcell planning1:500 -1:5000w Thematicw Sourcew Date of Production
  82. 82. Mobile Radio Network Planning 82GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Raster datas DEM /Topographys Morphostructure /Land usage / Clutters Traffic densityw Vector datas Background data(streets, borders, coastlines, etc. )s BuildingsRaster- and Vectordataxy(x1,y1)(xn,yn)
  83. 83. Mobile Radio Network Planning 83GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Rasterdata / Grid dataw Pixel-oriented dataw Stored as row and columnw Each Pixel stored in one ortwo bytew Each Pixel contentsinformation(e.g. morphoclass,colour of a scanned map,elevation of a DEM)
  84. 84. Mobile Radio Network Planning 84GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Vectordataw Vector mainly used are: airport, coastline,highway, main roads, secondary roads,railway, rivers/lakesw Each vector contentss Info about kind of vector(e.g. street, coastline)s A series of several pointsEach point has a corresponded x / y -value(e.g. in UTM System or as Long/Lat)s Info about Map projection and usedGeodetic Datum(x1,y1)(xn,yn)
  85. 85. Mobile Radio Network Planning 85GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Digital Elevation Model (DEM)w Raster dataset that showsterrain features such as hillsand valleysw Each element (or pixel) inthe DEM image represents theterrain elevation at that locationw Resolution in most cases:20 m for urban areas50-100 m for other areasw DEM are typically generatedfrom topographic maps,stereo satellite images,or stereo aerial photographs
  86. 86. Mobile Radio Network Planning 86GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure / Land usage / Clutter (1)w Land usage classificationaccording to the impact onwave propagationw In most cases:7...14 morpho classesw Resolution in most cases:20 m for cities50…100m other areasfor radio networkplanning
  87. 87. Mobile Radio Network Planning 87GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Morphostructure (2)w Besides the topo database the basic inputfor radio network planningw Each propagation area has differentobstacles like buildings, forest etc.Obstacles which have similar effects onpropagation conditions are classified inmorphoclassesw Each morphoclass has a correspondingvalue for the correction gainw The resolution of the morphodatabases should be adaptedto the propagation modelw Morpho correction factor for predictions:0 dB (”skyscapers") … 30 dB (”water")
  88. 88. Mobile Radio Network Planning 88GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morpho-structure0 not classifi
  89. 89. Mobile Radio Network Planning 89GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01MorphoclassesCode Morphostructur7 forest
  90. 90. Mobile Radio Network Planning 90GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Background data (streets, borders etc.)w All kinds of informationdata like streets,borders, coastlines etc.w Necessary for orientationin plots of calculationresultsw The background data arenot needed for thecalculationof the fieldstrength, poweretc.
  91. 91. Mobile Radio Network Planning 91GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Orthophotow Georeferenced Satellite Imagew Resolution:most 10 or 20 mw Satellite: e.g. SPOT, Landsat
  92. 92. Mobile Radio Network Planning 92GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Scanned Mapsw Mainly used asbackground dataw Not used for calculationbut for localisationw Has to be geocodedto put it into a GIS(Geographic InformationSystem) e.g. a RadioNetwork Planning Tool
  93. 93. Mobile Radio Network Planning 93GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildingsw Vectordatas Outlines ofq single buildingsq building blockss Building heightss Material codeq not: roof shape
  94. 94. Mobile Radio Network Planning 94GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Buildings (2)w Microcell radio network planningis mainly used in urban environmentw The prediction of mircowavepropagation is calculated witha ray-tracing/launching modelw A lot of calculationsteps are needed² Optimum building databaserequired (data reduction) tominimize the pre-calculation time
  95. 95. Mobile Radio Network Planning 95GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Traffic densityw Advantageous in theinterference calculation,thus for frequencyassignment andin the calculationof average figures innetwork analysisw Raster database oftraffic densityvalues (in Erlangs) of thewhole planning areaw Resolution: 20...100 m
  96. 96. Mobile Radio Network Planning 963FL 11820 ABAA WAZZA ed01Geo DatabasesGeocoordinate transformation
  97. 97. Mobile Radio Network Planning 97GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1a)Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”Exercise: Convert following example with the program“Geotrans”:Output:Easting: 513629 mNorthing: 5400099 mDatum “WGE: World Geodetic System 1984”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)Preset of thisvalues necessaryValues, which willcalculated by program
  98. 98. Mobile Radio Network Planning 98GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (1b)GEOTRANS(Geographic Translator)is an application programwhich allows you toconvert geographiccoordinates easily amonga wide variety ofcoordinate systems, mapprojections, and datums.Example “Stuttgart” (Example 1)Long/Lat (WGS84) => UTM (WGS84)Source: http://164.214.2.59/GandG/geotrans/geotrans.html
  99. 99. Mobile Radio Network Planning 99GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2a)Input:Longitude: 9 deg 11 min 7.5 secLatitude: 48 deg 45 min 13.5 secDatum “WGE: World Geodetic System 1984”; Projection: “Geodetic”Exercise: Convert following example with the program“Geotrans”:Output:Easting: 513549 mNorthing: 5403685 mDatum “EUR-A: EUROPEAN 1950, Western Europe”Projection: “Universersal Transverse Mercator (UTM)”Zone: 32 ; Hemisphere: N (North)Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50)(ED50 = EUR-A = European Datum 1950)Preset of thisvalues necessaryValues, which willcalculated by program
  100. 100. Mobile Radio Network Planning 100GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting one single point (2b)Example “Stuttgart” (Example 2)Long/Lat (WGS84) => UTM (ED50)(ED50 = EUR-A = European Datum 1950)Attention:For flat coordinates (e.g. UTM)as well as for geographiccoordinates (Long/Lat) areference called“Geodetic Datum” is necessary.Diff. X (Ex.2 - Ex.1): 69 mDiff. Y (Ex.2 - Ex.1): 200 mDifference because of different GeodeticDatums
  101. 101. Mobile Radio Network Planning 101GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3a)Example “Stuttgart” (Example 3 )Long/Lat (WGS84) => UTM (WGS84)Input:text-file with the values (list) of the longitudeand latitude of different points(How to create the inputfile see on page 3c)Output:Datum: “WGE: World Geodetic System 1984”Projection: “Universal Transverse Mercator (UTM)”Zone: 32Preset of thisvalues necessary
  102. 102. Mobile Radio Network Planning 102GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3b)Example “Stuttgart” (Example 3 )Long/Lat (WGS84)=> UTM (WGS84)
  103. 103. Mobile Radio Network Planning 103GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Converting a list of points (3c)w Example “Stuttgart” (Example 3)Long/Lat (WGS84)=> UTM (WGS84)LatitudeLongitude UTM-ZoneHemisphereEasting (x)Northing (y)Optional: different error-infos,depending on the input-datadefault: “Unk”=“unknown”Geotrans V2.2.3 Geotrans V2.2.3deg min sec deg min sec
  104. 104. Mobile Radio Network Planning 104GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Provider for Geospatial dataGeodatasupplier InternetBKS www.bks.co.ukComputaMaps www.computamaps.comGeoimage www.geoimage.frInfoterra www.infoterra-global.comIstar www.istar.frRMSI www.rmsi.com
  105. 105. Mobile Radio Network Planning 105GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Links for more detailed infosw Maps Projection Overviewhttp://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.htmlhttp://www.ecu.edu/geog/faculty/mulcahy/mp/http://www.wikipedia.org/wiki/Map_projectionw Coordinate Transformation (online)http://jeeep.com/details/coord/http://www.cellspark.com/UTM.htmlw Map Collectionhttp://www.lib.utexas.edu/maps/index.htmlw Finding out Latitude/Longitude of cities etc.http://www.maporama.com
  106. 106. Mobile Radio Network Planning 1063FL 11820 ABAA WAZZA ed01Coverage PlanningAntennas and Cables
  107. 107. Mobile Radio Network Planning 107GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Systemsw Antennasw Power dividerw Cables (jumper)w Feeder cablesw Connectorsw Clampsw Lightning protectionw Wall glandsw PlanningRxdivTxRxFeedercableEarthingkitWallglandJumper cablesFeederinstallationclampsPlugs7/16“Sockets7/16“MountingclampGroundingLightningrod AntennasEarthing kitJumpercable JumpercableMechanicalantennasupportstructure
  108. 108. Mobile Radio Network Planning 108GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Theoryw 50Ω is the impedance of the cablew 377Ω is the impedance of the airw Antennas adapt the different impedancesw They convert guided waves, into free-space waves (Hertzianwaves) and/or vice versaZ =377ΩZ =50Ω
  109. 109. Mobile Radio Network Planning 109GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Dataw Polarizations Specification due to certain wave polarization(linear/elliptic, cross-polarization)w Half power beam width (HPBW)s Related to polarization of electrical fields Vertical and Horizontal HPBWw Antenna patterns Yields the spatial radiation characteristics of theantennaw Front-to-back ratios Important for interference considerations
  110. 110. Mobile Radio Network Planning 110GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Pattern and HPBW0 dB-3 dB-10 dB0 dB-3 dB-10 dBverticalhorizontalsidelobenull directionmain beamHPBW
  111. 111. Mobile Radio Network Planning 111GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01EIRPPt = 45 dBmGain =11dBiIsotropic radiated Power PtEffective isotropicradiated power:EIRP = Pt+Gain= 56 dBmV1V2 = V1radiatedpower
  112. 112. Mobile Radio Network Planning 112GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Linear Antennas: Monopole and Dipolew For the link between base station and mobile station, mostlylinear antennas are used:s Monopole antennasq MS antennas, car roof antennass Dipole antennasq Used for array antennas at base stations for increasing thedirectivity of RX and TX antennas
  113. 113. Mobile Radio Network Planning 113GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Monopole Antenna Patternw Influence of antenna length on the antenna pattern
  114. 114. Mobile Radio Network Planning 114GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Antenna with Dipole Arrayw Many dipoles are arranged in a grid layoutw Nearly arbitrary antenna patterns may be designeds Feeding of the dipoles with weighted and phase-shiftedsignalss Coupling of all dipole elements
  115. 115. Mobile Radio Network Planning 115GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Dipole ArrangementwDipolearrangementTypical flat panelantennaDipoleelementWeightedandphaseshiftedsignals
  116. 116. Mobile Radio Network Planning 116GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennaw Antenna with vertical HPBW for omni sitess Large area coveragew Advantagess Continuous coverage around the sites Simple antenna mountings Ideal for homogeneous terrainw Drawbackss No mechanical tilt possibles Clearance of antenna required
  117. 117. Mobile Radio Network Planning 117GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 2.5mw Rural road coverage with mechanical uptiltw Antennas RFS Panel Dual Polarized Antenna 872-960 MHzs APX906516-T6 Seriesw Electrical specifications Gain in dBi: 17.1s Polarization: +/-45°s HBW: 65°s VBW: 6.5°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 2475 x 306x 120s Weight in kg: 16.6HorizontalPattern
  118. 118. Mobile Radio Network Planning 118GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 900MHz 1.9mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna 872-960 MHzs APX906515-T6 Seriesw Electrical specifications Gain in dBi: 16.5s Polarization: +/-45°s HBW: 65°s VBW: 9°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 1890 x 306x 120s Weight in kg: 16.6Vertical Pattern
  119. 119. Mobile Radio Network Planning 119GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 90° T2 900MHz 2.5mw Rural area with mechanical uptiltw Antennas RFS Panel Dual Polarized Antenna872-960 MHzs APX909014-T6 Seriesw Electrical specifications Gain in dBi: 15.9s Polarization: +/-45°s HPBW: 90°s VBW: 7°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 2475 x306 x 120s Weight in kg: 15.5Vertical Pattern
  120. 120. Mobile Radio Network Planning 120GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T0 900MHz 2.0mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 872-960 MHzs AP906516-T0 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: Verticals HBW: 65°s VBW: 8.5°s Electrical downtilt: 0°w Mechanical specifications Dimensions HxWxD in mm: 1977 x 265x 130s Weight in kg: 10.9Vertical Pattern
  121. 121. Mobile Radio Network Planning 121GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T0 900MHz 2.0mw Rural Areaw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 872-960 MHzs AP909014-T0 Seriesw Electrical specifications Gain in dBi: 16.0s Polarization: Verticals HBW: 65°s VBW: 8.5°s Electrical downtilt: 0°w Mechanical specifications Dimensions HxWxD in mm: 1977 x 265x 130s Weight in kg: 9.5Vertical Pattern
  122. 122. Mobile Radio Network Planning 122GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T6 1800MHz 1.3mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186515-T6 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: +/-45°s HBW: 65°s VBW: 7°s Electrical downtilt: 6°w Mechanical specifications Dimensions HxWxD in mm: 1310 x198 x 50s Weight in kg: 5.6Vertical Pattern
  123. 123. Mobile Radio Network Planning 123GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.3mw Dense urban areaw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186515-T2 Seriesw Electrical specifications Gain in dBi: 17.5s Polarization: +/-45°s HBW: 65°s VBW: 7°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1310 x198 x 50s Weight in kg: 5.6Vertical Pattern
  124. 124. Mobile Radio Network Planning 124GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01X 65° T2 1800MHz 1.9mw Highwayw Antennas RFS Panel Dual Polarized Antenna1710-1880 MHzs APX186516-T2 Seriesw Electrical specifications Gain in dBi: 18.3s Polarization: +/-45°s HBW: 65°s VBW: 4.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1855 x 198x 50s Weight in kg: 8.6Vertical Pattern
  125. 125. Mobile Radio Network Planning 125GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 65° T2 1800MHz 1.3mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 1710-1880 MHzs AP186516-T2 Seriesw Electrical specifications Gain in dBi: 17.0s Polarization: Verticals HBW: 65°s VBW: 7.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1310 x 198x 50s Weight in kg: 4.7HorizontalPattern
  126. 126. Mobile Radio Network Planning 126GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01V 90° T2 1800MHz 1.9mw Highwayw Antennas RFS CELLite® Panel Vertical PolarizedAntenna 1710-1880 MHzs AP189016-T2 Seriesw Electrical specifications Gain in dBi: 17.0s Polarization: Verticals HBW: 90°s VBW: 5.5°s Electrical downtilt: 2°w Mechanical specifications Dimensions HxWxD in mm: 1855 x 198x 50s Weight in kg: 6.0Vertical Pattern
  127. 127. Mobile Radio Network Planning 127GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed017/8" CELLFLEX® Low-Loss CoaxialCablew Feeder Cables 7/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF78-50J Standards LCF78-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 3.87dB/100ms Average power in kW: 2.65w Electrical specification 1800MHzs Attenuation: 5.73dB/100ms Average power in kW: 1.79w Mechanical specifications Cable weight kgm: 0.53s Minimum bending radiusq Single bend in mm: 120q Repeated bends in mm: 250s Bending moment in Nm:13.0s Recommended clampspacing: 0.8m
  128. 128. Mobile Radio Network Planning 128GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-1/4" CELLFLEX® Coaxial Cablew Feeder Cables 1-1/4" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF114-50J Standards LCF114-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 3.06dB/100ms Average power in kW: 3.56w Electrical specification 1800MHzs Attenuation: 4.61dB/100ms Average power in kW: 2.36w Mechanical specifications Cable weight kgm: 0.86s Minimum bending radiusq Single bend in mm: 200q Repeated bends in mm: 380s Bending moment in Nm:38.0s Recommended clampspacing: 1.0m
  129. 129. Mobile Radio Network Planning 129GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011-5/8" CELLFLEX® Coaxial Cablew Feeder Cables 1-5/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cables LCF158-50J Standards LCF158-50JFN Flame Retardantq Installation temperature >-25°Cw Electrical specification 900MHzs Attenuation: 2.34dB/100ms Average power in kW: 4.97w Electrical specification 1800MHzs Attenuation: 3.57dB/100ms Average power in kW: 3.26w Mechanical specifications Cable weight kgm: 1.26s Minimum bending radiusq Single bend in mm: 200q Repeated bends in mm: 508s Bending moment in Nm:46.0s Recommended clampspacing: 1.2m
  130. 130. Mobile Radio Network Planning 130GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed011/2" CELLFLEX® Jumper Cablew CELLFLEX® LCF12-50J Jumperss Feeder Cableq LCF12-50J CELLFLEX® Low-Loss Foam-Dielectric CoaxialCables Connectorsq 7/16” DIN male/femaleq N male/femaleq Right angles Molded version available in1m, 2m, 3mw Mechanical specifications Minimum bending radiusq Repeated bends in mm: 125w Electrical specification 900MHzs Attenuation: 0.068db/ms Total losses withconnectors are 0.108dB,0.176dB and 0.244dBw Electrical specification1800MHzs Attenuation: 0.099dB/ms Total losses withconnectors are 0.139dB,0.238dB and 0.337dB
  131. 131. Mobile Radio Network Planning 1313FL 11820 ABAA WAZZA ed01Coverage PlanningRadio Propagation and Path LossPrediction
  132. 132. Mobile Radio Network Planning 132GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Propagation effectsw Free space lossw Fresnel ellipsoidw Reflection, Refraction, Scatterings in the atmospheres at a boundary to another materialw Diffractions at small obstacless over round earthw Attenuations Rain attenuations Gas absorptionw Fading
  133. 133. Mobile Radio Network Planning 133GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01ϕP0∆ hReflectionw Pr = Rh/v ⋅ P0w Rh/v = f(ϕ , ε , σ , ∆ h)horizontal reflectionfactorvertical reflectionfactorangle of incidencepermittivityconductivitysurface roughnessRhRvϕεσ∆hPr
  134. 134. Mobile Radio Network Planning 134GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Refractionk = 4 / 3k = 1 k = 2 / 3k =t r u e e a r t hRay paths with different k over trueearth∞w Considered via an effectiveearth radius factor kRadio path plotted as a straight line bychanging the earths radiusk = 4 / 3k = 1k = 2 / 3k =r a d io p a th∞
  135. 135. Mobile Radio Network Planning 135GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diffractionw Occurs at objects which sizes are in the order of the wavelength λw Radio waves are ‘bent’ or ‘curved’ around objectss Bending angle increases if object thickness is smallercompared to λs Influence of the object causes an attenuation: diffraction lossdiffractedradiobeamsshadowzoneobstacleradiobeam
  136. 136. Mobile Radio Network Planning 136GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fadingw Caused by delay spread of original signals Multi path propagations Time-dependent variations in heterogeneity of environments Movement of receiverw Short-term fading, fast fadings This fading is characterised by phase summation andcancellation of signal components, which travel on multiplepaths. The variation is in the order of the consideredwavelength.s Their statistical behaviour is described by the Rayleighdistribution (for non-LOS signals) and the Rice distribution(for LOS signals), respectively.s In GSM, it is already considered by the sensitivity values,which take the error correction capability into account.
  137. 137. Mobile Radio Network Planning 137GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fading typesw Mid-term fading, lognormal fadings Mid-term field strength variations caused by objects inthe size of 10...100m (cars, trees, buildings). Thesevariations are lognormal distributed.w Long-term fading, slow fadings Long-term variations caused by large objects like largebuildings, forests, hills, earth curvature (> 100m). Likethe mid-term field strength variations, these variationsare lognormal distributed.
  138. 138. Mobile Radio Network Planning 138GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Signal Variation due to Fading-70-60-50-40-30-20-1000.12.85.48.010.613.215.918.521.123.726.329.031.634.236.839.442.144.747.349.9Distance [m]ReceivedPower[dBm]Lognormal fadingRaleygh fadingFading hole
  139. 139. Mobile Radio Network Planning 139GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal FadingLognormal fading (typical 20 dBloss by entering a village)Fading holeLognormal fading (enteringa tunnel)
  140. 140. Mobile Radio Network Planning 140GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Free Space Lossw The simplest form of wave propagation is the free-space propagationw The according path loss can be calculated with the following formulaw Path Loss in Free Space Propagations L free space losss d distance between transmitter and receiver antennas f operating frequencyLdkmfMHzfreespace = + ⋅ + ⋅32 4 20 20. log log
  141. 141. Mobile Radio Network Planning 141GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoidw The free space loss formula can only be applied if the direct line-of-sight (LOS) between transmitter and receiver is not obstructedw This is the case, if a specific region around the LOS is cleared fromany obstaclesw The region is called Fresnel ellipsoidTransmitterReceiverLOS
  142. 142. Mobile Radio Network Planning 142GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Fresnel Ellipsoid2121ddddr+⋅⋅=λw The Fresnel ellipsoid is the setof all points around the LOSwhere the total length of theconnecting lines to thetransmitter and the receiver islonger than the LOS length byexactly half a wavelengthw It can be shown that thisregion is carrying the mainpower flow from transmitter toreceiverTransmitter ReceiverLOSLOS + λ /2Fresnel zone
  143. 143. Mobile Radio Network Planning 143GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction1st FresnelzonerBTSMSd1 d2h0line ofsightpath ofdiffractedwaved1 d2h0replaced obstacle(knife edge)h0 = height of obstacle overline of sightd1, d2 = distance of obstaclefrom BTS and MS
  144. 144. Mobile Radio Network Planning 144GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Knife Edge Diffraction FunctionKnife-edge diffraction function-505101520253035-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3Clearance of Fresnel ellipsoid (v)F(v)[dB]Additional diffraction loss F(v)v: clearance parameter, v=-h0/rNote: h0 = 0 ⇒v =0 ⇒L = 6 dB
  145. 145. Mobile Radio Network Planning 145GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Computers: the "Final Solution" for WavePropagation Calculations?w Exact field solution requires too much computer resources!s Too much details required for inputs Exact calculation too time-consuming² Field strength prediction rather than calculationw Requirements for field strength prediction modelss Reasonable amount of input datas Fast (it is very important to see the impact of changes in thenetwork layout immediately)s Accurate (results influence the hardware cost directly)² Tradeoff required (accurate results within a suitable time)² Parameter tuning according to real measurements should bepossible
  146. 146. Mobile Radio Network Planning 146GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CCIR Recommendationw The CCIR Recommendations providevarious propagation curvess Based on Okumura (1968)s Example (CCIR Report 567-3):Median field strength in urbanareaFrequency = 900 MHzhMS = 1.5 mDashed line: free spacew How to use this experience in fieldstrength prediction models?² Model which fits the curves incertain ranges →Hatas modelwas modified later by the EuropeanCooperation in Science and Technology(COST): COST 231 Hata/Okumura
  147. 147. Mobile Radio Network Planning 147GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mobile Radio PropagationFree-space propagation (Fresnel zone not obstructed) →L ~d2Fresnel zone heavily obstructed near the mobile station→L ~ d3.7d
  148. 148. Mobile Radio Network Planning 148GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Terrain Modelingw Topographys Effective antenna heights Knife edge diffractionq single obstaclesq multiple obstaclesw Surface shape/Morpho-structures Correction factors forHata-Okumura formula
  149. 149. Mobile Radio Network Planning 149GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Effect of Morphostructure on Propagation LossOpen area Open areaUrban areaDistanceFieldstrengthurban areaopen area
  150. 150. Mobile Radio Network Planning 150GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Path loss (Lu) is calculated (in dB) as follows:Lu= A1 + A2 log(f) + A3 log(hBTS) + (B1 + B2log(hBTS)) log dw The parameters A1, A2, A3, B1 and B2 can be user-defined.Default values are proposed in the table below:Hata-Okumura for GSM 900Parameters Okumura-Hataf< 1500 MHzCost-HataF>1500 MHzA1 69.55 46.30A2 26.16 33.90A3 -13.82 -13.82B1 44.90 44.90B2 -6.55 -6.55
  151. 151. Mobile Radio Network Planning 151GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01CORRECTIONS TO THE HATA FORMULAw As described above, the Hata formula is valid for urban environment and areceiver antenna height of 1.5m. For other environments and mobile antennaheights, corrective formulas must be applied.Lmodel1=Lu-a(hMS) for large city and urban environmentsLmodel1=Lu-a(hMS) -2log² (f/28) -5.4 for suburban areaLmodel1=Lu -a(hMS) - 4.78log² (f)+ 18.33 log(f) – 40.94 for rural areaa(hMS) is a correction factor to take into account a receiver antenna height differentfrom 1.5m. Environments A(hMS)Rural/Small city (1.1log(f) – 0.7)hMS – (1.56log(f) -0.8)Large city 3.2log² (11.75hMS) – 4.97te: When receiver antenna height equals 1.5m, a(hMS) is close to 0 dB regardless of freque
  152. 152. Mobile Radio Network Planning 152GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura for GSM 900w Formula valid for frequency range: 150…1000 MHzLmorpho [dB] Morpho/surface shape-Correction factor0 dB: ‘Skyscrapers’->27 dB: ‘open area’f [MHz] Frequency (150 - 1000 MHz)hBTS [m] Height of BTS (30 - 200 m)hMS [m] Height of Mobile (1 - 10m)d [km] Distance between BTS and MS (1 - 20 km)Power law exponent shown coloredLossHata = 69.55 + 26.16 log (f) - 13.82 log (hBTS)- a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorphoa (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) - 0.8)
  153. 153. Mobile Radio Network Planning 153GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01COST 231 Hata-Okumura GSM 1800w Formula is valid for frequency range: 1500...2000 MHzw Hata’s model is extended for GSM 1800s Modification of original formula to the new frequency rangew For cells with small ranges the COST 231 Walfish-Ikegami model ismore preciselyLossHata = 46.3 + 33.9 log (f) - 13.82 log (hBTS)- a(hMS) +(44.9 - 6.55 log (hBTS)) log (d) - Lmorphoa (hMS) = (1.1 log (f) - 0.7) hMS - (1.56 log (f) -0.8)
  154. 154. Mobile Radio Network Planning 154GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Alcatel Propagation Modelw Using of effective antenna height in the Hata-Okumuraformula:Τheff = f(α , d, hBTS , hMS )
  155. 155. Mobile Radio Network Planning 155GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Exercise ‘Path Loss’w Scenarios Height BTS = 40ms Height MS = 1.5ms D (BTS to MS) = 2000mw 1. Calculate free space loss fors A.) f=900MHzs B.) f=1800MHzw 2. Calculate the path loss for f = 900MHzs A.) Morpho class ‘skyscraper’s B.) Morpho class ‘open area’w 3. Calculate the path loss for f = 1800MHzs A.) Morpho class ‘skyscraper’s B.) Morpho class ‘open area’
  156. 156. Mobile Radio Network Planning 1563FL 11820 ABAA WAZZA ed01Coverage PlanningLink Budget CalculationCoverage ProbabilityCell Range
  157. 157. Mobile Radio Network Planning 157GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Maximum Propagation Loss (Downlink)Feeder Cable LossLcable = 3 dBBTS Antenna GainGantBS = 16.5 dBiEffective Isotropic Radiated PowerEIRPBTS = 59.5 dBmMS Antenna GainGantMS = 2 dBiInternal LossesLint = 2 dBALCATEL EvoliumTMPropagationLossLpropMinimum Received PowerPRX,min,MS = -102 dBmMaximum allowed downlink propagation loss: Lprop,max = EIRPBTS - PRX,min,MS = 161.5 dBMS RXSensitivity-102 dBmOutput Powerat antennaconnector46.0 dBm
  158. 158. Mobile Radio Network Planning 158GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Max. allowed uplink propagation loss: Lprop,max = EIRPMS - PRX,min,BTS = 157.5 dBWith antenna diversity gain of 3dB: Lprop,max,AD = EIRPMS - PRX,min,BTS + GAD = 160.5 dBWith TMA compensating cable loss: Lprop,max,AD,TMA = EIRPMS - PRX,min,BTS + GAD + GTMA = 163.5dBMaximum Propagation Loss (Uplink)Feeder Cable LossLcable = 3 dBBTS Antenna GainGantBS = 16.5 dBiMinimum ReceivedPowerPRX,min,BTS = -124.5 dBmMS Antenna GainGantMS = 2 dBiInternal LossesLint = 2 dBALCATEL EvoliumTMPropagationLossLpropEIRPMS = 33 dBmMS TX Power33 dBmReceivingsensitivity atant. conn.-111 dBm
  159. 159. Mobile Radio Network Planning 159GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Link Budget (1)GSM900 MacroEvolium EvolutionA9100 BTSdB133,0dB133,0Max. PathlossdBm-87,0dBm-104,0Isotr. Rec. Power:dB0,0Antenna Pre-Ampl.dB0,0dB0,0Degradation (no FH)90,9%dB8,0dB8,0Lognormal Margin 50%→dB3,0dB3,0Interferer MargindB3,0Diversity GaindBi2,0dBi11,0Antenna GaindB2,0dB3,0Cables, Connectors LossdB4,0Body/Indoor LossdBm-102,0dBm-104,0Rec. SensitivityDownlinkUplinkRXdBm46,0dBm29,0EIRPdBi11,0dBi2,0Antenna GaindB4,0Body/Indoor LossdB3,0dB2,0Cable,Connectors LossdBm38,0dBm33,0Output PowerdB3,0dB0,0Comb+Filter Loss, Tol.dBm41,0dBm33,0Internal PowerDownlinkUplinkTXBS to MSMS to BS
  160. 160. Mobile Radio Network Planning 160GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01GSM1800 Link Budget
  161. 161. Mobile Radio Network Planning 161GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Additional Losses OverviewLoss type Reason ValueIndoor loss Electrical properties of wall material 20dB (3...30dB)Incar loss Brass influencing radio waves 7dB (4...10dB)Body loss Absorption of radio waves by thehuman body3dB (0...8dB)Interferer margin Both signal-to-noise ratio and C/I low 3 dBLognormal margin Receiving the minimum field strengthwith a higher probabilityAccording toprobability
  162. 162. Mobile Radio Network Planning 162GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation aspectsw Penetration Lossw Multiple Refractionw Multiple Reflectionw Exact modeling ofindoor environmentnot possiblew Practical solution:empirical model!
  163. 163. Mobile Radio Network Planning 163GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor propagation: empirical modeldAdditional Loss in [dB] relative to loss atvertical incidencePower relative to power atd=0ϕd05101520253035061218243036424854606672788490Angle of incidence in degreeAdditionalattenuationindB
  164. 164. Mobile Radio Network Planning 164GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Indoor PenetrationIncident waveIncident waveLindoor = 3 ... 15 dBLindoor = 13 ... 25 dBLindoor = ∞ dB (deep basement)Lindoor = 17 ... 28 dB-2.7 dB / floor(1st ... 10th floor)-0.3 dB / floor(11th ... 100th floor)Lindoor = 7 ... 18 dB(ground floor)w Depending on environmentw Line-of-sight to antenna?w Interior unknown² general assumptions
  165. 165. Mobile Radio Network Planning 165GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (1)Measuredattenuationversus time for atest personwalkingaround in ananechoic chamber
  166. 166. Mobile Radio Network Planning 166GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (2)Head modeled as sphereCalculation modelNear field of MS antenna•without head•with head
  167. 167. Mobile Radio Network Planning 167GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Body Loss (3)Indirect measured fieldstrength penetrated intothe head (horizontal cut)Test equipment for indirectfield strength measurements
  168. 168. Mobile Radio Network Planning 168GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Interference Marginw In GSM, the defined minimum carrier-to-interferer ration(C/I) threshold of 9 dB is only valid if the received serversignal is not too weak.w In the case that e.g. the defined system threshold for theBTS of -111dBm is approached, a higher value of C/I isrequired in order to maintain the speech quality.w According to GSM, this is done by taking into account acorrection of 3 dB.
  169. 169. Mobile Radio Network Planning 169GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Degradation (no FH)w GSM uses a frame correction system, which works withchecksum coding and convolutional codes.w Under defined conditions, this frame correction workssuccessfully and copes even with fast fading types asRayleigh or Rician fading.w For lower mobile speed or stationary use, the fading has abigger influence on the bit error rate and hence the speechquality is reduced.w In such a case, a degradation margin must be applied. Themargin depends on the mobile speed and the usage of slowfrequency hopping, which can improve the situation for slowmobiles again.
  170. 170. Mobile Radio Network Planning 170GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Diversity Gainw This designates the optional usage of a second receiverantenna.w The second antenna is placed in a way, which providessome decorrelation of the received signals.w In a suitable combiner, the signals are processed in order toachieve a sum signal with a smaller fading variation range.w Depending on the receiver type, the signal correlation, andthe antenna orientation, a diversity gain from 2…6 dB ispossible.
  171. 171. Mobile Radio Network Planning 171GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Lognormal marginw Lognormal margin is also called fading marginw Due to fading effects, the minimum isotropic power is only received with a certain probabilitys Signal statistics, lognormal distribution with median power value Fmed and standard deviation σ (sigma)w Without any margin, the probability is 50%, which is not a sufficient value in order to provide a good call success rate.w A typical design goal should be a coverage probability of 90...95%. The following normalised table can be applied tofind fading margins for different values of σ . The fading margin is calculated by multiplying the value of k (in the table)with the standard deviation:w Lognormal/Fading Margin = kσ .k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞CoverageProbability0% 30% 50% 84% 90% 95% 97.7%99% 100%k -∞ -0.5 0 1 1.3 1.65 2 2.33 +∞CoverageProbability0% 30% 50% 84% 90% 95% 97.7%99% 100%kk -∞-∞ -0.5-0.5 00 11 1.31.3 1.651.65 22 2.332.33 +∞+∞CoverageProbabilityCoverageProbability0%0% 30%30% 50%50% 84%84% 90%90% 95%95% 97.7%97.7%99%99% 100%100%
  172. 172. Mobile Radio Network Planning 172GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (1)100 m100mBSxField strength at location xlognormally distributedarround Fmedian
  173. 173. Mobile Radio Network Planning 173GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Consideration of Signal Statistics (2)00,050,10,150,20,250,3received signal level F [dBm]PDFLocal coverage probability: Pcov = P [ F > Fthreshold ]σFmedianFthresholdArea representing thecoverage probability
  174. 174. Mobile Radio Network Planning 174GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01For what Radius R is the average coverage probability in thecell area 95% ?Calculation of Coverage Radius Rr = distance between BTS and MSFrec = received powerσ = Standard deviationF rec,thrF recFrec,med (r)0 rσRR<Pcov (R)> = = 0.95∫20ππ R²Pcov (r) dr!Frec,med (r) = EIRP - LossHata (r)Loss Hata = f(hBS , hMS , f, r) + KmorPcov (r)= P(Frec (r) > Frec,thr )R = f (hBS , hMS , f, Kmor , EIRP, Frec,thr )
  175. 175. Mobile Radio Network Planning 175GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Probability00,50,951Pcov (r)R rPcov = P ( Frec > Frec,thr )
  176. 176. Mobile Radio Network Planning 176GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Ranges and Hata Correction FactorsArea Coverage Probability70%75%80%85%90%95%100%0,0 1,5 3,0 4,5 6,0 7,5 9,0 10,5d [km]Pcov155150145140135130125120115110ReferencePathloss [dB]Calculation conditions:Correction = 3; Sigma = 7hBS = 30 m; hMS = 1.7m; f = 900 MhzClutter type Cor [dB] σ[dB]Skyscrapers 0 6Dense urban 2 6Medium urban 4 7Lower urban 6 7Residential 8 6Industrial zone 10 10Forest 8 8Agricultural 20 6Low tree density 15 8Water 27 5Open area 27 6
  177. 177. Mobile Radio Network Planning 177GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Conventional BTS ConfigurationALCATEL EvoliumTMTX →45.4 dBmRX →-109dBmTXTXandRX w 1 BTSw Omnidirectional antenna for both TX and RX² Coverage Range R0² Coverage Area A0R0A0
  178. 178. Mobile Radio Network Planning 178GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Coverage Improvement by Antenna DiversityALCATEL EvoliumTMTX →45.4 dBmRX →-109dBmTXRXDIVRXandTXw 1 BTSw Omnidirectional antennass one for both RX and TXs one for RXDIVw Antenna diversity gain (2...6 dB)s Example: 3 dB² Coverage rangeRDiv = 1.23 · R0² Coverage areaADiv = 1.5 · A0R0RDivA0ADiv
  179. 179. Mobile Radio Network Planning 179GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation Patterns and Range3 antennas at sector site,Gain: 18 dBi, HPBW: 65°Resulting antenna footprint ("cloverleaf")compared to an 11 dBi omni antennaomnisector
  180. 180. Mobile Radio Network Planning 180GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna Diversity andSectorizationTXRXDIVw 3 BTSw Directional antennas (18 dBi)w Antenna diversity (3 dB)² Max. coverage rangeRsec,div = 1.95 · R0² Coverage areaAsec,div = 3 · A0ALCATELEvoliumTMALCATELEvoliumTMALCATELEvoliumTMR0Rsec,divAsec,div
  181. 181. Mobile Radio Network Planning 181GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Improvement by Antenna PreamplifierTXRXDIVw 3 BTSw Directional antennas (18 dBi)w Antenna diversity (3 dB)w Antenna preamplifier (3dB)² Max. coverage rangeRsec,div,pre = 2.22 · R0² Coverage areaAsec,div,pre = 3.9 · A0w General:Asec = g · A0g: Area gain factorR0Rsec,div,preAsec,div,preALCATELEvoliumTMALCATELEvoliumTMALCATELEvoliumTM
  182. 182. Mobile Radio Network Planning 1823FL 11820 ABAA WAZZA ed01Coverage PlanningAntenna Engineering
  183. 183. Mobile Radio Network Planning 183GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Omni Antennasw Applications Large area coverages Umbrella cell for micro cell layerw Advantagess Continuous coverage around the sites Simple antenna mountings Ideal for homogeneous terrainw Drawbackss No mechanical tilt possibles Clearance of antenna requireds Densification of network difficult
  184. 184. Mobile Radio Network Planning 184GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Sector Antennaw Antenna with horizontal HPBW of e.g. 90° or 65°w Advantagess Coverage can be focussed on special areass Low coverage of areas of no interest (e.g. forest)s Allows high traffic loads Additional mechanical downtilt possibles Wall mounting possiblew Drawbackss More frequencies needed per site compared to omnisitess More hardware neededs Lower coverage area per sector
  185. 185. Mobile Radio Network Planning 185GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Typical Applicationsw Wide horizontal beam width (e.g. 90°)s For areas with few reflecting and scattering objects (ruralarea)s Area coverage for 3-sector sitess Sufficient cell overlap to allow successful handoversw Small horizontal beam width (e.g. 65°)s For areas with high scattering (city areas)s Coverage between sectors by scattering and by adjacentsites (mostly site densification in urban areas)
  186. 186. Mobile Radio Network Planning 186GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Tiltw Downtilting of the Antenna main beam related to thehorizontal linew Goals:s Reduction of overshoots Removal of insular coverages Lowering the interferences Coverage improvement of the near area (indoorcoverage)s Adjustment of cell borders (handover zones)w Mechanical / Electrical or Combined downtilt
  187. 187. Mobile Radio Network Planning 187GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Mechanical Downtiltw Advantagess Later adjustment of vertical tilt possibles Antenna diagram is not changed, i.e. nulls and sidelobes remain in their position relative to the mainbeams Cost effective (single antenna type may be used)s Fast adjustments possiblew Drawbackss Side lobes are less tilteds Accurate adjustment is difficults Problems for sites with difficult access
  188. 188. Mobile Radio Network Planning 188GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Electrical Downtiltw Advantagess Same tilt for bothmain and side lobess Antenna mounting is more simple→no adjustment errorsw Drawbackss Introduction of additional antenna types necessarys New antenna installation at the site if downtilting isintroduceds Long antenna optimization phases Adjustment of electrical tilt mostly not possibleτ = 0τ = tτ = 2 tτ = 3 tτ = delay timedowntilt angle
  189. 189. Mobile Radio Network Planning 189GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Combined Downtiltw Combination of both mechanical and electrical downtilts High electrical downtilt: Distinct range reduction insidelobe direction (interference reduction)s Less mechanical uptilt in main beam directionw Choose sector antennas with high electrical downtilt(6°...8°) and apply mechanical uptilt installation foroptimum coverage range in main beam direction
  190. 190. Mobile Radio Network Planning 190GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Assessment of Required Tiltsw Required tilt is estimated using Geometrical Opticsw Consideration ofs Vertical HPBW of the antennas Antenna height above grounds Height difference antenna/location to be covereds Morpho-structure in the vicinity of the antennas Topography between transmitter and receiver locationw Tilt must be applied for both TX and RX antennas!
  191. 191. Mobile Radio Network Planning 191GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Inter Site Distance in Urban Areaw Using sectorized sites withantennas of 65° horizontal halfpower beam widths The sidelobe isapproximately reduced by10dB.s This is a reduction of cellrange to 50%.w The inter site distancecalculation factor depends ons Type of antennas Type of morpho classq Multi path propagationq Scatteringq Sigma (fading variations)X XA B0.5* R2R2
  192. 192. Mobile Radio Network Planning 192GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban AreaCell range R2Mainbeam0.5* R2SidelobeTilt 2 Tilt 2Site A Site BInter Site Distance A-B = 1.5* R2
  193. 193. Mobile Radio Network Planning 193GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Urban Areaw The upper limit of the vertical half power beam widthis directed towards the ground at maximum cell ranges Upper –3dB point of the vertical antenna patternw To be used in areas withs Multi path propagation conditions Good scattering of the beamw Aims Reduction of interferencew Optimizations Coverage Optimization in isolated cases using less downtilts Interference Reduction in isolated cases using more downtilt
  194. 194. Mobile Radio Network Planning 194GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Downtilt in Suburban and Rural Areaw Downtilt planning fors Suburbans Rurals Highway Coveragew The main beam is directed towards the ground at maximumcell rangeMain beamMain beamCell range R1 Cell range R1Tilt 1 Tilt 1Inter Site Distance C-D = 2* R1Site C Site D
  195. 195. Mobile Radio Network Planning 195GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna configurationsw Application of Duplexers Consists of a TX/RX Filter and a combiner² one antenna can be savedw Tower Mounted Amplifier (TMA)s Increase Uplink Sensitivitys TMA needs to have TX bypass=> in case of duplexer usagew Diversitys Space diversitys Polarization diversityRx/TxRxTxDuplexFilterTo BTS
  196. 196. Mobile Radio Network Planning 196GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Antenna Configurations for Omni and Sector SitesRxTxRxdivTower mounting for omni antennas Tower mounting fordirectional antennasPole mounting forroof-top mountingPole mounting for wallor parapet mounting
  197. 197. Mobile Radio Network Planning 197GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Three Sector Antenna Configurationwith AD
  198. 198. Mobile Radio Network Planning 198GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Antenna Engineering Rulesw Distortion of antenna pattern: No obstacles withins Antenna near field ranges HPBW Rule plus security margin of 20°s First fresnel ellipsoid range (additional losses!)w TX-RX Decoupling to avoid blocking and intermodulations Required minimum separation of TX - RX antennasdependent on antenna configuration (e.g. duplexer ornot)w Diversity gains Required antenna separation for space diversity
  199. 199. Mobile Radio Network Planning 199GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Distortion of antenna patternw Antenna Near Field Range: Rmin = 2D²/λs D = Aperture of antenna (e.g. 3m)s => Rmin = 60 / 120m for GSM / DCSw HPBW Rule with securtiy margin of 20° and tilt αRoof Top = Obstacleϕϕ = HPBW/2 + 20° + αDHD[m] 1 5 10H[m] 0.5 2.5 5HPBW = 8°, α = 2°
  200. 200. Mobile Radio Network Planning 200GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Tx-Rx Decoupling (1)TXRXfusefintf[MHz]P [dBm]fuse fint-101-13n*200kHzPoutPinReceiverCharacteristicPblockP1dBw Out of Band Blocking Requirement (GSM Rec. 11.21)s GSM 900 = +8 dBms GSM 1800 = 0 dBmw Required Decoupling (n = number of transmitters)s TX-TX = 20 dBs TX-RX GSM = 30 + 10 log (n) dBs TX-RX DCS = 40 + 10 log (n) dB
  201. 201. Mobile Radio Network Planning 201GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (2)w Horizontal separation (Approximation)IH=22+20log(dH/λ )-(GT+GR) [dB]dHIsolation for Horizontal Separation - omni 11dBi152025303540451.72.73.74.75.76.77.78.79.710.410.811.211.61212.412.813.213.61414.414.815.2Separation [m]Isolation[dB] GSM1800GSM900
  202. 202. Mobile Radio Network Planning 202GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01TX-RX Decoupling (3)w Vertical separation (Approximation)IV=28+40log(dV/λ) [dB]dvdmMastIsolation for Ve rtical Separa tion0102030405060700.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Se paration [m ]Isolation[dB]GSM1800GSM900
  203. 203. Mobile Radio Network Planning 203GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Required separation for max. diversity gain = F(λ )Space DiversitydHRXA RXB dVRXARXBFor a sufficient low correlation coefficient ρ < 0.7:dH = 20λ => GSM 900: 6m / GSM1800: 3mdV = 15λ => GSM 900: 4.5m / GSM1800: 2.25m
  204. 204. Mobile Radio Network Planning 204GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Power Dividerw Power dividers connect severalantennas to one feeder cablew For combination of individualantenna patterns for arequested configurations Quasi-omni configurations Bidirectional configuration(road coverage)4-to-1 Power splitter(6 dB loss)To BTS:Receiver inputTo BTS: Duplexer output(TX plus RX diversity)Quasi-OmniConfiguration
  205. 205. Mobile Radio Network Planning 205GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Power dividers Also called "power splitter" or "junction box"s Passive device (works in both (transmit andreceive) direction)3 dBPinPin2Pin2Pin34.5 dBPinPin3Pin36 dBPinPin4Pin4Pin4Pin4
  206. 206. Mobile Radio Network Planning 206GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Example:PowerSplitter
  207. 207. Mobile Radio Network Planning 207GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (1)w Radial Arrangementof 6 Panel Antennas with horizontal beamwidth = 105 °gain = 16.5 dBi, mast radius = 0.425 m, mounting radius= 0.575 m
  208. 208. Mobile Radio Network Planning 208GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (2)w Example 2: Quasi Omni Arrangementof 3 antennas with horizontal beamwidth = 105 °, gain=13.5 dBi,mounting radius = 4 m
  209. 209. Mobile Radio Network Planning 209GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Panel Configurations (3)w Example 3: Skrew Arrangementof 4 Panel Antennas with horizontalbeamwidth = 65 °,gain = 12.5 dBi, mast radius = 1 m,mounting radius = 1.615 m
  210. 210. Mobile Radio Network Planning 210GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feedersw Technical summaryw Inner conductor: Copper wirew Dielectric: Low densityfoam PEw Outer conductor: Corrugatedcopper tubew Jacket: Polyethylene (PE)blackInner conductorOuter conductorDielectric Jacket
  211. 211. Mobile Radio Network Planning 211GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder Installation Set and Connectors1Cable Clamps2Antenna Cable3Double Bearing4Counterpart5Anchor tape7/16 Connector:Coaxial ConnectorRobustGood RF-Performance
  212. 212. Mobile Radio Network Planning 212GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Type Minimum bending radius Jacket(outer diameter)Weight (m) Recommendedclamp spacingSingle bending Repeated bendingLCF 1/2’’ 70 mm 210 mm 16 mm 0.35 kg 0.6 mLCF 7/8’’ 120 mm 360 mm 28 mm 0.62 kg 0.8 mLCF 1 5/8’’ 300 mm 900 mm 49.7 mm 1.5 kg 1.2 mThese values are based on feeder types with an impedance of 50 ohmsGSM 900 GSM 1800 GSM 1900Type Attenuation/100 m [dB]Recommendedmax length [m]Attenuation/100 m [dB]Recommendedmax length [m]Attenuation/100 m [dB]Recommendedmax length [m]LCF 1/2“ 6.6 45 10.3 30 10.6 28LCF 7/8“ 4.0 75 6.0 50 6.3 47LCF 1_5/8“ 2.6 115 4.0 75 4.2 71Feeder Parameters
  213. 213. Mobile Radio Network Planning 213GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeder attenuation (1)w Main contribution is given by feeder losss Feeder Cable 4dB/100m => length 50m Loss =2.0dBs Jumper Cable 0.066dB/1m => 5m Loss =0.33dBs Insertion Loss of connector and power splitter < 0.1dBs Total Loss 2.0dB+2x0.33dB+5x0.1dB+0.1dB=3.26dBw Cable type is trade off betweens Handling flexibilitys Costs Attenuation
  214. 214. Mobile Radio Network Planning 214GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiating Cablesw Provide coverage in Tunnels, buildings, along side tracks orlinesw Principle: Radiate a weak but constant electromagnetic wavew Suitable for coverage over longer distances (Repeater)w Fieldstrength distribution more constant as with antennasFFThrRepeaterFFThrTerminat-ing Load
  215. 215. Mobile Radio Network Planning 215GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Components are shown with black linesBTSTxRxRadiatingcableTerminationloadEarthingkitMounting clipswith50 mm wall standoffN-connectionsJumpercabel1-leg radiating cablesystemComponents of a radiating cablesystem
  216. 216. Mobile Radio Network Planning 216GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01-40-50-60-70-80-90-100-110[dBm]Cable attenuationbetween the antennasRadiating cable fieldstrengthAntenna field strengthDistanceComparison of field strength: Radiating cable andstandard antenna
  217. 217. Mobile Radio Network Planning 217GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Example of aradiating cablein a tunnel
  218. 218. Mobile Radio Network Planning 218GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Microwave antennas, feeders andaccessoriesw Microwave point to point systems use highly directional antennasw Gainwith G = gain over isotropic, in dBiA = area of antenna aperturee = antenna efficiencyw Used antenna typess parabolic antennas high performance antennas horn lens antennas horn antennaGA e= 1042lgπλ
  219. 219. Mobile Radio Network Planning 219GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Parabolic antennaw Parabolic dish, illuminated by a feed hornat its focusw Available sizes: 1’ (0.3 m) up to 16’ (4.8m)w Sizes over 4’ seldom used due toinstallation restrictionsw Single plane polarized feed vertical (V) orhorizontal (H)w Also: dual polarized feeder (DP), withseparate V and H connections (lowergain)w Front-to-back ratios of 45 dB not highenough for back-to-back configuration onthe same frequencyw Antenna patterns are absolutelynecessary for interference calculations
  220. 220. Mobile Radio Network Planning 220GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01High performance antennaw Similar to common parabolic antenna,except for attached cylindrical shieldw Improvement of front-to-back ratio andwide angle radiation discriminationw Available in same sizes as parabolic,single or dual polarizedw Substantially bigger, heavier, and moreexpensive than parabolic antennasw Allow back-to-back transmission at thesame frequency in both directions(refer to interference calculation)
  221. 221. Mobile Radio Network Planning 221GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Horn antennaswHorn lens antennas For very high frequencies > 25 GHzs Replacement for small parabolicantennas (1’)s Same electrical data, but easier toinstall due to size and weightwHorn reflector antennas Large parabola, energy from the feedhorn is reflected at right angle (90°)s Gain like 10’ parabolic antenna (60dBi), but higher front-to-back ratios >70 dBsBig and heavy, requires a complex installation proceduresOnly used on high capacity microwave backbones (e.g. MSC-MSC interconnections)
  222. 222. Mobile Radio Network Planning 222GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Specific Microwave Antenna Parameters(1)w Cross polarization discrimination (XPD)s highest level of cross polarisation radiation relativeto the main beam; should be > 30 dB for parabolicantennasw Inter-port isolations isolation between the two ports of dual polarisedantennas; typical value: better than 35 dBw Return loss (VSWR)s Quality value for the adaption of antennaimpedance to the impedance of the connectioncables Return loss is the ratio of the reflected power to thepower fed at the antenna input (typical> 20 dB)
  223. 223. Mobile Radio Network Planning 223GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01w Radiation pattern envelope (RPE)s Tolerance specification for antenna pattern (specification ofantenna pattern itself not suitable due to manufacturingproblems)s Usually available from manufacturer in vertical and horizontalpolarisation (worst values of several measurements)w Weightw Wind loadSpecific Microwave Antenna Parameters(2)
  224. 224. Mobile Radio Network Planning 224GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Data sheet 15 GHzParabolic antenna 15 GHz High performance antenna 15 GHzBandw idth (G H z) 14.4 - 15.3514.4 - 15.3514.4 - 15.35M odel num ber PA 2 - 144 PA 4 - 144 PA 6 - 144N om inal diam eter (m ) 0.6 1.2 1.8(ft) 2 4 6H alf-pow er beam w idth (deg) 2.3 1.2 0.8G ain low band (dBi) 36.2 42.3 45.8G ain m id band (dBi) 36.5 42.5 46.0G ain high band (dBi) 36.7 42.8 46.3Front-to-back ratio (dB) 42 48 52Cross polar discrim ination(dB) 28 30 30Return loss (dB) 26 26 28W eight (kg) 19 43 73W indloadElevation adjustm ent (deg) +/- 5 +/- 5 +/- 5B andw idth (G H z) 14.4 - 15.3514.4 - 15.3514.4 - 15.35M odel num ber D A 2 - 144D A 4 - 144D A 6 - 144N om inal diam eter (m ) 0.6 1.2 1.8(ft) 2 4 6H alf-pow er beam w idth (deg) 2.3 1.2 0.8G ain low band (dB i) 36.2 42.3 45.8G ain m id band (dB i) 36.5 42.5 46.0G ain high band (dB i) 36.7 42.8 46.3Front-to-back ratio (dB ) 65 68 68C ross polar discrim ination(dB ) 28 30 30R eturn loss (dB ) 26 26 26W eight (kg) 28 55 130W indloadE levation adjustm ent (deg) +/- 12 +/- 12 +/- 12
  225. 225. Mobile Radio Network Planning 225GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Radiation pattern envelope
  226. 226. Mobile Radio Network Planning 226GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (1)w Coaxial cables or waveguides (according to frequency)w Most important characteristic: loss and return lossw Coaxial cabless Used between 10 MHz and 3 GHzs Dielectric material: foam or airs Parameters of common coaxial cables:type dielectric diameter(mm)loss(dB/100m)powerrating (kW)bendingradius (mm)LCF 1/2’ CU2Y foam 16.0 10,9 / 2 GHz 0.47 20013.8 / 3 GHzLCF 7/8’ CU2Y foam 28.0 6.5 / 2 GHz 0.95 3608.5 / 3 GHzLCF 1 5/8’ CU2Y foam 49.7 4.4 / 2 GHz 1.7 3805.6 / 3 GHz
  227. 227. Mobile Radio Network Planning 227GSM RNE Fundamentals3FL 11820 ABAA WAZZA ed01Feeders (2)w Waveguidess Used for frequency bands above 2.7 GHzs Three basic types available: circular, elliptical andrectangularw Rigid circular waveguides Very low losss Supports two orthogonal polarisationss Capable to carry more than one frequency bands Usually, short components of this type are useds Disadvantages: cost, handling and moding problems

×