• Like
Two Pseudo-random Number Generators, an Overview
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Two Pseudo-random Number Generators, an Overview

  • 2,620 views
Published

 

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
2,620
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
35
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Two Pseudo-random Number Generators, an Overview By Kato Mivule Bowie State University Computer Science Department Wireless Security Presentation - Spring 2012 Dr. Claude Turner
  • 2. Two Pseudo-random Number Generators, an OverviewOverview • Introduction • A Pseudorandom Bit Generator • Linear Congruential Generator (LCG) • Blum-Blum-Shub Pseudorandom Bit Generators • BBS Algorithm • Conclusion and Suggestions
  • 3. Two Pseudo-random Number Generators, an OverviewIntroduction • Random number generation is a critical part of any cryptographic and spread spectrum systems in terms of strength and security. • A weak random number generation in a cryptographic or spread spectrum system could results in a compromised system. • As such a number of cryptographic and spread spectrum systems depend on the generation random and pseudorandom bits for enhanced security.
  • 4. Two Pseudo-random Number Generators, an OverviewA pseudorandom bit generator (PRBG) • This is an algorithm that utilizes deterministic procedures when given a seed, to produce a sequence of random bits based on the seed value that appear to be random and will pass the random number tests. • The input to the PRBG is known as the seed, while the output of the PRBG is referred to as a pseudorandom bit sequence
  • 5. Two Pseudo-random Number Generators, an OverviewLinear Congruential Generator (LCG) • This type of algorithm generates long random strings of numbers with the sequence repeating at some point. • The random string of values generated is determined by a fixed number called a seed. • 𝑥 𝑛+1 = (𝑎𝑥 𝑛 + 𝑏) 𝑚𝑜𝑑 𝑚
  • 6. Two Pseudo-random Number Generators, an OverviewLinear Congruential Generator (LCG) • One of the popular techniques for the production of pseudorandom numbers is the utilization of Linear Congruential Generators (LCG). • LCGs produce pseudorandom sequences of numbers 𝑥1 , 𝑥2 , 𝑥3 ... according to the linear recurrence: • 𝑥 𝑛+1 = (𝑎𝑥 𝑛 + 𝑏) 𝑚𝑜𝑑 𝑚 • Where 𝑛 ≥ 1
  • 7. Two Pseudo-random Number Generators, an OverviewLinear Congruential Generator (LCG)In a Linear Congruential Generator, the next pseudorandom number is generated fromthe current one such that: 𝑥 𝑛+1 = (𝑎𝑥 𝑛 + 𝑏) 𝑚𝑜𝑑 𝑚 Where 𝑎 and 𝑏, are relatively prime numbers 𝑚 = modulus and 𝑚 > 0 𝑎 = the multiplier and 0 < 𝑎 < 𝑚 𝑏 = the increment and 0 < 𝑏 < 𝑚 𝑥0 = the starting seed value and 0 ≤ 𝑥0 < 𝑚The scope of random numbers generated is less than the range of the integer used in thecalculation .The generated random numbers 𝑥 𝑖 are said to be periodic where the period is always less≤ 𝑚 and all 𝑥 𝑖 are in the interval 0 ≤ 𝑥 𝑖 < 𝑚.
  • 8. Two Pseudo-random Number Generators, an OverviewLinear Congruential Generator (LCG)Example of LCGm = 16; a = 3; b = 1 𝑥 𝑛+1 = (3𝑥 𝑛 + 1) 𝑚𝑜𝑑 16 𝑥0 = (3*0 + 1) mod 16 = 1 𝑥1 = (3*1 + 1) mod 16 = 4 𝑥2 = (3*4 + 1) mod 16 = 13 𝑥3 = (3*13 + 1) mod 16 = 8 𝑥4 = (3*8 +1) mod 16 = 9 𝑥5 = (3*9 +1) mod 16 = 12 𝑥6 = (3*12 +1) mod 16 = 5 𝑥7 = (3*5 +1) mod 16 = 0 𝑥8 = (3*0 +1) mod 16 = 1Therefore generated sequence = {1, 4, 13, 8, 9, 12, 5, 0, 1}
  • 9. Two Pseudo-random Number Generators, an OverviewBlum-Blum-Shub (BBS) Pseudorandom Bit Generators• Blum Shub (BBS) is a pseudorandom number generator suggested in 1986 by Lenore Blum, Manuel Blum and Michael Shub (Blum et al., 1986).• BBS is said to be a cryptographically secure pseudorandom bit generator (CSPRBG). A CSPRBG is defined as one that passes the next-bit test.• A pseudorandom bit generator is said to pass the next-bit test, if given the first k bits of the sequence, there is no practical algorithm that can predict that the next bit will be a 1 or 0 with probability greater than ½ therefore the sequence is unpredictable. • Blum Blum Shub is in the form: • 𝑥 𝑛+1 = 𝑥 2 𝑚𝑜𝑑 𝑚 𝑛
  • 10. Two Pseudo-random Number Generators, an OverviewBBS Algorithm• Generate two large secret random prime numbers 𝑝 and 𝑞• Let each of the chosen primes 𝑝 and 𝑞 be harmonious 1. Compute 𝑛 = 𝑝𝑞 2. Select a random integer 𝑠 (the seed) in the interval [1, 𝑛 − 1] such that gcd 𝑠, 𝑛 = 1 3. Let 𝑥0 = 𝑠 2 𝑚𝑜𝑑 𝑛 4. For 𝑖 = 1 𝑡𝑜 ∞ 𝑑𝑜 5. Compute 𝑥 𝑖 = 𝑠 2 𝑚𝑜𝑑 𝑛 6. Compute 𝑥 𝑖 = 𝑥 𝑖 𝑚𝑜𝑑 2 7. 𝑧 𝑖 = 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑏𝑖𝑡 𝑜𝑓 𝑥 𝑖 8. Output the sequence as𝑧1 , 𝑧2 , 𝑧3 , … , 𝑧 𝑙
  • 11. Two Pseudo-random Number Generators, an OverviewThank You! Comments, Questions, and Suggestions.
  • 12. Two Pseudo-random Number Generators, an OverviewSources and Bibliography[1] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone "Handbook of Applied Cryptography" ISBN 0849385237, 9780849385230, Pages 169-190, CRCPress, 1997[2] X. Wang, W. Yu, X. Fu, D. Xuan, and W. Zhao, “iloc: An invisible localization attack to internet threat monitoring systems,” IEEE INFOCOM 2008. The 27thConference on Computer Communications, 2008, pp. 1930–1938.[3] William Stallings, "Cryptography and Network Security: Principles and Practice", Prentice Hall, 2010, ISBN 0136097049, 9780136097044[4] Bob Bockholt, "linear congruential generator", in Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standardsand Technology. 17 December 2004. (accessed June 20th, 2010) Available from: http://www.itl.nist.gov/div897/sqg/dads/HTML/linearCongruentGen.html[5] Samuel S. Wagstaff, Jr, "Cyptanalysis of Number Theoretic Ciphers", Chapman & Hall/CRC, ISBN 1-58488-153-4, page 211[6] M.E. Yalcin, J.A.K. Suykens, J. Vandewalle "True random bit generation from a double-scroll attractor", IEEE Transactions on Circuits and Systems, 2004[7] Anders Andersen, Finn Jensen, Morten Kristensen "TrueRandom", 2009,http://www.daimi.au.dk/~ivan/reports2009/TrueRandom.pdf[8] Henk C. A. van Tilborg, "Encyclopedia of cryptography and security", Springer, 2005,ISBN 038723473X, 9780387234731[9] Richard A. Mollin, "RSA and public-key cryptography", Volume 21 of Discrete mathematics and its applications, CRC Press, 2003, ISBN 1584883383,9781584883388