Vectors

4,319 views
4,220 views

Published on

Scalar and Vector quantities.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
4,319
On SlideShare
0
From Embeds
0
Number of Embeds
1,190
Actions
Shares
0
Downloads
112
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Vectors

    1. 1. Vectors
    2. 2. 2 Kinds of Physical Quantities:
    3. 3. 2 Kinds of Physical Quantities:Scalar quantities
    4. 4. 2 Kinds of Physical Quantities:Scalar quantitiesVector quantities
    5. 5. Scalar Quantities:
    6. 6. Scalar Quantities:Scalar quantities have magnitude (numerical value) and unit. mass = 75Kg
    7. 7. Vector Quantities:
    8. 8. Vector Quantities: Vector quantities have magnitude(numerical value), direction (+-) and unit. Force = 55N due east
    9. 9. Examples:
    10. 10. Examples:Scalar
    11. 11. Examples:Scalar Vector
    12. 12. Examples:Scalar VectorMass
    13. 13. Examples:Scalar VectorMassTemperature
    14. 14. Examples:Scalar VectorMassTemperatureVolume
    15. 15. Examples:Scalar VectorMassTemperatureVolumeDensity
    16. 16. Examples:Scalar VectorMassTemperatureVolumeDensityWork
    17. 17. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeed
    18. 18. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeedDistance
    19. 19. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeedDistancePower
    20. 20. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeedDistancePowerHeat
    21. 21. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeedDistancePowerHeatEnergy
    22. 22. Examples:Scalar VectorMassTemperatureVolumeDensityWorkSpeedDistancePowerHeatEnergy
    23. 23. Examples:Scalar VectorMass Force and weightTemperatureVolumeDensityWorkSpeedDistancePowerHeatEnergy
    24. 24. Examples:Scalar VectorMass Force and weightTemperature PositionVolumeDensityWorkSpeedDistancePowerHeatEnergy
    25. 25. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensityWorkSpeedDistancePowerHeatEnergy
    26. 26. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWorkSpeedDistancePowerHeatEnergy
    27. 27. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeedDistancePowerHeatEnergy
    28. 28. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeed DisplacementDistancePowerHeatEnergy
    29. 29. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeed DisplacementDistance Magnetic fieldPowerHeatEnergy
    30. 30. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeed DisplacementDistance Magnetic fieldPower Electric fieldHeatEnergy
    31. 31. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeed DisplacementDistance Magnetic fieldPower Electric fieldHeat GravityEnergy
    32. 32. Examples:Scalar VectorMass Force and weightTemperature PositionVolume AccelerationDensity VelocityWork MomentumSpeed DisplacementDistance Magnetic fieldPower Electric fieldHeat GravityEnergy Impulse
    33. 33. How is a vector represented?
    34. 34. How is a vector represented? ( starting point ( direction B A ) A )B Y X ( line of action XY ) (the length of AB line segment
    35. 35. How is a vector represented? ( starting point ( direction B A ) A )B Y X ( line of action XY ) (the length of AB line segmentVectors are usually bold typed and represented by an arrow above the letter. For instance: Force ( F )
    36. 36. How is a vector represented? ( starting point ( direction B A ) A )B Y X ( line of action XY ) (the length of AB line segment Vectors are usually bold typed and represented by an arrow above the letter. For instance: Force ( F )The magnitude of a vector is represented by the absolute value of the vector and it doesn’t have the arrow above the letter. F =F
    37. 37. Properties of Vectors:
    38. 38. Properties of Vectors: C AD B C D X A F E B G Fig.1.2.1 Fig.1.2.2
    39. 39. Vector Components: Sin θ = Opp./Hyp. HypothenousOppositeside Cos θ = Adj./Hyp. Adjacent side Tan θ = Opp./Adj. 20m/s 60º
    40. 40. Addition and Subtraction Vectors can’t be added and subtracted the same way scalar quantities can. Different rules apply because vectors involve direction. There are 2 different methods for graphically adding orsubtracting vectors. Either one will produce the same results. •Parallelogram •Polygon MethodThe new vector formed from the vectors added or subtracted is called the resultant vector.
    41. 41. Parallelogram: (Tail to Tail)R B R = A+B A A R -(B) R = A-B
    42. 42. Polygon Method (Head to Tail) R=A+B+CR C B B -C A A R1 R1=A+B-C
    43. 43. y x
    44. 44. yAx xA Ay
    45. 45. Vector Components
    46. 46. Vector Components A
    47. 47. Vector Components A B
    48. 48. Vector Components A B C
    49. 49. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    50. 50. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    51. 51. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    52. 52. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    53. 53. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    54. 54. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    55. 55. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    56. 56. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    57. 57. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    58. 58. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    59. 59. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    60. 60. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    61. 61. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    62. 62. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    63. 63. Vector Components x yA -4 3B 0 3 AC 2 2 BR -2 8 C
    64. 64. Resultant Vector x yA -4 3B 0 3C 2 2R -2 8
    65. 65. Resultant Vector x yA -4 3B 0 3C 2 2R -2 8
    66. 66. Resultant Vector x yA -4 3B 0 3C 2 2R -2 8 R

    ×