Microsoft Word   Hw#3
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,366
On Slideshare
1,366
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
14
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Computer and Network Security. Name: Khalid Khalil Kamil Matric. No.: G0327887. Solutions to Assignment # 3: 1- Use Euclid’s algorithm to find the greatest common divisor (gcd) of: a. gcd(14,105): Solution: gcd(105,14)=gcd(14, 105 mod 14) = gcd(14, 7) = gcd(7,14 mod 7) = gcd(7,0)=7. b. gcd(180, 1512) Solution: Gcd(1512,180)=gcd(180,1512 mod180)=gcd(180,72)=gcd(72,36)=gcd(36,72mod36) =gcd(36,0)= 36. c. gcd(1001,7655): solution: gcd(7655,1001)=gcd(1001,7655mod1001)=gcd(1001,648)=gcd(648,1001mod648) =gcd(648,353)=gcd(353,648mod353)=gcd(353,295)=gcd(295,353mod295) =gcd(295,58) =gcd(58,295mod58)=gcd(58,5)=gcd(5,58mod5)=gcd(5,3)=gcd(3,5mod3)=gcd(3,2) =gcd(2,3mod2)=gcd(2,1)=gcd(1,2mod1)=gcd(1,0)=1. d. gcd(24140,16762): solution: gcd(24140,16762)=gcd(16762,24140mod16762)=gcd(16762,7378) =gcd(7378,16762mod7378)=gcd(7378,2006)=gcd(2006,7378mod2006) =gcd(2006,1360)=gcd(1360,2006mod1360)=gcd(1360,646)=gcd(646,1360mod646) =gcd(646,68)=gcd(68,646mod68)=gcd(68,34)=gcd(34,68mod34)=gcd(34,0)=34. 2- Find: a. 13 mod 11=2mod11=2. b.875mod9=2mod9=2. c.2594mod48=2mod9=2. d.217mod21: Solution:
  • 2. 21mod21=2 22mod21=4, 24mod21=(4x4)mod21=16, 28mod21=(16x16)mod21 =256mod21=4, 216mod21=(4x4)mod21=16, 217mod21=[(21mod21)x(216mod21)]mod21=[2x16]mod21=32mod21=11mod21=11. 3-Using Fermat’s theorem, find 3201mod11? Solution: Fermat’s theorem states that: ap-1 ≡1 mod p , provided that, p is a prime number and a is positive integer not divisible by p. 3201mod11=[(310mod11)20 x (31mod11)]mod11 ====== ▼ applying Fermat’s theorem [(1 mod 11)20x (3 mod 11)]mod 11 [1x3] mod 11=3. 4- Perform encryption and decryption using RSA algorithm for the following: a- p=3 q=11 m=5 Solution Key generation: n=p * q=3*11=33. φ(n)=(p-1)(q-1)=2*10=20. Select integer “e” where: gcd(φ(n),e)=1 and 1<e< φ(n) Choose e=3. Calculate d; where d≡e-1mod φ(n) de≡1 mod φ(n) where: d< φ(n) d*3≡1 mod 20 d=7. Public key: KU={3,33}; Private Key: KR={7,33}. Encryption: C=Me mod n = 53mod 33=[(51mod33)(52mod33)]mod33=[5*25]mod33 =26. Decryption: M=Cd mod n=267mod33=[(261mod33)(262mod33)(264mod33)]mod33 =[26*16*(16*16 mod33)]mod33=[26*16*25]mod33=5. b- p=13 q=11 M=9. Key generation:
  • 3. n=p * q=13*11=143. φ(n)=(p-1)(q-1)=12*10=120. Select integer “e” where: gcd(φ(n),e)=1 and 1<e< φ(n) Choose e=7. Calculate d; where d≡e-1mod φ(n) de≡1 mod φ(n) where: d< φ(n) d*7≡1 mod 120 721≡1mod120 d=721/7=103. Public key: KU={7,143}; Private Key: KR={103,143}. Encryption: C=Me mod n = 97mod 143=[(91mod143)(92mod143)(94mod143)]mod33 =[9*81*(81*81)mod143]mod143=[9*81*126]mod43=48. Decryption: M=Cd mod n=48103mod143 (48mod143)=48. (482mod143)=(48*48)mod143=16. (484mod143)=(16*16)mod143=113. (488mod143)=(113*113)mod143=42. (4816mod143)=(42*42)mod143=48. (4832mod48)=(48*48)mod143=16. (4864mod143)=(16*16mod)143=113. (4896mod143)=(16*113)mod143=92. (48100mod143)=(92*113)mod143=100. (48102mod143)=(100*16)mod143=27. (48103mod143)=(27*48)mod143=9. 5- In a public key system, an intruder intercepts the cipher text C=25, which is destined to a user whose public key is {7,133}. What is the plain text message M? Solution: We have: KU={e,n}={7,133} n=133=20305071110130170191=7*19. p=7, q=19. φ(n) =(7-1)(19-1)=108. de ≡ 1 mod φ(n) 7d ≡ 1 mod108. 7d mod 108=1. Maybe: 7d=108+1? d=109/7=15.57 no Maybe: 7d=108*2+1 d=217/7=31 OK. KR={31,133}. M=Cd mod n =2531 mod 133 251mod133=25. 252mod133=(25*25)mod133=93. 254mod133=(93*93)mod133=4 258mod133=(4*4)mod133=16. 2516mod133=(16*16)mod133=123. 2524mod133=(123*16)mod133=106. 2528mod133=(106*4)mod133=25.
  • 4. 2530mod133=(25*93)mod133=64. 31 M = 25 mod133=(64*25)mod133=4. M=4.