fMRI Data Analysis  Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D.
Acknowledgments National Alliance for Medical Image Computing NIH U54EB005149  Neuroimage Analysis Center   NIH P41RR01321...
Disclaimer It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the appl...
Goal of the tutorial Guiding you step by step through the process of using the fMRIEngine to  analyze fMRI data  and  visu...
fMRI engine Module <ul><li>The fMRIEngine is: </li></ul><ul><li>An  open-source package  for analyzing and visualizing bra...
Prerequisites <ul><li>This tutorial assumes that you have already completed Slicer Basics: </li></ul><ul><li>Loading and V...
Computer Resources <ul><li>This tutorial guides you through a full fMRI analysis of a real fMRI timeseries to get users fa...
Tutorial datasets The fMRI tutorial dataset is composed of  Structural scans .………….(anatomical3T.img) Functional scans…………...
fMRI Data pre-processing (SPM) c Realignment Motion Correction Normalization to MNI Smoothing
Data description Structural (MPRAGE):  ANALYZE format 135 slices 1.0 mm x 1.0 mm x 1.0 mm voxels Normalized to MNI Pre-pro...
Paradigm description <ul><li>Finger sequencing fMRI task to elicit  activation  in the hand regions of the  primary sensor...
Paradigm design 0 TRs 10 30 20 40 50 60 70 80 90 Cycle 1  Cycle 2  Cycle 3   Three cycles  rest | right hand | left hand r...
fMRI Engine compatibilities SPM fMRI pre-processing FSL fMRI pre-processing 3DSlicer fMRI full analysis and visualization
fMRI Engine compatibilities SPM fMRI  full  analysis FSL fMRI  full  analysis 3DSlicer visualization and modeling
fMRIEngine workflow Load preprocessed functional data Describe paradigm and stimulus schedule Specify linear modeling & es...
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Pa...
Loading the structural dataset Click on Add Volume in the main menu
Loading the structural dataset Click on Browse, select the file  Anatomical3T.hdr  in the directory/structural.  The anato...
Loading the structural dataset
fMRI Engine Select  Modules  in the main menu Select  Application  fMRIEngine
Load Image Sequence Pick  Sequence   Load  tab Click on Browse and select the file  functional01.hdr  from either dataset...
Load Image Sequence Slicer displays the load status of  the 30 (short dataset) or 90 (long dataset) functional volumes .
Load Image Sequence Slicer loads the functional volumes in the Viewer.
Set Image Display Click on the module  Volumes ,  and select the panel  Display Adjust  Win  and  Lev  to get best display...
Set Image Display Slicer updates the Window and Level settings. Click on the  V  button to display the axial slice in the ...
Set Image Display Click on the letter  I  in the control window to display the Inferior view.
Set Image Display Adjust the low threshold  Lo  to mask out background
Set Image Display The display settings apply to currently  viewed image in the sequence only
Set Sequence Display Click on  Set Window/Level/Thresholds  to apply to all volumes in the sequence Visually inspect seque...
Inspect Image Display Slicer displays the volumes of the sequence.
Select Image Sequence Specify the  number of runs = 1 , select the sequence  testFunctional Click on  Add  to assign the s...
Select Image Sequence Slicer assigns the sequence to run 1
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Pa...
Stimulus schedule Pick  Set Up  Tab in the fMRIEngine and choose the  Linear Modeling  detector
Linear Modeling The  General Linear Modeling  is a class of statistical tests assuming that the experimental data are comp...
Stimulus schedule Select the design type  Blocked
Paradigm timing parameters <ul><li>Repetition Time TR = 2s  </li></ul><ul><li>Durations: 10 TRs in all epochs </li></ul><u...
Stimulus schedule Enter the characteristics of the run TR = 2  and  Start Volume = 0 (ordinal number)
Stimulus schedule Enter the schedule for the first condition Short dataset:  Name = right  Onset = 10  Durations = 10 Long...
Stimulus schedule Enter the schedule for the second condition Short dataset:  Name = left  Onset = 20  Durations = 10 Long...
Stimulus schedule Scroll down in the  Set-up  panel to see the list of defined conditions
Editing the Stimulus schedule The list of specified conditions appears in the left panel
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Pa...
Model a Condition Select  Specify Modeling Click on  Model all conditions identically
Model a Condition Select  Condition:  all Waveform:  BoxCar Click on the question mark next to  Waveform  for detailed des...
Model a Condition Slicer displays a detailed description of the Stimulus function.
Model a Condition Select  - Convolution:  HRF (Hemodynamic Response Function) - Derivatives:  none
Nuisance Signal Modeling On the subpanel  Nuisance signal modeling , select  Trend model:  Discrete Cosine   Cutoff period...
Nuisance Signal Modeling Scroll down in the Set Up panel and click on  add to model
Nuisance Signal Modeling The list of explanatory variables (EV) appears in the left panel, including the baseline that is ...
View Design Matrix Click  View Design  to  display the design matrix
View Design Matrix Short dataset Long dataset A window displaying the model design appears.
Design Matrix v1 = left modeled condition v2 = right modeled condition v3 = baseline  v4,v5,v6 = low frequency noise Move ...
Design Matrix White    positive signal intensity 1 Mid-Grey    null intensity 0 Black    negative  intensity - 1  Obser...
Design Matrix Modeled Signal Y(tp) = b1 v1(tp) + b2 v2(tp)  +b3  v3 (tp) + b4  v4(tp) + b5  v5(tp) + b6  v6(tp)  Y(t) t Ea...
Design Matrix Move the mouse up and down to browse the different volumes associated with the time points. Y(t) tp t
Estimation Select  Specify Estimation  to estimate B and e at every voxel: Y = BX + e
Estimating model parameters Select  run1  and  click on  Fit Model The  Estimation panel  appears
Estimating model parameters Slicer shows the progress of model estimation
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Pa...
Specify Contrasts In the  SetUp  panel, select  Specify    Contrasts
Specify Contrasts The Panel for the contrasts appears
Specify Contrasts Choose the  contrast type   t-test Enter the   contrast name  myContrast,  and the Volume Name  R-L_acti...
Contrast Vector <ul><li>Encoding of the effect that you want to test </li></ul><ul><li>A contrast component per column in ...
Specify Contrasts Specify the contrast vector  1 –1 0 0  (enter a space between the values) Click  OK  to add this contras...
Specify Contrasts The resulting contrast named   myContrast-R-L_activation appears in the list of specified contrasts.
Check contrasts & model Click on  View Design  to display  the Design matrix
Design Matrix Short dataset Long dataset Check that the contrast and model are correct. A window displaying the design mat...
Perform activation detection Click on the tab  Detect and select the contrast  myContrast-R-L_activation Click on  Compute...
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Pa...
Select the activation volume Select the resulting  activation volume (t-map) myContrast-R-L_activation Click on  Select Cl...
Threshold Click on the  Thrshold  Tab
Threshold Slicer indicates the degree of freedom (DoF): Nvol-1 Short dataset   DoF=29 Long dataset   DoF=89 Specify the  p...
Null hypothesis <ul><li>H0: there is no difference between the right hand condition and left hand condition on the fMRI si...
Threshold Slicer calculates the corresponding threshold t Stat Short dataset  t Stat = 3.7 Long dataset t Stat = 3.4
Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset  Long dataset
fMRI color palette Select the panel  Display and set the Active Volume to be  the activation volume  myContrast-R-L_activa...
fMRI color palette Adjust the  Window  and  Level  of the color palette for the volume  myContrast-R-L_activationMap Short...
fMRI color palette -MAX +MAX No statistical significance Positive activation Negative activation -MAX +MAX No statistical ...
Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset  Long dataset
Visualize Left click on  Bg  in the 2D anatomical viewers to display the volume  anatomical 3T  in background Short datase...
Visualize Short dataset  Long dataset Slicer displays the activation map superimposed on the anatomical images.
Inspect Pick the tab  Plot  and select the  condition = right  Select  Timecourse  plot option
Inspect Mouse over labelled area in Slice Window and left click on the pixel  R = -40 A = 0 S = 20,  which   is highly sig...
Voxel Timecourse Slicer displays the voxel’s actual timecourse (response)  plotted   with the modeled condition (right  ha...
Inspect Mouse over labelled area in Slice Window and left click on the pixel  R = 40 A = 0 S = 20,  which is highly signif...
Voxel Timecourse Slicer displays the voxel’s timecourse plotted with the modeled condition for the selected voxel Short da...
Contralateral side vs Ipsilateral side (short dataset) During the  right hand condition , the observed signal  decreases i...
Contralateral side vs Ipsilateral side (long dataset) During the  right hand condition , the observed signal  decreases in...
Inspect Select  Peristimulus plot  option and click on the voxel  (-40,0,20) in the positive activation region
Voxel Peristimulus Plot <ul><li>Slicer displays a plot of the mean time course values of the </li></ul><ul><li>selected vo...
Inspect Select  Peristimulus histogram  option and click on the voxel in the negative activation region (40,0,20)
Voxel Peristimulus Plot <ul><li>Slicer displays a plot of the mean time course values of the </li></ul><ul><li>selected vo...
Activation-based region of interest Select the  ROI  panel and RegionMap tab Choose  New   Activation  from  Label map
Activation-based region of interest Click  Create label map from activation,  and wait while activation “blobs” are labelled
Activation-based region of interest The label map is shown in Foreground, and the activation map  is shown in Background. ...
Region Statistics Select the subtab  Stats Select one or multiple regions in the left hemisphere to include in analysis by...
Region Statistics Short dataset Long dataset The selected regions appear in green.
Region Statistics Click  Show stats  to display the statistics for the selected regions
Region Statistics Slicer displays the statistics for the selected region(s) Short dataset Long dataset
Region Timecourse Select  Timecourse plot  option and click on  Plot time series  for this region.
Region Timecourse Slicer displays the region timecourse plot Short dataset Long dataset
Region Peristimulus Plot Select  Peristimulus plot  and click  Plot time series  for this region.
Region Peristimulus Plot Slicer displays the Region Peristimulus Plot Short dataset Long dataset
3D Visualization Click on  Clear selections   and display the structural volume  anatomical3T  in the background ( Bg ) an...
3D Visualization Short dataset Long dataset
3D Visualization Fade  in the activation volume for a good view of combined data
3D Visualization Short dataset Long dataset
Conclusion <ul><li>Analysis and visualization of fMRI data </li></ul><ul><li>F ramework activation detection algorithms an...
Upcoming SlideShare
Loading in...5
×

Functional Magnetic Resonance Imaging Analysis-3765

1,153

Published on

http://hdl.handle.net/1926/525

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,153
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
44
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Functional Magnetic Resonance Imaging Analysis-3765

  1. 1. fMRI Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D.
  2. 2. Acknowledgments National Alliance for Medical Image Computing NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research Network NCRR/NIH 5 MOI RR 000827 Harvard Center for Neurodegeneration and Repair Brain Imaging Laboratory, Dartmouth Medical School Surgical Planning Lab, Harvard Medical School Sandy Wells, Steve Pieper, Cindy Wible, Haiying Liu, Carsten Richter
  3. 3. Disclaimer It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the applicable laws, regulations and rules.
  4. 4. Goal of the tutorial Guiding you step by step through the process of using the fMRIEngine to analyze fMRI data and visualize results within Slicer. A sensory motor paradigm was used for the tutorial dataset.
  5. 5. fMRI engine Module <ul><li>The fMRIEngine is: </li></ul><ul><li>An open-source package for analyzing and visualizing brain activations supporting the file formats DICOM, ANALYZE, and NIfTI. </li></ul><ul><li>A developing framework for a suite of activation detection algorithms and inference engines; currently it provides a linear modeling detector. </li></ul><ul><li>A research prototype : the full save/reload functionalities are under development. There are no capabilities at this time to do the fMRI pre-processing steps. </li></ul>
  6. 6. Prerequisites <ul><li>This tutorial assumes that you have already completed Slicer Basics: </li></ul><ul><li>Loading and Viewing Data (Slicer Training 1) </li></ul><ul><li>Saving Data ( Slicer Training 7) </li></ul><ul><li>Supporting material: </li></ul><ul><li>www.na-mic.org/Wiki/index.php/Slicer:Workshops:User_Training_101 </li></ul>
  7. 7. Computer Resources <ul><li>This tutorial guides you through a full fMRI analysis of a real fMRI timeseries to get users familiar with the interface and workflow. </li></ul><ul><li>You have the option of using either </li></ul><ul><ul><li>a full-dataset (90 time pts) fMRI-long-dataset.zip for which your computer must have adequate processing speed and RAM (we recommend at least 3GB) or </li></ul></ul><ul><ul><li>a truncated portion ( 30 time pts) fMRI-short-dataset.zip of the full dataset, that requires at least 1GB RAM. </li></ul></ul><ul><li>The short dataset contains the first 30 time points of the full dataset. </li></ul><ul><li>Please use the appropriate dataset for your computer. </li></ul>
  8. 8. Tutorial datasets The fMRI tutorial dataset is composed of Structural scans .………….(anatomical3T.img) Functional scans………….(functionalxx.img) www.na-mic.org/Wiki/index.php/Slicer:Workshops:User_Training_101
  9. 9. fMRI Data pre-processing (SPM) c Realignment Motion Correction Normalization to MNI Smoothing
  10. 10. Data description Structural (MPRAGE): ANALYZE format 135 slices 1.0 mm x 1.0 mm x 1.0 mm voxels Normalized to MNI Pre-processed Functional (EPI): NIfTI format 68 slices 2.0 mm x 2.0 mm x 2.0 mm voxels Repetition Time TR = 2s
  11. 11. Paradigm description <ul><li>Finger sequencing fMRI task to elicit activation in the hand regions of the primary sensory motor cortex </li></ul><ul><li>Block design motor paradigm </li></ul><ul><li>Subject touches thumb to fingers sequentially within block (thumb touches first through fourth finger) </li></ul><ul><li>Subject alternates left and right hand </li></ul>
  12. 12. Paradigm design 0 TRs 10 30 20 40 50 60 70 80 90 Cycle 1 Cycle 2 Cycle 3 Three cycles rest | right hand | left hand right left rest right left rest right left rest
  13. 13. fMRI Engine compatibilities SPM fMRI pre-processing FSL fMRI pre-processing 3DSlicer fMRI full analysis and visualization
  14. 14. fMRI Engine compatibilities SPM fMRI full analysis FSL fMRI full analysis 3DSlicer visualization and modeling
  15. 15. fMRIEngine workflow Load preprocessed functional data Describe paradigm and stimulus schedule Specify linear modeling & estimate model parameters Define contrasts and compute parametric map Statistical inference Inspect data & combine with other analyses
  16. 16. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  17. 17. Loading the structural dataset Click on Add Volume in the main menu
  18. 18. Loading the structural dataset Click on Browse, select the file Anatomical3T.hdr in the directory/structural. The anatomical volume in the short and long datasets are identical. Select the reader Generic Reader in the Props Panel of the module Volumes .
  19. 19. Loading the structural dataset
  20. 20. fMRI Engine Select Modules in the main menu Select Application  fMRIEngine
  21. 21. Load Image Sequence Pick Sequence  Load tab Click on Browse and select the file functional01.hdr from either dataset. Select Load Multiple Files Enter the sequence name testFunctional and click on Apply.
  22. 22. Load Image Sequence Slicer displays the load status of the 30 (short dataset) or 90 (long dataset) functional volumes .
  23. 23. Load Image Sequence Slicer loads the functional volumes in the Viewer.
  24. 24. Set Image Display Click on the module Volumes , and select the panel Display Adjust Win and Lev to get best display of image data
  25. 25. Set Image Display Slicer updates the Window and Level settings. Click on the V button to display the axial slice in the Viewer.
  26. 26. Set Image Display Click on the letter I in the control window to display the Inferior view.
  27. 27. Set Image Display Adjust the low threshold Lo to mask out background
  28. 28. Set Image Display The display settings apply to currently viewed image in the sequence only
  29. 29. Set Sequence Display Click on Set Window/Level/Thresholds to apply to all volumes in the sequence Visually inspect sequence using the Volume index to check for intensities aberrations Click on fMRIEngine , select the panel Sequence, and pick the tab Select
  30. 30. Inspect Image Display Slicer displays the volumes of the sequence.
  31. 31. Select Image Sequence Specify the number of runs = 1 , select the sequence testFunctional Click on Add to assign the sequence to run 1
  32. 32. Select Image Sequence Slicer assigns the sequence to run 1
  33. 33. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  34. 34. Stimulus schedule Pick Set Up Tab in the fMRIEngine and choose the Linear Modeling detector
  35. 35. Linear Modeling The General Linear Modeling is a class of statistical tests assuming that the experimental data are composed of the linear combination of different model factors, along with uncorrelated noise Y = BX + e B = set of experimental parameters Y = Observed data X = Design Matrix e = noise
  36. 36. Stimulus schedule Select the design type Blocked
  37. 37. Paradigm timing parameters <ul><li>Repetition Time TR = 2s </li></ul><ul><li>Durations: 10 TRs in all epochs </li></ul><ul><li>Onsets (in TRs): </li></ul><ul><li>Rest: 0 30 60 </li></ul><ul><li>Right: 10 40 70 </li></ul><ul><li>Left : 20 50 80 </li></ul>
  38. 38. Stimulus schedule Enter the characteristics of the run TR = 2 and Start Volume = 0 (ordinal number)
  39. 39. Stimulus schedule Enter the schedule for the first condition Short dataset: Name = right Onset = 10 Durations = 10 Long dataset: Name = right Onset = 10 40 70 Durations = 10 10 10 Click on OK to add this condition to the list of defined conditions
  40. 40. Stimulus schedule Enter the schedule for the second condition Short dataset: Name = left Onset = 20 Durations = 10 Long dataset: Name = left Onset = 20 50 80 Durations = 10 10 10 Click on OK to add this condition to the list of defined conditions
  41. 41. Stimulus schedule Scroll down in the Set-up panel to see the list of defined conditions
  42. 42. Editing the Stimulus schedule The list of specified conditions appears in the left panel
  43. 43. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  44. 44. Model a Condition Select Specify Modeling Click on Model all conditions identically
  45. 45. Model a Condition Select Condition: all Waveform: BoxCar Click on the question mark next to Waveform for detailed description of the modeling option.
  46. 46. Model a Condition Slicer displays a detailed description of the Stimulus function.
  47. 47. Model a Condition Select - Convolution: HRF (Hemodynamic Response Function) - Derivatives: none
  48. 48. Nuisance Signal Modeling On the subpanel Nuisance signal modeling , select Trend model: Discrete Cosine Cutoff period: default Click on use default cutoff
  49. 49. Nuisance Signal Modeling Scroll down in the Set Up panel and click on add to model
  50. 50. Nuisance Signal Modeling The list of explanatory variables (EV) appears in the left panel, including the baseline that is automatically added. The string are Slicer specific representation of the modeling.
  51. 51. View Design Matrix Click View Design to display the design matrix
  52. 52. View Design Matrix Short dataset Long dataset A window displaying the model design appears.
  53. 53. Design Matrix v1 = left modeled condition v2 = right modeled condition v3 = baseline v4,v5,v6 = low frequency noise Move the mouse from left to right over the columns of the matrix to display the characteristics of the modeled conditions.
  54. 54. Design Matrix White  positive signal intensity 1 Mid-Grey  null intensity 0 Black  negative intensity - 1 Observe the different values of the signal intensity in the matrix.
  55. 55. Design Matrix Modeled Signal Y(tp) = b1 v1(tp) + b2 v2(tp) +b3 v3 (tp) + b4 v4(tp) + b5 v5(tp) + b6 v6(tp) Y(t) t Each column represents the contribution from each condition we might see in a voxel time course. tp t
  56. 56. Design Matrix Move the mouse up and down to browse the different volumes associated with the time points. Y(t) tp t
  57. 57. Estimation Select Specify Estimation to estimate B and e at every voxel: Y = BX + e
  58. 58. Estimating model parameters Select run1 and click on Fit Model The Estimation panel appears
  59. 59. Estimating model parameters Slicer shows the progress of model estimation
  60. 60. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  61. 61. Specify Contrasts In the SetUp panel, select Specify  Contrasts
  62. 62. Specify Contrasts The Panel for the contrasts appears
  63. 63. Specify Contrasts Choose the contrast type t-test Enter the contrast name myContrast, and the Volume Name R-L_activation
  64. 64. Contrast Vector <ul><li>Encoding of the effect that you want to test </li></ul><ul><li>A contrast component per column in the design matrix ( trailing zeros may be omitted) </li></ul><ul><li>1 0 0 0 0 0  test for whether there is any effect for the right hand </li></ul><ul><li>1 -1 0 0 0 0  statistically contrast the effect for the right and left hand </li></ul>
  65. 65. Specify Contrasts Specify the contrast vector 1 –1 0 0 (enter a space between the values) Click OK to add this contrast to a list of defined contrasts Select the statistical test t-test
  66. 66. Specify Contrasts The resulting contrast named myContrast-R-L_activation appears in the list of specified contrasts.
  67. 67. Check contrasts & model Click on View Design to display the Design matrix
  68. 68. Design Matrix Short dataset Long dataset Check that the contrast and model are correct. A window displaying the design matrix and contrast vector appears.
  69. 69. Perform activation detection Click on the tab Detect and select the contrast myContrast-R-L_activation Click on Compute to compute the statistical map of activation (t-test)
  70. 70. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  71. 71. Select the activation volume Select the resulting activation volume (t-map) myContrast-R-L_activation Click on Select Click on the View Tab Select the subpanel Choose
  72. 72. Threshold Click on the Thrshold Tab
  73. 73. Threshold Slicer indicates the degree of freedom (DoF): Nvol-1 Short dataset DoF=29 Long dataset DoF=89 Specify the p-Value threshold 0.001 and hit Enter
  74. 74. Null hypothesis <ul><li>H0: there is no difference between the right hand condition and left hand condition on the fMRI signal. This is tested at each voxel. </li></ul><ul><li>If the resulting probability is lower than the experiment’s alpha value (p <0.001), the null hypothesis can be rejected. </li></ul>
  75. 75. Threshold Slicer calculates the corresponding threshold t Stat Short dataset t Stat = 3.7 Long dataset t Stat = 3.4
  76. 76. Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset Long dataset
  77. 77. fMRI color palette Select the panel Display and set the Active Volume to be the activation volume myContrast-R-L_activationMap Click on the module Volumes
  78. 78. fMRI color palette Adjust the Window and Level of the color palette for the volume myContrast-R-L_activationMap Short dataset Long dataset
  79. 79. fMRI color palette -MAX +MAX No statistical significance Positive activation Negative activation -MAX +MAX No statistical significance Positive activation Negative activation Short dataset Long dataset
  80. 80. Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset Long dataset
  81. 81. Visualize Left click on Bg in the 2D anatomical viewers to display the volume anatomical 3T in background Short dataset Long dataset
  82. 82. Visualize Short dataset Long dataset Slicer displays the activation map superimposed on the anatomical images.
  83. 83. Inspect Pick the tab Plot and select the condition = right Select Timecourse plot option
  84. 84. Inspect Mouse over labelled area in Slice Window and left click on the pixel R = -40 A = 0 S = 20, which is highly significant in the activation map. The left-hemisphere of the subject is shown on the right side of the image, in radiological convention. Short dataset Long dataset
  85. 85. Voxel Timecourse Slicer displays the voxel’s actual timecourse (response) plotted with the modeled condition (right hand ) for the selected voxel. Short dataset Long dataset The graphs show a good correlation between the observed BOLD signal Y(t) and the model.
  86. 86. Inspect Mouse over labelled area in Slice Window and left click on the pixel R = 40 A = 0 S = 20, which is highly significant in the opposite direction. Short dataset Long dataset
  87. 87. Voxel Timecourse Slicer displays the voxel’s timecourse plotted with the modeled condition for the selected voxel Short dataset Long dataset If we were plotting the left hand condition, what correlation would be observed?
  88. 88. Contralateral side vs Ipsilateral side (short dataset) During the right hand condition , the observed signal decreases in the ipsilateral side and increases on the contralateral side.
  89. 89. Contralateral side vs Ipsilateral side (long dataset) During the right hand condition , the observed signal decreases in the ipsilateral side and increases on the contralateral side.
  90. 90. Inspect Select Peristimulus plot option and click on the voxel (-40,0,20) in the positive activation region
  91. 91. Voxel Peristimulus Plot <ul><li>Slicer displays a plot of the mean time course values of the </li></ul><ul><li>selected voxel in the positive activation region during </li></ul><ul><li>different blocks. </li></ul>Short dataset Long dataset
  92. 92. Inspect Select Peristimulus histogram option and click on the voxel in the negative activation region (40,0,20)
  93. 93. Voxel Peristimulus Plot <ul><li>Slicer displays a plot of the mean time course values of the </li></ul><ul><li>selected voxel in the negative activation region during </li></ul><ul><li>different blocks. </li></ul>Short dataset Long dataset
  94. 94. Activation-based region of interest Select the ROI panel and RegionMap tab Choose New Activation from Label map
  95. 95. Activation-based region of interest Click Create label map from activation, and wait while activation “blobs” are labelled
  96. 96. Activation-based region of interest The label map is shown in Foreground, and the activation map is shown in Background. Short dataset Long dataset
  97. 97. Region Statistics Select the subtab Stats Select one or multiple regions in the left hemisphere to include in analysis by clicking in Slice Window. Select the condition right.
  98. 98. Region Statistics Short dataset Long dataset The selected regions appear in green.
  99. 99. Region Statistics Click Show stats to display the statistics for the selected regions
  100. 100. Region Statistics Slicer displays the statistics for the selected region(s) Short dataset Long dataset
  101. 101. Region Timecourse Select Timecourse plot option and click on Plot time series for this region.
  102. 102. Region Timecourse Slicer displays the region timecourse plot Short dataset Long dataset
  103. 103. Region Peristimulus Plot Select Peristimulus plot and click Plot time series for this region.
  104. 104. Region Peristimulus Plot Slicer displays the Region Peristimulus Plot Short dataset Long dataset
  105. 105. 3D Visualization Click on Clear selections and display the structural volume anatomical3T in the background ( Bg ) and the activation map myContrast-R-L_activation in the foreground ( Fg ). Display three anatomical slices in the 3D Viewer.
  106. 106. 3D Visualization Short dataset Long dataset
  107. 107. 3D Visualization Fade in the activation volume for a good view of combined data
  108. 108. 3D Visualization Short dataset Long dataset
  109. 109. Conclusion <ul><li>Analysis and visualization of fMRI data </li></ul><ul><li>F ramework activation detection algorithms and inference engines </li></ul><ul><li>Open-Source environment </li></ul>
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×