Recovery- Doug Stacey CSTS March 2011

2,455 views

Published on

Published in: Health & Medicine
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,455
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
167
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • When you finish one bout of exercise/training – you immediately begin preparing for the next
  • Recovery- Doug Stacey CSTS March 2011

    1. 1. <ul><li>Maximizing Potential </li></ul><ul><li>“ The Science of Recovery” </li></ul>March 25, 2011 Doug Stacey, MSc, BHScPT Sport Physiotherapist - Diploma
    2. 2. <ul><li>“ Higher </li></ul><ul><li>Faster </li></ul><ul><li>Stronger” </li></ul>
    3. 3. <ul><li>COST?? </li></ul><ul><ul><li>Fatigue? </li></ul></ul><ul><ul><li>Injury? </li></ul></ul><ul><ul><li>Over-training? </li></ul></ul>
    4. 4. Training Response Arja L.T. et al, 2001
    5. 5. Training Response Arja L.T. et al, 2001
    6. 6. <ul><li>Fatigue </li></ul><ul><ul><li>“ A failure to maintain the required or expected force and power output; or a reduction in the capacity to generate force and power.” </li></ul></ul>
    7. 7. Central/Peripheral - Metabolic Fatigue <ul><li>Decreased Energy Supply/Production </li></ul><ul><ul><li>Glycogen </li></ul></ul><ul><ul><li>ATP & PCr </li></ul></ul><ul><li>Accumulation of Metabolites </li></ul><ul><ul><li>Lactate and pH - H+, Pi </li></ul></ul><ul><ul><li>Ammonia </li></ul></ul><ul><ul><li>Electrolytes – K + , Na +, Ca + </li></ul></ul><ul><ul><li>Heat </li></ul></ul><ul><ul><li>Magnesium ions (Mg 2+ ) </li></ul></ul><ul><ul><li>Adenosine diphosphate (ADP) </li></ul></ul><ul><ul><li>Reactive Oxygen Species </li></ul></ul>
    8. 8. Peripheral versus Central Fatigue <ul><li>Central </li></ul><ul><li>-Reduction in recruitment/ activation of neurotransmitters </li></ul><ul><li>-CNS </li></ul><ul><li>-motor neuron </li></ul><ul><li>-muscle fiber surface membrane </li></ul><ul><li>Peripheral </li></ul><ul><li>-Reduction in muscle contraction </li></ul><ul><li>-Ca ++ binding to troponin </li></ul><ul><li>-crossbridges – actin and myosin </li></ul><ul><li>-SR Ca ++ pump </li></ul>
    9. 9. Central/Peripheral - Metabolic Fatigue Hargreaves, (2005)
    10. 10. “ Fatigue” - the Numbers…. <ul><li>>60% of long distance runners during their career Urhausen, (2002) </li></ul><ul><li>> 50% of professional soccer players during a 5 month season Urhausen, (2002) </li></ul><ul><li>Expected incidence of 7-20% of elite athletes at any one time Hooper, (1995) </li></ul>
    11. 11. “ Recovery” <ul><li>High usage with athletes </li></ul><ul><li>LITTLE scientific validation </li></ul>
    12. 12. Recovery <ul><li>Low-Moderate Intensity Exercise </li></ul><ul><li>Stretching </li></ul><ul><li>Nutrition and Hydration </li></ul><ul><li>Therapeutic Modalities </li></ul><ul><li>Rest </li></ul>
    13. 13. <ul><li>Low-Moderate </li></ul><ul><li>Intensity Exercise </li></ul>
    14. 14. Low-Moderate Intensity Exercise <ul><li>10-20 minutes @ 40-60% VO2max, Sub AeT, or AeT </li></ul><ul><li>~50% reduction in La after only 10 min </li></ul><ul><li> Belcastro and Bonen, (1975) </li></ul>
    15. 15. Glycolytic System Low-Moderate Intensity Exercise glucose / glycogen pyruvate NAD NADH (mitochondria) NADH NAD H + + e- O 2 lactate LDH acetyl CoA PDH
    16. 16. What’s the problem with increased lactate? Low-Moderate Intensity Exercise “ Lactic Acid ” H + + Lactate –  muscle pH “ Metabolic inhibition” (  enzyme activity) “ Contractile inhibition” (  X-bridge cycling )
    17. 17. Metabolic Fatigue Accumulation of Metabolites – Acidosis <ul><li>H + and Pi </li></ul><ul><ul><li>Inhibit the rate of force development </li></ul></ul><ul><ul><li>Inhibit velocity or cross-bridge cycle rates </li></ul></ul><ul><ul><li>BUT … </li></ul></ul><ul><ul><li>Force production still evident despite high levels of H + and Pi </li></ul></ul><ul><ul><li>Full recovery of La within 1 hr regardless of intervention – still performance deficits </li></ul></ul><ul><ul><li>Acidosis may have a protective effect </li></ul></ul>Low-Moderate Intensity Exercise
    18. 18. Active Recovery <ul><li>10-20 minutes @ 40-60% VO2max </li></ul><ul><ul><ul><li>Increased blood flow </li></ul></ul></ul><ul><ul><ul><ul><li>Resynthesizes high-energy phosphates </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Replenishes oxygen in the blood and muscle </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Restores body fluid homeostasis </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Limits the harmful effects of immunosuppression </li></ul></ul></ul></ul><ul><li>Dupont et al., (2004) </li></ul><ul><li>Wigernaes et al., (2001) </li></ul><ul><li>Wigernaes et al., (2000) </li></ul><ul><li>Bangsbo et al., (1996) </li></ul>Take home points…
    19. 19. <ul><li>2. Stretching </li></ul>
    20. 20. Stretching <ul><li>Widespread acceptance </li></ul><ul><ul><ul><li>Improves flexibility </li></ul></ul></ul><ul><ul><ul><li>Reduces injury risk </li></ul></ul></ul><ul><ul><ul><li>Improves performance </li></ul></ul></ul>“ Flexibility is the extent to which a muscle can be lengthened by a given amount of force” Limited scientific evidence
    21. 21. Stretching <ul><li>Techniques </li></ul><ul><ul><ul><li>Active </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Static – hold 15-60 s </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Isometric – exert against fixed resistance </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Ballistic – rapid muscle lengthening – bouncing </li></ul></ul></ul></ul></ul><ul><ul><ul><li>Passive </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Assisted – externally applied pressure – 15-60 s </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Proprioceptive Neuromuscular facilitation (PNF) – contract/relax - ~5s </li></ul></ul></ul></ul></ul>
    22. 22. Stretching <ul><li>Flexibility </li></ul><ul><li>Roberts and Wilson (1999) </li></ul><ul><ul><ul><li>15-30 s better than <15s or >30s </li></ul></ul></ul><ul><li>Laroche and Connolly (2006) </li></ul><ul><ul><ul><li>30s of static as effective as 30s ballistic </li></ul></ul></ul><ul><li>Shrier (2004) </li></ul><ul><ul><ul><li>Single stretching session good for ~90min </li></ul></ul></ul><ul><ul><ul><li>Regular stretching (3-5d/week) good for many weeks </li></ul></ul></ul>
    23. 23. Stretching <ul><li>Injury Prevention </li></ul><ul><li>Pope et al. (1998, 2000) </li></ul><ul><ul><ul><li>Male army recruits </li></ul></ul></ul><ul><ul><ul><li>1284 – stretching group – 181 injuries </li></ul></ul></ul><ul><ul><ul><li>1346 – control group – 200 injuries </li></ul></ul></ul><ul><ul><ul><li>** aerobic fitness a stronger predictor of injury risk </li></ul></ul></ul><ul><li>Thacker et al. (2004) </li></ul><ul><ul><ul><li>Review of 361 articles (6 qualified) </li></ul></ul></ul><ul><ul><ul><li>NO convincing evidence for pre-exercise stretching </li></ul></ul></ul>
    24. 24. Stretching <ul><li>Performance </li></ul><ul><li>Hayes and Walker (2007) </li></ul><ul><ul><ul><li>Pre-exercise stretching has NO impact on running economy </li></ul></ul></ul><ul><li>Shrier (2004) </li></ul><ul><ul><ul><li>NO benefit of acute stretching on isometric force production, isokinetic torque, or jumping height </li></ul></ul></ul><ul><ul><ul><li>Regular stretching improves strength, jump height and running speed </li></ul></ul></ul><ul><li>Fowles et al. (2000) and Kokkonen et al. (1998) </li></ul><ul><ul><ul><li>Strength reduced up to 1 hour after acute bout of stretching </li></ul></ul></ul><ul><ul><ul><li>Alters visco-elastic behavior of muscle and tendon </li></ul></ul></ul>
    25. 25. Stretching <ul><li>Take Home Points… </li></ul><ul><li>Regular stretching – post activity improves flexibility and performance </li></ul><ul><li>Pre-exercise stretching has little effect on Performance or Injury Prevention </li></ul>
    26. 26. <ul><li>3. Nutrition and Hydration </li></ul>
    27. 27. Nutrition and Hydration <ul><li>Nutrition </li></ul><ul><li>Hydration </li></ul>
    28. 28. Main Food Energy Sources in Exercise Metabolism • amino acids 95-100% of total energy production “ fuel mix” depends on exercise intensity Nutrition • glucose • glycogen • fatty acids • triglycerides Carbohydrates (CHO) Lipids (Fats) Protein
    29. 29. Nutrition <ul><li>Short Term Recovery </li></ul><ul><ul><ul><li>Restore carbohydrate stores </li></ul></ul></ul><ul><li>Long Term Recovery </li></ul><ul><ul><ul><li>Optimize protein synthesis </li></ul></ul></ul>Strategies - (sport, type of exercise, intensity, duration, time)
    30. 30. <ul><li>Short Term - Glycogen Resynthesis </li></ul><ul><li>Begins immediately post-exercise </li></ul><ul><li>Rapid during first 5-6 h of recover </li></ul><ul><li>Goforth et al. (2003) </li></ul><ul><li>1 - 1.5 g CHO/kg body weight – every 2 hours until next meal </li></ul><ul><li>OR… </li></ul><ul><li>Greater recovery with 1.2 g/kg/30min over 5 hr period </li></ul><ul><ul><ul><li>Especially with limited time between events </li></ul></ul></ul><ul><li>van Loon et al., (2000) </li></ul>Nutrition
    31. 31. <ul><li>Short Term </li></ul>Recovery of endurance running capacity 4 hr after the first run (70% VO2 for 90min) Fallowfield et al., (1995) Time Nutrition Long Term Glycogen Resynthesis – Endurance Performance Recovery of endurance running capacity 22 hr after the first run (70% VO2 for 90min) Fallowfield et al., (1993) Time
    32. 32. <ul><li>Glycogen Resynthesis – High-Intensity Performance </li></ul>Recovery of intermittent high-intensity performance (15-min shuttle run) 22 hr after the first bout. Nicholas et al., (1997) # shuttle runs/15 min Nutrition
    33. 33. <ul><li>Long-Term - Protein </li></ul><ul><li>Daily Requirements </li></ul><ul><li>Dietary Reference Intake (DRI) – 0.8 g protein/kg/d - persons >18yrs of age – irrespective of activity status </li></ul><ul><li>Endurance athletes- recovery with 1.2 -1.4 g/kg/d </li></ul><ul><li>Resistance athletes – recovery with 1.6 – 1.7 g/kg/d </li></ul><ul><li>(ACSM, ADA, DC) </li></ul><ul><li>Protein Resynthesis </li></ul><ul><li>Begins immediately post-exercise – last up to 24 hrs </li></ul><ul><li>Rapid during first 5-6 h of recover with as little as 6g protein/hr until next meal </li></ul><ul><li>No further effect on performance or glycogen resynthesis </li></ul><ul><li>Philips, (2004) </li></ul>Nutrition
    34. 34. <ul><li>Protein Resynthesis </li></ul>Net protein balance (synthesis minus breakdown) under the same condi- tions. AA, amino acid; RE, resistance exercise. Phillips, (2004) Nutrition
    35. 35. Protein and CHO
    36. 36. <ul><li>Post-Exercise – a high-carbohydrate diet ( 10g/kg/d ) is essential for glycogen resynthesis </li></ul><ul><li>Short-term – Greater recovery with 1.2 g/kg/30min over 5 hr period </li></ul><ul><li>Better glycogen recovery = better performance in both ST and LT activities </li></ul>Nutrition Take home points… <ul><li>Protein is essential for muscle anabolism post exercise – as little as 6g will boost synthesis </li></ul><ul><li>Protein with CHO in recovery phase effective for glycogen re-synthesis </li></ul>
    37. 37. <ul><li>Recovery </li></ul><ul><li>Karp et al., Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metabol.,16:78-91. 2006. </li></ul>The results of this study suggest that chocolate milk is an effective recovery aid between two exhausting exercise bouts. Nutrition
    38. 38. Hydration <ul><li>Dehydration </li></ul><ul><ul><ul><li>Impaired heat dissipation </li></ul></ul></ul><ul><ul><ul><li>Increased core temperature </li></ul></ul></ul><ul><ul><ul><li>Increased cardiovascular strain </li></ul></ul></ul><ul><ul><ul><li>Impaired motor function </li></ul></ul></ul>
    39. 39. Hydration <ul><li>Exercise corresponding to an average intensity of 75% VO 2max – 90 min soccer game </li></ul><ul><li>Players may lose sweat up to 2 liters/hour </li></ul><ul><li>Increases with -heat, humidity, altitude </li></ul><ul><li>33 0 C, 40% humidity = fluid loss of 3.1 % body mass </li></ul><ul><li>>1% body mass will impair performance </li></ul>Reilly and Ekblom, (2005)
    40. 40. Hydration Recommendations: Institute of Medicine (IOM) – 2004 <ul><li>Sedentary </li></ul><ul><ul><ul><li>Males – 3.7 L/day (16 cups of fluid) </li></ul></ul></ul><ul><ul><ul><li>Females – 2.7 L/day (12 cups of fluid) </li></ul></ul></ul><ul><li>Active/Athletes </li></ul><ul><ul><ul><li>Males/Females – 5-10 L/day </li></ul></ul></ul><ul><ul><ul><li>Based on training conditions </li></ul></ul></ul>Hydration Kenny, (2006)
    41. 41. Hydration Recommendations: Institute of Medicine (IOM) – 2004 <ul><li>Sodium </li></ul><ul><ul><ul><li>RDA – 3.8 g/day (upper level 5.8 g/day for athletes) </li></ul></ul></ul><ul><ul><ul><li>Average American consumes 8-12 g table salt/day </li></ul></ul></ul><ul><li>Potassium </li></ul><ul><ul><ul><li>RDA - 4.7 g/day </li></ul></ul></ul><ul><ul><ul><li>Sweat concentration rarely exceeds 10 mmol/L </li></ul></ul></ul>Hydration Kenny, (2006)
    42. 42. How to Rehydrate? <ul><li>After the game/practice, drink 2 cups of fluid for every pound body weight lost </li></ul><ul><li>Replace fluids lost due to sweating by drinking: </li></ul><ul><li>water, juices, sport drinks </li></ul><ul><li>Or eating: </li></ul><ul><ul><li>watery foods such as soups, fruits, vegetables </li></ul></ul>Hydration
    43. 43. Take home points… Hydration IOM Guidelines, (2004) Sedentary Daily Allowance Sedentary Upper Limit Active/Athlete Daily Allowance Active/Athlete Upper Limit Water 3.7 L/day (male) 2.7 L/day (female) None 3.7 L/day (male) 2.7 L/day (female) None Sodium 1.5 g/day (3.8 g/day salt) 2.3 g/day (5.8 g/day salt) >1.5 g/day (>10 g/day salt) None Potassium 4.7 g/day None 4.7 g/day None
    44. 44. <ul><li>4. Therapeutic modalities </li></ul>
    45. 45. Therapeutic modalities <ul><li>Hydrotherapy </li></ul><ul><li>Massage </li></ul>
    46. 46. A. Hydrotherapy <ul><li>Cryotherapy </li></ul><ul><li>Contrast therapy </li></ul><ul><li>Thermo-therapy </li></ul>
    47. 47. <ul><li>Cryotherapy </li></ul><ul><li>Immersion in water that lowers the core body temperature </li></ul><ul><li>Water with a temperature <15 0 C for a duration of ~15-20 min </li></ul><ul><ul><ul><li>Decreased heart rate and cardiac output </li></ul></ul></ul><ul><ul><ul><li>Increased Oxygen consumption and metabolism </li></ul></ul></ul><ul><ul><ul><li>Localized vasoconstriction  reduced cellular, lymphatic and capillary permeability </li></ul></ul></ul><ul><ul><ul><li>Reduced inflammation </li></ul></ul></ul><ul><ul><ul><li>Reduced pain and swelling </li></ul></ul></ul>Wilcock et al., (2006) Hydrotherapy
    48. 48. REST, LIGHT EXERCISE OR CRYOTHERAPY: WHAT IS THE MOST EFFECTIVE WAY TO RECOVER BETWEEN REPEATED BOUTS OF INTENSE EXERCISE? Doug Stacey , BHScPT Sport Physiotherapist – Diploma B.W. Timmons †† and M.J. Gibala † . † Exercise Metabolism Research Group, Dept. of Kinesiology, †† Children’s Exercise and Nutrition Center, McMaster University, Hamilton, ON Hydrotherapy
    49. 49. Methods Recovery Intervention – 20 min Rest, Active, Cryo Familiarization VO 2peak Hydrotherapy Pre Week 1 Week 2 Week 3 Testing & Familiarization Training – 3 bouts Random intervention Training – 3 bouts Random intervention Training – 3 bouts Random intervention Bout1 50KJ Bout 3 50KJ Bout 2 50KJ Rest Blood Sample and Questionnaires Lactate, IL-6, CBC – RPE, VAS, Preparedness lactate lactate
    50. 50. * p .≤ .05 vs bout 1 (main effect) * * Hydrotherapy
    51. 51. ** * p .≤ .05 vs Rest(main effect); ** p .≤ .05 vs Passive, Cold * * * Hydrotherapy
    52. 52. * p .≤ .05 vs Rest, Bout 2 (main effect) * Hydrotherapy
    53. 53. * p .≤ .05 vs Rest (main effect); ** p .≤ .05 vs Active, Passive ** * * Hydrotherapy
    54. 54. Conclusions <ul><li>The type of recovery intervention did not affect the decline in exercise performance during repeated bouts of intense cycling, </li></ul><ul><li>Blood lactate was slightly reduced after ACTIVE, </li></ul><ul><li>CRYO caused greater perturbations in blood immune markers and created the perception that subjects were better prepared for subsequent exercise. </li></ul>Hydrotherapy
    55. 55. Cryotherapy Research <ul><li>Benefit </li></ul><ul><li>Performance </li></ul><ul><ul><ul><li>Pournot et al., (2010) </li></ul></ul></ul><ul><ul><ul><li>Vaile et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Vaile et al., (2007) </li></ul></ul></ul><ul><ul><ul><li>Lane KN., (2004) </li></ul></ul></ul><ul><ul><ul><li>Fowles et al. (2003) </li></ul></ul></ul><ul><ul><ul><li>Verducci, (2000, 1997) </li></ul></ul></ul><ul><li>DOMS </li></ul><ul><ul><ul><li>Vaile et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Bailey et al., (2007) </li></ul></ul></ul><ul><li>RPE </li></ul><ul><ul><ul><li>Maw et al., (1993) </li></ul></ul></ul><ul><ul><ul><li>Nelson et al., (1991) </li></ul></ul></ul>Hydrotherapy
    56. 56. Cryotherapy Research <ul><li>NO Benefit </li></ul><ul><li>Performance </li></ul><ul><ul><ul><li>Crowe et al., (2007) </li></ul></ul></ul><ul><ul><ul><li>Yamane et al., (2006) </li></ul></ul></ul><ul><ul><ul><li>Schniepp et al., (2002) </li></ul></ul></ul><ul><li>DOMS </li></ul><ul><ul><ul><li>Sellwood et al., (2007) </li></ul></ul></ul><ul><li>RPE </li></ul><ul><ul><ul><li>No available data </li></ul></ul></ul>Hydrotherapy
    57. 57. Cryotherapy Summary <ul><li>Performance benefits are questionable </li></ul><ul><li>Seems effective in reducing pain associated with DOMS </li></ul><ul><li>Effective at reducing RPE </li></ul>Hydrotherapy
    58. 58. <ul><li>Alternating temperature immersion, from a hot to cold bath and vice-versa </li></ul><ul><li>Protocols vary – 30-300 sec of one extreme temperature, immediately followed by 30-300 sec of the contrasting temperature – for 4-30 min </li></ul><ul><ul><ul><li>Stimulates specific area blood flow </li></ul></ul></ul><ul><ul><ul><li>Increases blood lactate removal </li></ul></ul></ul><ul><ul><ul><li>Reduces inflammation and edema </li></ul></ul></ul><ul><ul><ul><li>Stimulates general circulation </li></ul></ul></ul><ul><ul><ul><li>Relieves stiffness and pain </li></ul></ul></ul><ul><ul><ul><li>Increases ROM </li></ul></ul></ul><ul><ul><ul><li>Reduces DOMS </li></ul></ul></ul>Wilcock et al., (2006) Contrast therapy Hydrotherapy
    59. 59. <ul><li>Contrast therapy </li></ul><ul><ul><li>“ Vascular Exercise” </li></ul></ul><ul><ul><ul><li>Vaso-dilation </li></ul></ul></ul><ul><ul><ul><li>Vaso-constriction </li></ul></ul></ul>Hydrotherapy
    60. 60. Testing the Water: Are the Effects of Hydrotherapy More Psychological Than Physiological? Doug Stacey , Sport PT – dip. K. Martin-Ginis 2 , M. Poling 1 , and M.J. Gibala 1 . 1. Exercise Metabolism Research Group and 2. Health Psychology Laboratory, Dept. of Kinesiology, McMaster Univ., Hamilton, ON. Hydrotherapy
    61. 61. Methods: Pre Training Training Post Training Familiarization trials VO 2max Wingate Challenge ride VO 2max Wingate Challenge ride 5 5 6 4 4 Numbers represent the # of Wingate tests / training session Hydrotherapy N=6 Vs. Control N=6 Hydrotherapy
    62. 62. <ul><li>Treatment </li></ul><ul><li>Control </li></ul><ul><ul><li>20 min rest </li></ul></ul><ul><li>Hydrotherapy </li></ul><ul><ul><li>Contrast bath – 20 min </li></ul></ul><ul><ul><li>2 min cold (10 0 C) </li></ul></ul><ul><ul><li>3 min hot (40 0 C) </li></ul></ul>Hydrotherapy
    63. 63. <ul><li>Results – Anaerobic Power (sig.≤ .05) </li></ul><ul><li>Results – Performance ( sig. ≤ .05) </li></ul>Hydrotherapy
    64. 64. <ul><li>Conclusions </li></ul><ul><ul><li>5 days of HIT increased peak anaerobic power and performance during a time trial </li></ul></ul><ul><ul><li>The use of Hydrotherapy did not further enhance physiological performance </li></ul></ul><ul><ul><li>Hydrotherapy created the perception that subjects were better prepared for exercise </li></ul></ul>Hydrotherapy
    65. 65. Contrast Therapy Research <ul><li>Performance </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>Pournot et al., (2010) </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Vaile et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Vaile et al., (2007) </li></ul></ul></ul><ul><ul><ul><li>Gill et al., (2006) </li></ul></ul></ul><ul><ul><ul><li>Coffey et al., (2004) </li></ul></ul></ul>Hydrotherapy
    66. 66. <ul><li>Contrast therapy </li></ul><ul><li>Vascular Exercise? </li></ul><ul><li>For physiological effects to occur, must produce fluctuations in muscle temperature </li></ul><ul><li>Myrer et al. 1994 </li></ul>Hydrotherapy
    67. 67. Contrast Therapy Summary <ul><li>No performance benefits </li></ul><ul><li>Perception of recovery greater in Contrast groups </li></ul>Hydrotherapy
    68. 68. Thermotherapy <ul><li>Immersion in water that raises the core body temperature </li></ul><ul><li>Water with a temperature >36 0 for a duration of ~10-20 min </li></ul><ul><ul><ul><li>Increased cutaneous and subcutaneous tissue temperature </li></ul></ul></ul><ul><ul><ul><li>Peripheral vasodilation  inc. cutaneous blood flow </li></ul></ul></ul><ul><ul><ul><li>Increased heart rate </li></ul></ul></ul><ul><ul><ul><li>Increased permeability of cellular, lymphatic and capillary vessels </li></ul></ul></ul><ul><ul><ul><li>Increased nutrient delivery and waste removal </li></ul></ul></ul><ul><ul><ul><li>Increased muscle elasticity, joint extensibility </li></ul></ul></ul><ul><ul><ul><li>Reduced pain and muscle spasm </li></ul></ul></ul>Wilcock et al., (2006) Hydrotherapy
    69. 69. Thermotherapy Research <ul><li>Performance </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>No available data </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Vaile et al., (2007) </li></ul></ul></ul><ul><ul><ul><li>Vaile et al., (2008) </li></ul></ul></ul>Hydrotherapy
    70. 70. Hydrotherapy Benefits???? <ul><li>Hydrostatic Pressure </li></ul><ul><ul><ul><li>Inward and upward displacement of body fluids </li></ul></ul></ul><ul><ul><ul><li>Reduces edema </li></ul></ul></ul><ul><ul><ul><li>Increases extracellular fluid transfer into the vascular system </li></ul></ul></ul><ul><ul><ul><li>Increases cardiac output ( greater blood flow ) </li></ul></ul></ul><ul><li>Buoyancy </li></ul><ul><ul><ul><li>Decreases perception of fatigue </li></ul></ul></ul><ul><ul><ul><li>Aides in energy conservation </li></ul></ul></ul><ul><ul><ul><li>Wilcock et al., (2006) </li></ul></ul></ul>Hydrotherapy
    71. 71. Take Home Points…. <ul><li>Most limited benefits associated only with cryotherapy – DOMS, Performance </li></ul>Hydrotherapy <ul><li>No recovery benefits associated with thermotherapy (limited research) </li></ul><ul><li>Cryo and Contrast improve RPE associated with exercise </li></ul>
    72. 72. B. Massage <ul><li>Chinese writing - 2500 B.C. </li></ul><ul><li>Describes the use of massage for a variety of medical purposes </li></ul><ul><li>Sports Massage </li></ul><ul><li>Benefits – post-exercise: </li></ul><ul><ul><ul><li>Increases circulation and nutrition to recovering tissues </li></ul></ul></ul><ul><ul><ul><li>Increases removal of blood La </li></ul></ul></ul><ul><ul><ul><li>Decreases pain and swelling (including DOMS) </li></ul></ul></ul><ul><ul><ul><li>Improves subsequent performance </li></ul></ul></ul><ul><ul><ul><li>Reduces excessive muscle tone </li></ul></ul></ul><ul><ul><ul><li>Increases muscle flexibility </li></ul></ul></ul><ul><ul><ul><li>Deactivates symptomatic trigger points </li></ul></ul></ul><ul><ul><ul><li>Enhances tissue healing </li></ul></ul></ul><ul><ul><ul><li>Weerapong et al.,(2005) </li></ul></ul></ul>
    73. 73. Massage <ul><li>Sport Massage </li></ul><ul><li>“ Defined as a collection of massage techniques performed on athletes or active individuals for the purpose of aiding recovery or treating pathology.” </li></ul><ul><li>Bandy et al., (2008) </li></ul><ul><li>Includes: </li></ul><ul><ul><ul><li>Effleurage </li></ul></ul></ul><ul><ul><ul><li>Petrissage </li></ul></ul></ul><ul><ul><ul><li>Deep transverse friction massage </li></ul></ul></ul>
    74. 74. Massage - Research <ul><li>Blood Flow </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>No available data </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Wiltshire et al., (2010) </li></ul></ul></ul><ul><ul><ul><li>Hinds et al., (2004) </li></ul></ul></ul><ul><ul><ul><li>Tiidus and Shoemaker, (1995) </li></ul></ul></ul><ul><ul><ul><li>Doppler US studies – no increase in muscle blood flow during or post sport massage </li></ul></ul></ul>
    75. 75. Massage - Research <ul><li>Lactate Clearance </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>No available data </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Wiltshire et al., (2010) </li></ul></ul></ul><ul><ul><ul><li>Ogai et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Robertson et al., (2004) </li></ul></ul></ul><ul><ul><ul><li>Monedero et al., (2000) </li></ul></ul></ul><ul><ul><ul><li>Martin et al., (1998) </li></ul></ul></ul><ul><ul><ul><li>Gupta et al., (1996) </li></ul></ul></ul><ul><ul><ul><li>Dolgener et al., (1993) </li></ul></ul></ul><ul><ul><ul><li>Bale et al., (1991) </li></ul></ul></ul><ul><ul><ul><li>Combination of massage techniques from 10-20 min post exercise </li></ul></ul></ul><ul><ul><ul><li>Massage failed to reduce blood lactate levels significantly greater than passive rest </li></ul></ul></ul>
    76. 76. Massage - Research <ul><li>D.O.M.S. </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>Zainuddin et al., (2005) </li></ul></ul></ul><ul><ul><ul><li>Hilbert et al., (2003) </li></ul></ul></ul><ul><ul><ul><li>Farr et al., (2002) </li></ul></ul></ul><ul><ul><ul><li>Tiidus et al., (1995) </li></ul></ul></ul><ul><ul><ul><li>Rodenburg et al., (1994) </li></ul></ul></ul><ul><ul><ul><li>Smith et al., (1994) </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Hart et al., (2005) </li></ul></ul></ul><ul><ul><ul><li>Hasson et al., (1992) </li></ul></ul></ul><ul><ul><ul><li>Wenos et al., (1990) </li></ul></ul></ul><ul><li>NO significant improvement in strength force or torque for any studies </li></ul>
    77. 77. Massage - Research <ul><li>Performance (post muscle fatigue) </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>Ogai et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Monedero et al., (2000) </li></ul></ul></ul><ul><ul><ul><li>Rinder et al., (1995) </li></ul></ul></ul><ul><ul><ul><li>Ask et al., (1987) </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Fletcher, IM. (2010) </li></ul></ul></ul><ul><ul><ul><li>Zainuddin et al., (2005) </li></ul></ul></ul><ul><ul><ul><li>Young et al., (2005) </li></ul></ul></ul><ul><ul><ul><li>Robertson et al., (2004) </li></ul></ul></ul><ul><ul><ul><li>Hemming et al., (2000) </li></ul></ul></ul><ul><ul><ul><li>Newman et al., (1996) </li></ul></ul></ul><ul><ul><ul><li>Tiidus and Shoemaker, (1995) </li></ul></ul></ul><ul><ul><ul><li>Carafelli et al., (1990) </li></ul></ul></ul><ul><li>Variable methodology and massage techniques – questionable conclusions </li></ul><ul><li>Benefits more with low intensity activity than maximal efforts </li></ul><ul><li>Inconclusive as to true benefit for recovery from muscle fatigue </li></ul>
    78. 78. Massage - Research <ul><li>Psychological </li></ul><ul><li>Benefit </li></ul><ul><ul><ul><li>Ogai et al., (2008) </li></ul></ul></ul><ul><ul><ul><li>Hemming et al., (2000) </li></ul></ul></ul><ul><ul><ul><li>Tyurin, (1986) </li></ul></ul></ul><ul><li>No Benefit </li></ul><ul><ul><ul><li>Drews et al., (1990) </li></ul></ul></ul><ul><li>Most benefits to mood states are found in studies with non-athletic populations </li></ul><ul><li>In athletic populations all benefits are associated with ratings of perceived exertion (RPE) </li></ul>
    79. 79. Massage - Research <ul><li>Take Home Points…. </li></ul><ul><li>NO effect on blood flow or blood La removal </li></ul><ul><li>Variable improvements in pain related to DOMS, although NO significant improvement in strength force or torque </li></ul><ul><li>Improvements in recovery of muscle fatigue are more associated with low intensity versus high intensity exercise </li></ul><ul><li>Increased ratings of perceived exertion and perception of recovery </li></ul>
    80. 80. <ul><li>5. Rest </li></ul>
    81. 81. Rest <ul><li>Research in Aviation, Transportation and Military </li></ul><ul><li>Sleep </li></ul><ul><ul><ul><li>Active physiological state </li></ul></ul></ul><ul><ul><ul><li>Critical metabolic, immunological and cognitive/memory processes occur </li></ul></ul></ul>Samuels, (2008)
    82. 82. <ul><li>Sleep Deprivation studies </li></ul><ul><ul><ul><li>Negative effect on: </li></ul></ul></ul><ul><ul><ul><ul><li>Glucose metabolism Spriegel, (1999) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Neuroendocrine and immune function Basta, ( 2007) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Appetite Spriegel, (1999) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Fat deposition Spriegel, (1999) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Neural plasticity VanDongen, (2004) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Cognitive performance VanDongen, (2004) </li></ul></ul></ul></ul>Rest
    83. 83. <ul><li>Take home points…. </li></ul>Rest <ul><ul><ul><li>Sleep time – 7-10 hrs </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Causal relationship exists between sleep, memory and performance Walker and Stickgold, (2005) </li></ul></ul></ul></ul></ul><ul><ul><ul><li>Sleep quality – undisturbed or restorative </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Arousal and awakening during sleep are associated with a sympathoadrenal response that negatively affects sleep quality  impair performance </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Vgontzas, (2004) </li></ul></ul></ul></ul></ul><ul><ul><ul><li>Sleep Timing – circadian phase (REM) </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Circadian phase directly affects sleep length and quality – timing important Samuels, (2008) </li></ul></ul></ul></ul></ul>Current interventions are still based largely on clinical experience and evidence derived from research in other fields (removed from elite athletes)
    84. 84. <ul><li>“ It is ironic that despite the wonders of modern medicine, REST and NUTRITION may be the most potent healing agents.” </li></ul><ul><li>Smith, MSSE, 1999 </li></ul>
    85. 85. “ Art vs. Science”
    86. 86. Research Issues <ul><li>Poor study design </li></ul><ul><ul><ul><li>Randomization </li></ul></ul></ul><ul><ul><ul><li>Controls </li></ul></ul></ul><ul><li>Small Sample Size </li></ul><ul><ul><ul><li>Type 2 error </li></ul></ul></ul><ul><ul><ul><li>Statistical significance </li></ul></ul></ul><ul><ul><ul><li>Appropriate subjects – high level athletes </li></ul></ul></ul><ul><li>Optimal Regime? </li></ul><ul><li>Underlying Mechanisms? </li></ul><ul><li>Outcome measures? </li></ul><ul><li>Sport Specific? </li></ul>
    87. 87. “ Experience” <ul><li>“ Your mind is like a parachute… </li></ul><ul><li>..it only works when it is open” </li></ul>
    88. 88. <ul><li>Thank - You </li></ul><ul><li>Questions?? </li></ul>
    89. 89. References <ul><li>Fatigue </li></ul><ul><li>Fitts RH, Cellular Mechanisms of Muscle Fatigue. Physiol. Rev. 74(1); 49-94. 1994. </li></ul><ul><li>Fitts RH. Muscle Fatigue: The Cellular Aspects. Am. J. Sports Med. 24(6); S9-S13. 1996. </li></ul><ul><li>Hargreaves M. Metabolic factors in fatigue. GSSI Sports Sci. Exch . 18(1):98. 2005. </li></ul><ul><li>Hooper SL, and MacKinnon LT. Monitoring overtraining in athletes: Recommendations. Sports Med ., 20(5):321-327. 1995. </li></ul><ul><li>Roberts et al., Biochemical Aspects of Peripheral Muscle Fatigue. A review. Sports Medicine . 7: 125-138. 1989. </li></ul><ul><li>Urhausen A and Kindermann W. Diagnosis of Overtraining: What tools do we have? Sports Med . 32(2):95-102. 2002. </li></ul><ul><li>Westerblad et al., Cellular mechanisms of fatigue in skeletal muscle. Am. J. Physiol. 261; C195-209. 1991. </li></ul>
    90. 90. References <ul><li>Light Exercise </li></ul><ul><li>Fitts RH. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74(1): 49-94. 1994. </li></ul><ul><li>Belcastro AN, and Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J. Appl. Physiol. 39:932-935, 1975. </li></ul><ul><li>Bangsbo J, Madsen K, Kiens B, and Richter EA. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J. Physiol. 495(2): 587-596, 1996. </li></ul><ul><li>Dupont G, Moalla W, Guinhouya C, Ahmaidi S, and Berthoin S. Passive versus active recovery during high-intensity intermittent exercises. Med. Sci. Sports Exerc. 36(2):302-308, 2004. </li></ul><ul><li>Wigernaes I, Hostmark AT, Kierulf P, and Stromme SB. Active recovery reduces the decrease in circulating white blood cells after exercise. Int. J. Sports Med. 21(8):608-612, 2000. </li></ul><ul><li>Wigernaes I, Hostmark AT, Stromme SB, Kierulf P, and Birkeland K. Active recovery and post-exercise white blood cell count, free fatty acids, and hormones in endurance athletes. Eur. J. Appl. Physiol . 84: 358-366, 2001. </li></ul>
    91. 91. References <ul><li>Stretching </li></ul><ul><li>Fowles JR, Sale DG and MacDougall JD. Reduced strength after passive stretch of the human plantar flexors. J. Appl. Physiol . 89:1179-1188. 2000. </li></ul><ul><li>Hayes PR and Walker A. Pre-stretching does not impact upon running economy. J. Strength Cond. Res . 21(4): 1227-1232. 2007. </li></ul><ul><li>Kokkonen J, Nelson AG and Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res. Q. Exerc. Sport . 69:411-415. 1998. </li></ul><ul><li>Laroche DP and Connolly DA. Effects of stretching on passive muscle tension and response to eccentric exercise. Am. J. Sports Med . 34(6): 1000-1007. 2006. </li></ul><ul><li>Pope RP, Herbert R and Kirwan J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust. Physiother . 44:165-172. 1998. </li></ul><ul><li>Pope RP, Herbert R, Kirwan J, and Graham BJ. A randomized trial of preexercise stretching for prevention of lower-limb injury. Med. Sci. Sports Exerc . 32:271-277. 2000. </li></ul><ul><li>Roberts JM and Wilson K. Effects of stretching duration on the active and passive range of motion in the lower extremity. Brit. J. Sports Med . 33:259-263. 1999. </li></ul><ul><li>Shrier I, Does stretching improve performance? A systematic and critical review of the literature. Clin. J. Sports Med ., 14(5):267-273. 2004. </li></ul><ul><li>Thacker SB, Gilchrist J, Stroup DF, and Kimsey Jr D. The impact of stretching on sports injury risk: a systematic review of the literature. Med. Sci. Sports Exerc . 36(3):371-378. 2004. </li></ul>
    92. 92. References <ul><li>Nutrition and Hydration </li></ul><ul><li>Beelen M, LM Burke, MJ Gibala and LJC van Loon. Nutritional strategies to promote post exercise recovery . Int J Sport Nutr Exerc Metab . 20(6):515-32, 2010 . </li></ul><ul><li>Fallowfield J and Williams C. Carbohydrate intake and recovery from prolonged exercise. Int. J. Sport Nutr . 3:150-164. 1993. </li></ul><ul><li>Fallowfield J, Williams C and Singh R. The influence of ingesting a carbohydrate-electrolyte solution during 4 hours recovery from prolonged running on endurance capacity. J. Sport Nutr . 5:285-299. 1995. </li></ul><ul><li>Goforth H, Laurent D, Prusaczyk W, schneider K, Falk K, and Shulman G. Effects of depletion exercise and light training on muscle glycogen supercompensation in men. Am. J. Physiol. Endocrinol. Metab . 285:1304-1311. 2003. </li></ul><ul><li>Institute of Medicine. Dietary reference intakes for water, sodium, potassium, chloride and sulfate. Washington, DC. The National Academics Press . 2004. </li></ul><ul><li>Karp et al., Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metabol.,16:78-91. 2006. </li></ul><ul><li>Kenny WL. Dietary water and sodium requirements for active adults. GSSI Sports Science Exchange . 17(1). 2004. </li></ul><ul><li>Nicholas C, Green R, Hawkins R, and Williams C. Carbohydrate intake and recovery of intermittent running capacity. Int. J. Sport Nutr . 7:251-260. 1997. </li></ul><ul><li>Phillips SM. Protein requirements and supplementation in strength sports. Nutrition . 20:689-695. 2004. </li></ul><ul><li>Reilly T and Ekblom B. The use of recovery methods post-exercise. J. Sports Sci . 23(6):619-627. </li></ul><ul><li>Van Loon L, Saris W, Kruijshoop M, and Wagenmakers A. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am. J. Clin. Nutr . 72:106-111. 2000. </li></ul>
    93. 93. References (Cont’d) <ul><li>Recovery Modalities </li></ul><ul><li>Hydrotherapy </li></ul><ul><li>Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, and Williams C. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci . 25(11):1163-1170, 2007. </li></ul><ul><li>Coffey V, Leveritt M and Gill N. Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. J. Sci. Med. Sport . 7:1-10. 2004. </li></ul><ul><li>Crowe MJ, O’Connor D, and Rudd D. Cold water recovery reduces anaerobic performance. Int J Sports Med . 28:994-998, 2007. </li></ul><ul><li>Fowles et al. Med. Sci. Sports Exerc., 2003 </li></ul><ul><li>Gill ND, Beaven CM and Cook C. Effectiveness of post-match recovery strategies in rugby players. Br. J. Sports Med ., 40:260-263. 2006. </li></ul><ul><li>Lane KN and Wenger HA. Effect of selected recovery conditions on performance of repeated bouts of intermittent cycling separated by 24 hours. J Strength Cond Res . 18(4):855-860. 2004. </li></ul><ul><li>Maw et al. Eur. J. Appl. Physiol., 1993 </li></ul><ul><li>Myrer WJ, Draper DO, and Durrant E. Contrast therapy and intramuscular temperature in the human leg. J. Athletic Train. 29:318-322, 1994. </li></ul><ul><li>Nelson et al. Behav. Med., 1991 </li></ul><ul><li>Pournot H, F Bieuzen, R Duffield, PM Lepretre, C Cozzolino, and C Hausswirth. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol . Dec: 4, 2010. </li></ul>
    94. 94. References (Cont’d) <ul><li>Recovery Modalities </li></ul><ul><li>Hydrotherapy </li></ul><ul><li>Schniepp J, Campbell TS, Powell KL, and Pinivero DM. The effects of cold-water immersion on power output and heart rate in elite cyclists. J Strength Cond Res . 16(4):561-566, 2002. </li></ul><ul><li>Sellwood KL, Bruker P, Williams D, Nicol A, and Hinman R. Ice-water immersion and delayed-onset muscle soreness: a randomized controlled trial. Br J Sports Med . 41:392-397, 2007. </li></ul><ul><li>Vaile J, Halson S, Gill n, and Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci , 26(5):431-440. 2008. </li></ul><ul><li>Vaile J, Halson S, Gill N. and Dawson D. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol . 102:447-455, 2008. </li></ul><ul><li>Vaile J, Halson S, Gill N, and Dawson B. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med . 2007. </li></ul><ul><li>Verducci, F.M. Interval cryotherapy and fatigue in university baseball pitchers. In: Fourth International Olympic Committee World Congress on Sports Sciences: Congress Proceedings ; October 22-25, 1997. p. 107. </li></ul><ul><li>Verducci, F.M. Intermittent cryotherapy decreases fatigue during repeated weight lifting. J. Athletic Train. 35(4):422-425, 2000. </li></ul><ul><li>Wilcock IM, Cronin JB, and Hing WA. Physiological response to water immersion: A method for sport recovery? Sports Med . 36(9):747-765, 2006. </li></ul><ul><li>Yamane M, Teruya H, Nakono M, Ogai R, Ohnishi N, and Kosaka M. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. Eur J Appl Physiol . 96:572-580, 2006. </li></ul>
    95. 95. References (Cont’d) <ul><li>Recovery Modalities </li></ul><ul><li>Massage </li></ul><ul><li>Bale P and James H. Massage, warmdown and rest as recuperative measures after short term intense exercise. Physiother. Sport . 13:4-7. 1991. </li></ul><ul><li>Brummitt J. The role of massage in sports performance and rehabilitation: current evidence and future direction. N.A. J. Sports Phys. Ther . 3(1):7-21. 2008. </li></ul><ul><li>Dolgener F, and Morien A. The effect of massage on lactate disappearance. J. Strength Cond. Res . 7:159-162. 1993. </li></ul><ul><li>Fletcher IM. The effects of precompetition massage on the kinematic parameters of 20-m sprint performance. J Strength Cond Res . 24(5): 1179-1183, 2010. </li></ul><ul><li>Gupta S, Goswami A, Sadhukhan AK, and Mathur DN. Comparative study of lactate removal in short term massage of extremities, active recovery and a passive recovery period after supramaximal exercise sessions. Int. J. Sports Med . 17:106-110. 1996. </li></ul><ul><li>Hinds T, McEwan I, and Perkes J. Effects of massage on limb and skin blood flow after quadriceps exercise. Med. Sci. Sports Exerc . 36:1308-1313. 2004. </li></ul><ul><li>Monedero J and Donne B. Effect of recovery interventions on lactate removal and subsequent performance. Int. J. Sports Med . 21:593-593. 2000. </li></ul><ul><li>Ogai R, yamane M, Matsumoto T, and Kosaka M. Effects of petrissage massage on fatigue and exercise performance following intensive cycle pedaling. Br. J. Sports Med . 2: 2008. </li></ul><ul><li>Robertson A, Watt JM and Galloway SD. Effects of leg massage on recovery from high intensity cycling exercise. Br. J. Sports Med. 38:173-176. 2004. </li></ul><ul><li>Tiidus PM and Shoemaker JK. Effleurage massage, muscle blood flow and long-term post-exercise strength recovery. Int. J. Sports Med . 16:478-483. 1995. </li></ul><ul><li>Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med . 35:236-256. 2005. </li></ul><ul><li>Wiltshire EV, V Poitras, M Pak, T Hong, J Rayner and ME Tschakovsky. Massage impairs postexercise muscle blood flow and “lactic acid” removal. Med Sci Sports Exerc . 42(6): 1062-1071, 2010. </li></ul>
    96. 96. References (Cont’d) <ul><li>Rest </li></ul><ul><li>Basta M, Chrousos GP, Vela-Bueno A. Chronic insomnia and the stress system. Sleep Med. Clin . 2(2):279-291. 2007. </li></ul><ul><li>Knutson KL, Spiegel K, Penev P, and VanCauter E. The metabolic consequences of sleep deprivation. Sleep Med. Rev . 11:163-178. 2007. </li></ul><ul><li>Samuels C. Sleep, recovery and performance: The new frontier in high-performance athletics. Neurol. Clin . 26:169-180. 2008. </li></ul><ul><li>Spriegel K, Leproult R, VanCauter E. Impact of sleep debt on metabolic and endocrine function. Lancet . 254:1435-1439. 1999. </li></ul><ul><li>VanDongen HPA, Baynard MD, Maislin G. Systematic interindividual differences in neurobehavioral impairment from sleep loss. Sleep . 27(3):423-433. 2004. </li></ul><ul><li>Vgontzas AN. Understanding insomnia in the primary care setting: a new model. Insomnia Series . 9(2):1-7. 2004. </li></ul><ul><li>Walker MP and Stackgold R. It’s practice, with sleep, that makes perfect: implications of sleep-dependent learning and plasticity for skill performance. Clin. Sports Med . 24(2):301-318. 2005. </li></ul>

    ×