0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# March 25, 2014

727

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
727
On Slideshare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
2
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Tomorrow: 1. Factoring ax2 + bx + c Trinomials 2. Factoring Difference of Squares Today: 1. Khan Topics & Test Date 2. Warm-Up 3. Factoring Perfect Square Trinomials 2. Factoring Difference of Squares 25th
• 2. Khan Academy Topics: Due March 30 (Alt. due March 31) 1. Factoring Difference of squares 3 2. Factoring Polynomials with 2 variables 3. Factoring Quadratics 2 Factoring Test: Friday, March 28 Only the following methods will be covered for this test: 1. GCF 2. Factor by Grouping 3. Factor x2 + bx + c Trinomials 4. Perfect Square Trinomials
• 3. Khan Academy Topics for this week: Warm-Up Section of Notebook: Thursday: Factoring Quadratics 2
• 4. Warm-Up: Factoring Practice(8) 3. 4x³ - 4x 7. (2x-1)(x-2) 1. (x+9)(x-8) 2. 36x² - 25 2. (6x - 5)(6x + 5) 3. 4x(x+1)(x-1) 4. 21x³ + 28x²y² 7. 2x² - 5x + 4 1. x² + x - 72 4. 7x²y(3x+4y) Factor each expression completely: 5. (x + 4)² 5. (x² + 8x + 16) The polynomial in # 2 is called a ______ polynomial The polynomial in # 5 is called a ______ polynomial 6. (3a – 2b)² The polynomial in # 6 is called a ______ polynomial 6. (9a² – 12ab - 4b²) Class Notes Section of your Notebook: 8. x² - 9x + 12 Prime
• 5. Factoring Perfect Square Trinomials Let's look at #'s 5 & 6 from the warm – up: 5. (x + 4)² When multiplied, we find that (x + 4) (x + 4) are factors of (x² + 8x + 16). This type of polynomial is known as a Perfect Square Trinomial 1. PST's have a square in the first & third terms 2. The factors of PST's are always either the square of a sum (x + y)², or the square of a difference (x + y)² 3. We arrive at the trinomial by performing a " square, double, square" on the factor. To factor then, we do the opposite, which is a sq. root, halve, sq. root. to arrive at the factors.
• 6. FACTORING PERFECT SQUARE TRINOMIALS x2 + 4x + 4 sq. root(x) + half (2) + sq. root(2) (3x - 4)2 (x + 2)2 Is this a perfect square trinomial? sq. root (3x) + half (12) + sq. root(4) Always be aware of possible perfect square trinomials (9x2 -24x + 16
• 7. 1) Factor out the GCF first 2) Look for a difference of squares 3) Look for a perfect square trinomial 4) Look for a pair of binomial factors 5) If a polynomial has 4 or more terms, look for a way to factor by grouping 6) Make sure you can’t factor any further 7) Check your work! GUIDE TO FACTORING COMPLETELY 2 2 ( )( )a b a b a b 2 2 2 2 ( ) ora ab b a b 2 2 2 2 ( )a ab b a b
• 8. 1. Questions From Friday's Class/Home Work? 2. Today's Class Work