Published on

  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Creditscore

    1. 1. Credit Scoring Development and Methods James Marinopoulos Head of Retail Decision Model
    2. 2. Alan Greenspan: President, Federal Reserve Board May 1996 <ul><li>“… We should not forget that the basic economic function of these regulated entities (banks) is to take risk. If we minimise risk taking in order to reduce failure rates to zero, we will, by definition, have eliminated the purpose of the banking system.” </li></ul>
    3. 3. Risk Families We are managing different groups of Risk
    4. 4. Retail Decision Models Responsibilities <ul><li>Policy </li></ul><ul><ul><li>Set Group policy on Decision Models </li></ul></ul><ul><ul><li>Approve Decision Model policy changes </li></ul></ul><ul><li>Monitor, Validate and Approve </li></ul><ul><ul><li>New Scorecard Developments </li></ul></ul><ul><ul><li>Existing Scorecard Functionality </li></ul></ul><ul><ul><li>Proposed changes to Decision Models Processes </li></ul></ul><ul><ul><li>New Decision Models Systems functionality </li></ul></ul><ul><ul><li>Decision Models Systems functionality changes </li></ul></ul><ul><li>Governance </li></ul><ul><ul><li>Monitoring </li></ul></ul><ul><ul><li>Undertake bank validations, reports and presentations for APRA </li></ul></ul><ul><li>Risk Measurement </li></ul><ul><ul><li>Set risk benchmarks for scorecards </li></ul></ul><ul><ul><li>Risk grading models </li></ul></ul><ul><li>Advise </li></ul><ul><ul><li>Worlds best practice in Decision Models </li></ul></ul><ul><ul><li>Risk related issues surrounding Decision Models </li></ul></ul>
    5. 5. RDM Structure and Responsibilities Relationship Developments Change Requests Systems Ongoing Validations Monitoring Data Analysis
    6. 6. Presentation Topics Scorecard Modelling Business Objectives World Banks Monitoring Future Direction Overview of scoring
    7. 7. What is credit scoring? <ul><li>A statistical means of providing a quantifiable risk factor for a given customer or applicant. </li></ul><ul><li>Credit scoring is a process whereby information provided is converted into numbers that are added together to arrive at a score. (“Scorecard”) </li></ul><ul><li>The objective is to forecast future performance from past behaviour. </li></ul><ul><li>Credit scoring developed by Fair & Isaac in early 60s </li></ul><ul><ul><li>Widespread acceptance in the US in early 80s and UK early 90s </li></ul></ul><ul><ul><li>FICO scores make 75% of US Mortgage loan decisions </li></ul></ul><ul><ul><li>Behavioural scoring accepted as more predictive than application scoring </li></ul></ul><ul><li>Decision Models are used in many areas of industries: </li></ul><ul><ul><li>Banking and Finance </li></ul></ul><ul><ul><li>Insurance </li></ul></ul><ul><ul><li>Retail </li></ul></ul><ul><ul><li>Telecommunications </li></ul></ul>
    8. 8. Application Scoring <ul><li>Application scoring is a statistical means of assessing risk at the point of application for credit </li></ul><ul><ul><li>The application is scored once </li></ul></ul><ul><li>Application scoring is used for: </li></ul><ul><ul><li>Credit risk determination </li></ul></ul><ul><ul><li>Loan amount approval </li></ul></ul><ul><ul><li>Limit setting </li></ul></ul>Credit Decision
    9. 9. Behavioural Scoring <ul><li>Behavioural scoring is a statistical means of assessing risk for existing customers through internal behavioural data </li></ul><ul><ul><li>Customers/accounts scored repeatedly </li></ul></ul><ul><li>Behaviour scoring is used for: </li></ul><ul><ul><li>Authorisations </li></ul></ul><ul><ul><li>Limit increase/overdraft applications </li></ul></ul><ul><ul><li>Renewals/reviews </li></ul></ul><ul><ul><li>Collection strategies </li></ul></ul>Risk Grading Debit $1344. 12 Debit $234. 01 Debit $987.56 Debit $6543.22 Debit $32423.11 Total $2556.00 Debit $1344. 12 Debit $234. 01 Debit $987.56 Debit $6543.22 Debit $32423.11 Total $2556.00 Debit $1344. 12 Debit $234. 01 Debit $987.56 Debit $6543.22 Debit $32423.11 Total $2556.00
    10. 10. Sample scorecard characteristics <ul><li>Financial </li></ul><ul><li>Assets </li></ul><ul><li>Liabilities </li></ul><ul><li>Monthly repayment </li></ul><ul><li>Total Monthly income </li></ul><ul><li>Bureau </li></ul><ul><li>No. of bureau defaults </li></ul><ul><li>Adverse ANZ behaviour </li></ul><ul><li>Application </li></ul><ul><li>Purpose of loan </li></ul><ul><li>Deposit </li></ul><ul><li>Security </li></ul><ul><li>Characteristics used in scorecards are similar to those used in traditional judgemental lending, e.g.: </li></ul><ul><li>The difference being that attributes within these characteristics are given formal weights (scores) and added to produce a resulting score </li></ul><ul><li>Character </li></ul><ul><li>Time at current employment </li></ul><ul><li>Residential status </li></ul><ul><li>Time at current address </li></ul>
    11. 11. Scorecard points (example) Residential status Owner Renter LWP/Other +25 -30 +10 Time in employment (years) <2 3-4 5-6 7+ 2 10 15 25 Total monthly income 0 <$500 <$1000 <$1500 <$2000 <$3000 >$3000 0 15 25 31 37 43 48 Total defaults No Defaults 1 2+ 0 -70 -250
    12. 12. Other Types of Scoring <ul><li>Attrition </li></ul><ul><li>Authorisations </li></ul><ul><li>Recovery </li></ul><ul><li>Response </li></ul><ul><li>Profitability </li></ul><ul><li>Customer </li></ul>
    13. 13. Presentation Topics Overview of scoring Business Objectives World Banks Monitoring Future Direction Scorecard Modelling
    14. 14. Good/Bad Odds <ul><li>A scoring system does not individually identify a good performer from a bad performer, it classifies an applicant in a particular “Good/Bad odds” group. </li></ul><ul><li>An applicant belonging to a 200 to 1 group, appears pretty safe and profitable. </li></ul><ul><li>If the applicant belongs to a 4 to 1 risk group, we would no doubt find the risk unacceptable. </li></ul><ul><li>There is a “cut-off” point where it is not profitable for the bank to accept a certain Good to Bad ratio </li></ul><ul><li>Based on the above, it is accepted that there will be some “bads” above the cut-off level set, and some “goods” below the cut-off level set. </li></ul>
    15. 15. 'Good/Bad' Discrimination <ul><li>The objective of a scorecard is to have characteristics which discriminate between Good and Bad accounts with a sufficiently high probability. </li></ul><ul><ul><li>Some characteristics are legally or ethically not used </li></ul></ul><ul><li>The score will be a measure of the probability of being a Good or Bad performer. </li></ul><ul><li>If the scorecard is performing well then the average scores of ‘Bads’ are lower than the average scores of the ‘Goods’. </li></ul>
    16. 16. Performance Charts <ul><li>The Good/Bad Odds at each score can be determined and plotted onto a Performance chart </li></ul>0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 Score Number Of Clients Goods Bads 8 1 Graph 2 - Log Odds Performance Chart 0 5 25 128 645 3250 16400 0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 Good/Bad Odds 0 2 4 6 8 10 12 14 Log GBOs (Base 2) 8 to 1 2 to 1 3
    17. 17. Application Scorecard Construction Flow Chart <ul><li>Characteristic Analysis </li></ul><ul><li>Multivariate model build </li></ul><ul><li>Reject Inference </li></ul>Statistical Analysis Customised Scorecard <ul><li>Product Identification </li></ul><ul><li>File Data Availability </li></ul><ul><li>Sampling </li></ul><ul><li>Data Extraction/Cost </li></ul>Data Integrity Set cut-off Score Implementation Validation Generic Scorecard <ul><li>External Data Source </li></ul><ul><li>Scorecard Vendor </li></ul>Outsourcing Scorecard Monitoring
    18. 18. Model Build <ul><li>Once the characteristics have been selected a statistical model can be developed. </li></ul><ul><li>Multivariate statistical methods include </li></ul><ul><ul><li>Logistic Regression </li></ul></ul><ul><ul><li>Stepwise methods </li></ul></ul><ul><ul><li>Residual analysis </li></ul></ul><ul><li>Not all predictive characteristics are used in the model. </li></ul><ul><ul><li>An inter-correlation effect may exist between variables. </li></ul></ul><ul><ul><li>For example, age may be correlated with time at current employment and therefore only one is necessary in the model. </li></ul></ul>
    19. 19. Models <ul><li>Expert Systems </li></ul><ul><li>Decision Trees </li></ul><ul><li>Linear Regression </li></ul><ul><li>Logistic Regression has the following form: </li></ul><ul><li>Neural Networks </li></ul>
    20. 20. Model Build <ul><li>The model is built on dichotomous data. In this case a 1 for “Good” customers and a 0 for “Bad” customers. </li></ul>
    21. 21. Logistic Regression <ul><li>The logistic regression fits the probability better than Linear regression. </li></ul>
    22. 22. Reject Inference and Validation <ul><li>Reject Inference </li></ul><ul><ul><li>Reject Inference is only necessary for scorecards were there is no performance information for rejected applications </li></ul></ul><ul><ul><ul><li>Applications that are rejected must be included in the final model. </li></ul></ul></ul><ul><ul><li>Behavioural scorecards deal only in existing customers, therefore do not require reject inference. </li></ul></ul><ul><li>Validation </li></ul><ul><ul><li>A randomly selected control group (hold out sample) or proxy portfolio to test the model. </li></ul></ul>
    23. 23. Measures of discrimination <ul><li>Receiver Operating Curve (ROC) </li></ul><ul><ul><li>The Receiver Operating Curve is the area under the curve generated when the cumulative Bads are plotted against the cumulative goods (Lorenz Curve). </li></ul></ul><ul><li>Gini coefficient (G) </li></ul><ul><ul><li>This discrimination measure is geometrically defined as the ratio of the area A of the shaded semi-circular area to the area B of the triangle in the Lorenz diagram. </li></ul></ul><ul><li>PH (percentage Good for 50% Bad) </li></ul><ul><ul><li>This is defined as the cumulative proportion of Goods up to the median value of the Bads. </li></ul></ul>Gini. xls
    24. 24. Measures of discrimination – (I) <ul><li>Scorecard performance can be judged on the level of discrimination </li></ul><ul><li>Two measure that can be used are: </li></ul><ul><ul><li>Gini (or ROC) </li></ul></ul><ul><ul><li>PH - % of Goods below 50% of bads </li></ul></ul><ul><li>1% of PH could mean an additional 3% approvals </li></ul><ul><li>1% of PH could mean an reduction of 0.2% bad debts </li></ul>Gini=0.62%
    25. 25. Measures of discrimination –(II) <ul><li>Discrimination measures should be determined for discrete attributes </li></ul><ul><ul><li>Chi-Squared </li></ul></ul><ul><ul><li>Fico (Kullback Divergence) </li></ul></ul>Based on a book by Solomon Kullback “ Information Theory and Statistics”
    26. 26. Issues for Successful Implementation <ul><li>Cultural Change </li></ul><ul><li>Requires top management support </li></ul><ul><li>Operational process </li></ul><ul><ul><li>Redesign to minimise manual intervention and maximise cost savings. </li></ul></ul><ul><li>Data Integrity </li></ul><ul><ul><li>Quality of the overall decisions, and subsequently the Portfolio, is dependant upon the accuracy of the data input. The first time! </li></ul></ul><ul><li>Setting the Cut-off score correctly </li></ul>
    27. 27. Presentation Topics Overview of scoring Scorecard Modelling World Banks Monitoring Future Direction Business Objectives
    28. 28. Business Objectives <ul><li>Increase consistency of lending decisions </li></ul><ul><ul><li>Consistent & unbiased treatment of applicant </li></ul></ul><ul><ul><ul><li>Customers with the same details get the same score </li></ul></ul></ul><ul><ul><li>Total management control over credit approval systems </li></ul></ul><ul><ul><ul><li>Allows for loosening or tightening of lending through credit cycles </li></ul></ul></ul><ul><ul><ul><li>Potential increase in approvals </li></ul></ul></ul><ul><li>Reduce operating costs </li></ul><ul><ul><li>Increase in automated processing </li></ul></ul><ul><li>Improve customer service </li></ul><ul><ul><li>Fast and consistent decisions at application point </li></ul></ul><ul><ul><li>More appropriate limit and authorisation decisions </li></ul></ul><ul><ul><li>Reduction in collection actions on low risk accounts </li></ul></ul><ul><ul><li>Risk based allocation of credit limits and issue terms </li></ul></ul>
    29. 29. Business Objectives (cont) <ul><li>Improved portfolio management </li></ul><ul><ul><li>Manage credit portfolios more effectively and dynamically </li></ul></ul><ul><ul><ul><li>Better prediction of credit losses </li></ul></ul></ul><ul><ul><ul><li>Management ability to react to changes fast & accurately </li></ul></ul></ul><ul><ul><ul><li>Ability to measure & forecast impact of policy decisions </li></ul></ul></ul><ul><ul><ul><li>Quick and uniform policy implementation </li></ul></ul></ul><ul><ul><li>Improved Management Information Systems (MIS) </li></ul></ul><ul><ul><ul><li>Permits MIS to be developed to assist business needs and marketing activities </li></ul></ul></ul><ul><ul><ul><li>MIS can be fed back into future scorecard developments and collection activities </li></ul></ul></ul>
    30. 30. Presentation Topics Overview of scoring Scorecard Modelling Business Objectives Monitoring Future Direction World Banks
    31. 31. World Banks <ul><li>ANZ </li></ul><ul><li>European Banks </li></ul><ul><ul><li>Banking market in Europe is restructuring </li></ul></ul><ul><ul><li>Banks are merging across country boundaries </li></ul></ul><ul><li>UK bank visits </li></ul><ul><ul><li>Bank A - bank with many recent acquisitions </li></ul></ul><ul><ul><li>Bank B - bank dealing with mainly credit cards </li></ul></ul><ul><ul><li>Bank C - ex building society now owned by bank </li></ul></ul><ul><ul><li>Bank D - large diverse bank </li></ul></ul><ul><li>National Australia Bank </li></ul>
    32. 32. World Banks UK Banks AUS Banks
    33. 33. Bureaus <ul><li>Fair Isaac is the main bureaus in USA </li></ul><ul><ul><li>“ White” and “Black” data is supplied to and from all financial institution </li></ul></ul><ul><li>Fair Isaac (Equifax) and Experian are the two main bureaus in UK </li></ul><ul><ul><li>“ White” data is supplied to a financial institution if the supply to bureau </li></ul></ul><ul><ul><li>Currently few banks supply and receive “white” data </li></ul></ul><ul><ul><ul><li>Mergers are leading most banks to look at this option </li></ul></ul></ul><ul><ul><li>Fair Isaac is trying to beat Experian in having bureau scores in the UK </li></ul></ul><ul><ul><ul><li>This is only possible when all banks supply “white” data </li></ul></ul></ul><ul><li>Credit Advantage is used in Australia </li></ul><ul><ul><li>Provides “Black” data only </li></ul></ul><ul><ul><li>Linked with Decision Advantage (previously Equigen) </li></ul></ul><ul><ul><li>Bureau scores used for ANZ Small Business </li></ul></ul><ul><ul><ul><li>We could use Dunn & Bradstreet for over $250k lending </li></ul></ul></ul><ul><li>Baycorp is used in New Zealand </li></ul><ul><ul><li>Provides “Black” data only </li></ul></ul><ul><ul><li>Baycorp is also a collections agency </li></ul></ul><ul><ul><li>NZ puts the smallest amount lost as a default </li></ul></ul><ul><li>Baycorp and Credit Advantage have just merged </li></ul>
    34. 34. Credit Scoring & Bureaus Around the World “We are not alone!” B B B B B B B
    35. 35. BASEL - The New Accord <ul><li>The New Accord will give banks with sophisticated risk management capabilities increased flexibility </li></ul><ul><li>More emphasis on bank’s internal measures of risk, supervisory review and market discipline </li></ul><ul><li>Decision support technology has an important role to play </li></ul><ul><li>Incentivise better risk management </li></ul><ul><li>Data warehouses are fundamental to addressing many of the requirements </li></ul><ul><li>SMB sector will be key </li></ul><ul><li>More risk sensitive </li></ul><ul><li>Competitive equality </li></ul>Paul%20Russell%2013a[1] The New Basel Capital Accord Pillar 1 : Minimum capital requirement Pillar 2 : Supervisory review process Pillar 3 : Market discipline
    36. 36. Pillar 1 : credit risk <ul><li>Internal Rating Based (IRB) approach </li></ul><ul><ul><li>Foundation </li></ul></ul><ul><ul><ul><li>Bank sets Probability of Default (PD) </li></ul></ul></ul><ul><ul><ul><li>Standard Exposure At Default (EAD) </li></ul></ul></ul><ul><ul><ul><li>Standard Loss Given Default (LGD) </li></ul></ul></ul><ul><ul><li>Advanced </li></ul></ul><ul><ul><ul><li>Banks sets PD, EAD & LGD </li></ul></ul></ul><ul><li>Better recognition of credit risk mitigation techniques </li></ul><ul><li>Behavioural scoring </li></ul><ul><ul><li>Internal </li></ul></ul><ul><ul><li>External </li></ul></ul><ul><li>Data storage </li></ul>
    37. 37. Future direction of scoring <ul><li>“Adaptive Control” first implemented 1985 in USA </li></ul><ul><ul><li>Champion/Challenger processes for determining actions based on scores </li></ul></ul><ul><ul><li>Required 10 years to be widespread in US </li></ul></ul><ul><li>Customer Relationship Management </li></ul><ul><ul><li>Profitability (NIACC) </li></ul></ul><ul><ul><li>Attrition </li></ul></ul><ul><ul><li>Propensity to Buy (Cross Sell) </li></ul></ul><ul><ul><li>Life time revenue </li></ul></ul><ul><li>Recovery scorecards </li></ul><ul><li>Operations Research Methods </li></ul><ul><ul><li>Simulation modelling </li></ul></ul>
    38. 38. Presentation Topics Overview of scoring Scorecard Modelling Business Objectives World Banks Future Direction Monitoring
    39. 39. Monitoring Examples <ul><li>1. Operation Stability Reports </li></ul><ul><ul><li>The four types of front end monitoring reports: </li></ul></ul><ul><ul><ul><li>1.1 Approval Statistics Report </li></ul></ul></ul><ul><ul><ul><li>1.2 Population Stability Report </li></ul></ul></ul><ul><ul><ul><li>1.3 System Rules Referral Report </li></ul></ul></ul><ul><ul><ul><li>1.4 Portfolio Statistics Report </li></ul></ul></ul><ul><ul><li>Operational statistics can be obtained as soon as an automated decision process is implemented </li></ul></ul><ul><ul><li>Early warning indicators of decision functionality error and scorecard validity </li></ul></ul><ul><ul><li>Should be produced by Business Units or MIS </li></ul></ul>
    40. 40. Loan Approval/Declines by Score Approva/Declinal Rates by Score 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% <=500 501-550 551-600 601-650 651-700 701-750 751-800 801-850 851-900 901-950 951-1000 >1000 Score Bands Percentages Auto Declined Manually Declined Manually Approved Auto Approved
    41. 41. Population Stability <ul><li>Compare each characteristic and attribute </li></ul><ul><ul><li>over time </li></ul></ul><ul><ul><li>against benchmarks </li></ul></ul><ul><li>Plot score distributions over time for potential change </li></ul><ul><li>Indicates potential drift in performance </li></ul>NO YES Dec-96 25% 75% Mar-97 23% 77% Jun-97 24% 76% Sep-97 22% 78% Dec-97 21% 79% Mar-98 19% 81% Jun-98 19% 81% Sep-98 22% 78% Dec-98 20% 80% Mar-99 20% 80% Jun-99 18% 82% Sep-99 18% 82% Dec-99 17% 83% Benchmarks 29% 71% Population Stability 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% NO YES Dec-96 Mar-97 Jun-97 Sep-97 Dec-97 Mar-98 Jun-98 Sep-98 Dec-98 Mar-99 Jun-99 Sep-99 Dec-99
    42. 42. Monitoring Requirements <ul><li>2. Performance Analysis </li></ul><ul><ul><li>The two types of back end monitoring are: </li></ul></ul><ul><ul><ul><li>2.1 Scorecard Performance Report </li></ul></ul></ul><ul><ul><ul><li>2.2 Characteristic Analysis Report </li></ul></ul></ul><ul><ul><ul><li>2.3 Dynamic Delinquency Report </li></ul></ul></ul><ul><ul><li>Performance Analysis is undertaken once a certain level of customer maturity has been established </li></ul></ul><ul><ul><li>Should be produced by BU and Group Risk </li></ul></ul>
    43. 43. Loans - Approval & Delinquency Rates <ul><li>Even with manual assessment below the cut-off score of 350 the delinquency rates are higher </li></ul>Loans Approval & Delinquency Rates 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1-300 301- 350 351- 400 401- 450 451- 500 501- 550 551- 600 601- 650 651- 700 701- 750 751- 800 >800 Score Approval Rates 0% 5% 10% 15% 20% 25% Delinquency Rates % Approved (LHS) Delinquency Rates (RHS)
    44. 44. Scorecard Performance <ul><li>Scorecard performance based on 30+ delinquency </li></ul><ul><ul><li>Good/Bad odds increase as expected by score </li></ul></ul>Score Distribution & G/B Odds 0 500 1000 1500 2000 2500 3000 3500 4000 <=500 501-550 551-600 601-650 651-700 701-750 751-800 801-850 851-900 901-950 951-1000 >1000 Score 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Non Delinq Delinq HL GB Odds
    45. 45. Presentation Topics Overview of scoring Scorecard Modelling Business Objectives World Banks Monitoring Future Direction
    46. 46. Future Direction <ul><li>Modelling </li></ul><ul><li>Experimental Design </li></ul><ul><ul><li>Champion/Challenger Strategies </li></ul></ul><ul><ul><li>Hypothesis testing (uni & multi- dimensional) </li></ul></ul><ul><li>Quality Control Techniques </li></ul><ul><ul><li>Control Charts </li></ul></ul><ul><li>Operations Research </li></ul><ul><ul><li>Optimisation techniques </li></ul></ul><ul><ul><li>Simulation Models </li></ul></ul><ul><ul><li>Stress Testing </li></ul></ul>
    47. 47. Conferences <ul><li>Fair Isaac and Experian are the two main credit scoring companies world wide </li></ul><ul><li>Fair Isaac (Every year, alternating in Europe and USA) </li></ul><ul><ul><li>Main bureau and FICO Scores in USA </li></ul></ul><ul><ul><li>Equifax in UK </li></ul></ul><ul><ul><li>Systems included TRIAD </li></ul></ul><ul><ul><li>Conference was mainly selling FICO products and systems (but also Technical) </li></ul></ul><ul><li>Experian (Every year, in Europe) </li></ul><ul><ul><li>Formerly CCN </li></ul></ul><ul><ul><li>Systems include Transact and Hunter </li></ul></ul><ul><ul><li>Conference on world wide banking, financial, telecommunications and predictive modelling usage (Business and/or Management) </li></ul></ul><ul><li>University of Edinburgh (Every 2 year in Edinburgh) </li></ul><ul><ul><li>Very technical academic papers </li></ul></ul><ul><ul><li>Proposal to run alternate years in a USA university </li></ul></ul>
    48. 48. Three Portfolio Dimensions: Volume, Loss, and Profit low high high E [ Profit ] E [ Volume ] E [ Losses ] Low cutoffs High cutoffs
    49. 49. Efficient Frontiers in two dimensions OP High Cutoffs E[Volume] E[Loss] Low Cutoffs 0.6 0.0 0.2 Low Cutoffs High Cutoffs E[Profit] E[Loss] OP 0.9 0.6 0.0 0.2 0.6 High Cutoffs Low Cutoffs OP E[Volume] E[Profit] 0.6 0.2 0.2 0.9 Efficient Frontier
    50. 50. Improved portfolio performance OP High Cutoffs E[Volume] E[Loss] Low Cutoffs 0.6 0.0 0.2 Low Cutoffs High Cutoffs E[Profit] E[Loss] OP 0.9 0.6 0.0 0.2 0.6 High Cutoffs Low Cutoffs OP E[Volume] E[Profit] 0.6 0.2 0.2 0.9 Single Score Combined Scores Single Score Combined Scores Single Score Combined Scores Efficient Frontier
    51. 51. Best Practices <ul><li>Combining Application & Behavioural scores (Bayesian estimates) </li></ul>Reject set with combined scores Accept set with combined scores s t Equal- odds line  c ( s, t )
    52. 52. Other Techniques <ul><li>Customer Relation Management </li></ul><ul><li>Survival Analysis </li></ul><ul><li>Multiple Indicator Multiple Cause </li></ul>Proportional Hazards.ppt Measuring Customer Quality.doc