Introduction to the energy systems


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Introduction to the energy systems

  1. 1. Aerobic and anaerobic pathways – an introduction to the energy systemsText Reference1. Nelson Physical Education VCE Units 1&2 – Chapter 3.
  2. 2. Key Knowledge Introduction to the characteristics of aerobic and anaerobic pathways (with or without oxygen) and their contribution to movement and dominant fibre type associated with each pathway.Key Skills Identify the dominant energy pathway utilised in a variety of aerobic or anaerobic activities determined by the intensity and duration of the activity. Collect, analyse and report on primary data related to responses to exercise and anaerobic and aerobic pathways.
  3. 3. Food fuels and the three energy systems
  4. 4. 1. Carbohydrates (CHO) – Preferred source of fuel during exercise (Glycogen)2. Fat – Concentrated fuel used during rest and Energy prolonged sub-maximal exercise.3. Protein – Used for growth and repair (Negligible use during exercise)
  5. 5. VCE Physical Education - Unit 3
  6. 6. VCE Physical Education - Unit 3
  7. 7. Food fuels and the three energy systems
  8. 8. Rest (Aerobic) Fat and glucose are the preferred fuelsDuring Exercise1. Short duration / high intensity – Anaerobic systems used using carbohydrates.2. Long duration / low intensity – Aerobic system using carbohydrates. However, fats are used once glycogen stores are depleted.
  9. 9. Food fuels and the three energy systems
  10. 10. Low intensity ATP requirements are met aerobically using the aerobic system.High Intensity Explosive movements require instant supply of ATP which can’t be met aerobically, therefore the ATP-PC and lactic acid systems need to be used anaerobically. Aerobic Anaerobic Intensity increases
  11. 11. Storage (Based on 80kg person) Carbohydrate rich diet; Muscle glycogen – 400g  Increases glycogen stores Liver glycogen – 100g  Glycogen is used in rebuildingIntake of Carbohydrates depends on ATP the intensity and duration of CHO preferred fuel over fats during exercise bouts. exercise due to requiring less Normal contribution to diet is 55- oxygen to release energy. 60% CHO Athletes need to be aware of their Carbohydrate loading (80% CHO dietary intakes of CHO. Excess intake) is used for endurance CHO is converted to fat. activities.
  12. 12. Storage of fats At rest Adipose tissue  50% of energy supplied by fats Triglycerides  Oxygen demand is easily met to(Broken down into free fatty acids)Aerobic metabolism of fat is; burn fats Slow as it requires more oxygen Benefits of fat than CHOs.  Large energy store Adds stress to the oxygen  Transport medium for fat soluble transport system vitamins ATP yield is much higher from fat Negative aspects of fat (460 molecules) in comparison to  Adverse health effects glucose (36).  Obesity, heart disease etc.
  13. 13. Role of protein (Amino acids) in the body; Growth and repair Speed up reactions in the body (Enzymes) Produces hormones and antibodiesProtein and exercise1. Not used as a fuel, therefore low priority.2. Only used in extreme circumstances3. Normal diet contains enough protein (15%).Excess protein can lead to; Less intake of CHO Increase in fat intake from animal products Increase in fluid waste
  14. 14. During prolonged endurance events such as marathon running and triathlons; Body uses a combination of CHO and fats. Trained athletes are able to ‘spare’ glycogen and use free fatty acids. Fats cannot be used alone as a fuel (poor solubility in the blood). ‘Hitting the wall’ occurs when glycogen stores are depleted. This is called ‘hypoglycaemia’. VCE Physical Education - Unit 3
  15. 15. Glycemic index; Before exercise you should Rating of CHO effect on eat; blood glucose  Food that maintains blood Quick breakdown with glucose levels ie.low GI food immediate effect on blood  Avoid high GI food prior to glucose levels are labelled exercise. high GI  High GI cause an insulin Slow breakdown are surge, effecting the labelled low GI performance of an athlete VCE Physical Education - Unit 3
  16. 16. Food fuels and the three energy systems
  17. 17.  Aerobic exercise includes lower intensity activities performed for longer periods of time. Activities like walking, jogging, swimming, and cycling require a great deal of oxygen to make the energy needed for prolonged exercise. The energy system that is used in aerobic exercise is called the aerobic system. It can also be called ‘oxygen system’ or the ‘aerobic glycolysis system’.
  18. 18.  The term "anaerobic" means "without air" or "without oxygen." Anaerobic exercise uses muscles at high intensity and a high rate of work for a short period of time. Anaerobic exercise helps us increase our muscle strength and stay ready for quick bursts of speed. Examples of anaerobic exercise include heavy weight lifting, sprinting, or any rapid burst of hard exercise. These anaerobic exercises cannot last long because oxygen is not used for energy and fatiging metabolic by-products There are two energy systems which use the anaerobic pathways; ATP-PC and the Lactic Acid systems
  19. 19.  The three energy systems do not turn on and off like a traffic light. They are always in operation – the relative contribution of each system varies depending on factors such as intensity, type of activity and duration.
  20. 20. Food fuels and the three energy systems
  21. 21. How does the system work? Anaerobic  PC releases a free Most rapidly available phosphate PC = P + C source of ATP ADP + P = ATP Depends on simple short chemical reactions  Body has a larger storage of PC compared to ATP Stored PC last for 10  PC stores can be seconds at max replenished through aerobic recovery. intensity  Once PC stores are depleted, they body must use glycogen through the anaerobic pathway.
  22. 22. Food fuels and the three energy systems
  23. 23. The lactic acid system; How the system works; Activated at the start of intense  Glycogen is broken down in the exercise absence of oxygen (Anaerobic More complex reactions than the glycolysis)  This produces a fatigue causing ATP-PC system by product called lactic acid. Peak power until it fatigues (2-3  Lactic acid makes the muscle pH minutes) decrease (More acidic), reducing Predominant energy supplier in ATP resynthesis. events 85% max HR eg. 200m The lactic acid system; sprint.  Provides twice as much energy for ATP resynthesis than the ATP- PC system.  Fatiguing metabolic by-products produced at the lactate inflection point (LIP)
  24. 24. Food fuels and the three energy systems
  25. 25. The aerobic system How the system works; Slowest contributor to ATP 1. CHOs and Tryglycerides (FFA + resynthesis glycerol) broken down to release However, produces much more energy than the anaerobic systems energy. This produces pyruvic acid. Becomes major contributor once the 2. Pyruvic acid is further broken down lactic system decreases. producing carbon dioxide (Kreb’s Major contributor in prolonged cycle) exercise eg. Endurance events. 3. Further breakdown via the electron Aerobic system does contribute in transport chain. It requires hydrogen maximal intensity exercise (Eg. ions and oxygen, producing water Between 55-65% in 800m) and heat.table 4.4 p.101 and 4.5 p.102
  26. 26. Foods, Fuels and Energy Systems
  27. 27. VCE Physical Education - Unit 3
  28. 28. Foods, Fuels and Energy Systems
  29. 29. All activities use some energy from all three systems.The energy systems overlap – they never work independently.It it’s the relative contribution of each system that varies.