Optical Gain Modeling for
Semiconductor Lasers
Using Strained Quantum Wells
Kendall Chuang
Kangway Photonics, Inc.
Laser Diode Design
• Materials Modeled (all on InP substrates):
(Software1) InGaAsP/InGaAs, and
In(1-x)Ga(x)As/In(1-y)Ga(y...
Input Parameters
• Material Compositions, x(Ga) and y(As) of
In(1-x)Ga(x)As(y)P(1-y)
• Material Compositions x(Ga) and y(A...
Output
•
•
•
•
•

Conduction Band and Valence Band Structures
Electron and Hole Wave Functions
Optical Transition Elements...
Optical gain spectrum
GainTE (solid) TM(dashed) Qc=0.30
In02.8Ga0.72As (50A)/ In0.53Ga0.47As(50A)

2000

Polarization-inde...
Experiment:
Magariet at, IEEE Photonics Technology Letters, 1991.
Thank You!
• Check out our website for more information:
kwphotonics.com
References
• S. L. Chuang, Physics of Photonics Devices, second
edition, Wiley, 2009.
• K. Magari et al., “1.55um polariza...
Upcoming SlideShare
Loading in …5
×

Optical Gain Modeling for Semiconductor Lasers Using Strained Quantum Wells

830
-1

Published on

Presentation on Optical Gain Modeling for Semiconductor Lasers Using Strained Quantum Wells. This software was developed by Prof. Shun Lien Chuang for Kangway Photonics, Inc, The software models have been validated with experimental data.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
830
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Optical Gain Modeling for Semiconductor Lasers Using Strained Quantum Wells

  1. 1. Optical Gain Modeling for Semiconductor Lasers Using Strained Quantum Wells Kendall Chuang Kangway Photonics, Inc.
  2. 2. Laser Diode Design • Materials Modeled (all on InP substrates): (Software1) InGaAsP/InGaAs, and In(1-x)Ga(x)As/In(1-y)Ga(y)As (Software2) InAlGaAs/InGaAs (Software3) Bulk InGaAs(on InP substrate) • Calculate the conduction and valence band alignments BandGap-Potential 1 0.8 0.6 Ec(z) Ec0(z) Ehh(z) Elh(z) Ev0(z) 0.4 0.2 0 -0.2 -0.4 -20 0 20 40 z 60 80 100 120
  3. 3. Input Parameters • Material Compositions, x(Ga) and y(As) of In(1-x)Ga(x)As(y)P(1-y) • Material Compositions x(Ga) and y(Al) of In(1-x-y)Ga(x)Al(y)As • Well Width and Barrier Width • Conduction band edge discontinuity (or choose Model Solid Theory) Qc=dEc/dEg • Injected Carrier Densities
  4. 4. Output • • • • • Conduction Band and Valence Band Structures Electron and Hole Wave Functions Optical Transition Elements Optical Gain Spectrum at each Carrier Density Spontaneous Emission Spectrum Ev(k)-VBand RsponTE (solid) TM(dashed) Qc=0.30 In0.28Ga0.72As (50A)/ In0.53Ga0.47As(50A) 0 1000 -0.2 .1000E+13 .2000E+13 .3000E+13 .4000E+13 .1000E+13 .2000E+13 .3000E+13 .4000E+13 800 -0.4 600 -0.6 1 2 3 4 5 6 -0.8 -1 400 200 0 -1.2 -200 0 0.05 0.1 0.15 kpt(1/A) 0.2 0.25 0.3 1 1.1 1.2 1.3 1.4 1.5 Wavelength(um) 1.6 1.7 1.8
  5. 5. Optical gain spectrum GainTE (solid) TM(dashed) Qc=0.30 In02.8Ga0.72As (50A)/ In0.53Ga0.47As(50A) 2000 Polarization-independent optical amplifier (Agree with Experiment: Magari et at, Photonics Technol. Lett. 1991) .1000E+13 .2000E+13 .3000E+13 .4000E+13 .1000E+13 .2000E+13 .3000E+13 .4000E+13 1500 1000 500 0 -500 -1000 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Wavelength(um) GainTE .1000E+13 .2000E+13 .3000E+13 .4000E+13 .1000E+13 .2000E+13 .3000E+13 .4000E+13 3000 2500 2000 1500 1000 Model solid theory gives unequal TE and TM gain (not agree with experiment.) 500 0 -500 -1000 1.2 1.3 1.4 1.5 1.6 Wavelength(um), 1.7 1.8
  6. 6. Experiment: Magariet at, IEEE Photonics Technology Letters, 1991.
  7. 7. Thank You! • Check out our website for more information: kwphotonics.com
  8. 8. References • S. L. Chuang, Physics of Photonics Devices, second edition, Wiley, 2009. • K. Magari et al., “1.55um polarization-insensitive highgain tensile strained-barrier MQW optical amplifier,” IEEE Photon. Technol. Lett., vol. 3, 998, 1991. • R. Schwedler, et al., “Band structure and electro-optical properties of mixed type-I/type-II In(x)Ga(1x)As/In(y)Ga(1-y)As superlattice,” Phys. Rev. B, vol. 52, pp.12108-12119, 1995. (Model solid parameters for valence band edges, Ev, of GaAs,InAs, GaP, and InP in Table II are used.)

×