SQE - Semantic Query Expansion

4,572 views
4,460 views

Published on

Overview of semantic query expansion algorithm allowing to do searches based on users' profiles

Published in: Technology, Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,572
On SlideShare
0
From Embeds
0
Number of Embeds
41
Actions
Shares
0
Downloads
86
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • - What it will be about etc.
  • SQE - Semantic Query Expansion

    1. 1. SQE – Semantic Query Expansion Digital Enterprise Research Institute National University of Ireland, Galway [email_address] jakub.demczuk @deri.org [email_address] [email_address]
    2. 2. Outline <ul><li>Motivations </li></ul><ul><li>Algorithm overview </li></ul><ul><li>Ideas </li></ul>
    3. 3. SQE motivations: <ul><li>Why? </li></ul><ul><ul><li>Simple search returns too many results </li></ul></ul><ul><ul><li>Keyword search must be precise </li></ul></ul><ul><ul><li>Ambiguity of words </li></ul></ul>
    4. 4. SQE motivations: <ul><li>How </li></ul><ul><ul><li>Improve search results by applying semantic based reasoning </li></ul></ul><ul><ul><ul><li>Expand queries that have few results, or </li></ul></ul></ul><ul><ul><ul><li>Narrow number of results when there are to many of them </li></ul></ul></ul><ul><ul><li>reflect user’s interests in results </li></ul></ul>
    5. 5. Algorithm overview: <ul><li>User writes a query </li></ul><ul><li>Query is processed by the fulltext search engine – Lucene </li></ul><ul><ul><li>Results are sorted using two metrics: TF(Term Frequency) and </li></ul></ul><ul><ul><li>IDF(Inverse Document Frequency) </li></ul></ul><ul><li>Semantic Query Expansion is called </li></ul><ul><li>Search history is saved for future use </li></ul>
    6. 6. SQE picture: Search: Java web Lucene Query Expansion (WordNet,Taxonomies,FOAF) Results (TF/IDF) Java(PL) Java (Island) 60 10 SSCF Bookmarks FOAFRealm Web(www) Spider’s web 50 20 Results History Friends
    7. 7. Semantic Query Expansion in details: <ul><li>Giving words meanings </li></ul><ul><li>Associating weights to results: </li></ul><ul><ul><li>Long-term context – user’s interests </li></ul></ul><ul><ul><li>Mid-term context – recent searches, recently browsed resources etc. </li></ul></ul><ul><ul><li>Short-term context – last queries and query itself </li></ul></ul><ul><li>Final weight is calculated for each result </li></ul><ul><li>If results are not sufficient or are to broad expansion is being made, else results are returned </li></ul>
    8. 8. Ideas : <ul><li>Word similarity </li></ul><ul><li>Word meaning in text </li></ul><ul><li>Allow users to view algorithm steps, and if neccessary, modify them by hand </li></ul><ul><ul><li>The „Tell me why” button </li></ul></ul>

    ×