Your SlideShare is downloading. ×
0
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Latinoware
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Latinoware

952

Published on

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
952
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
19
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. base de dados orientada a documentos para aplicações Web Kristina Chodorow
  • 2. Who am I? Software Engineer at Here from New York City
  • 3. Why Use Non-Relational DBs?
  • 4. CAP • Consistency nome : "joe" nome : "joe" • Availability • Partitioning
  • 5. Key-Value Stores Key Value foo bar x 123 ts 6:13:26 12/3/1945 data x9Fx44x1e Tokyo Cabinet, Dynamo, MemcacheDB
  • 6. Key-Value Stores •Fast •Too simple •Simple
  • 7. Column-Oriented Cassandra
  • 8. Document-Oriented { date : Date(2007-05-07), time : { start : 9.25, end : 10.25 } sum : 0, comments : ["task 1", "run 4", "testing module"] } vs.
  • 9. Consistency Availability Partitioning
  • 10. Consistency Availability master Partitioning slave
  • 11. Consistency Availability Partitioning slave
  • 12. Consistency Availability Partitioning master
  • 13. Consistency Availability slave Partitioning master
  • 14. Consistency Availability Partitioning Pair Router Pair Pair ...eventual consistency
  • 15. Introduction to MongoDB
  • 16. A JavaScript Database $ mongodb-linux-1.0/bin/mongo MongoDB shell version: 1.0.0 url: test connecting to: test type "help" for help >
  • 17. JSON and BSON Strict JSON types: { x : null, y : true, z : 123, w : "xyz", a : { b : 1 }, c : [1, 2, 3] } Mongo JSON adds: { ts : new Date(), query : /regex/ig, _id : new ObjectId() }
  • 18. Collections, not Tables
  • 19. Collections { date : Date(2007-05-07), time : { start : 9.25, end : 10.25 } sum : 0, comments : ["task 1", "run 4"] }
  • 20. Using the Shell > db test > use xyz > db xyz > db.splorch.find() >
  • 21. Inserting > db.foo.insert({name : "Joe", age : 34}) > db.foo.find({name : "Joe"}) { "_id" : ObjectId("2fe3e4d892aa73234c910bed"), "name" : "Joe", "age" : 34 }
  • 22. Object Ids an autogenerated primary key "_id" : ObjectId("2fe3e4d892aa73234c910bed") 12 bytes: 2fe3e4d892aa73234c910bed |------||----||--||----| ts mac pid inc
  • 23. Nested Objects > db.blog.insert({title : "First Post", content : "Hello, world!", author : {name : "Joe", id : 123}, comments : [] })
  • 24. Querying posts = db.blog.find({ "author" : "Joe"}) commentsByFred = db.blog.find({ "comments.author" : "Fred"}) commentedByFred = db.blog.find({ "comments.author" : /fred/i})
  • 25. Speaking of indexing… db.people.ensureIndex({"age" : 1}); db.people.ensureIndex({ "name" : -1, "ts" : -1, "comments.author" : 1 });
  • 26. Updating db.blog.update({title : "First Post"}, { $push : { comments : { author : "Fred", comment : "Dumb post." } } });
  • 27. …which gives us: > db.blog.findOne() { _id : ObjectId("4ae06192213900000000745c"), "title" : "First Post", "content" : "Hello, world!" "author" : {"name" : "Joe", "id" : 123} "comments" : [{ "author" : "Fred", "comment" : "Dumb post" }] }
  • 28. $ instead of >, <, =, etc. $gt, $gte, $lt, $lte, $eq, $neq, $exists, $set, $mod, $where, $in, $nin, $inc $push, $pull, $pop, $pushAll, $popAll db.foo.bar.find({x : {$gt : 4}})
  • 29. $where db.blog.findOne({$where : 'this.y == (this.x + this.z)'}); Will work: {"x" : 1, "y" : 4, "z" : 3} {"x" : "hi", "y" : "hibye", "z" : "bye"} Won’t work: {"x" : 1, "y" : 1}
  • 30. Optimizing $where db.blogs.findOne({ name : "Sally", age : {'$gt' : 18}, $where : 'Array.sort(this.interests)[2] == "volleyball"'});
  • 31. Cursors cursor = db.blah.find(array("foo" : "bar")) while (cursor.hasNext()) { obj = cursor.next() }
  • 32. Applications
  • 33. soliMAP @trackmeet FetLife Dextify2
  • 34. Paging cursor = db.results.find() .sort({"ts" : -1}) .skip(page_num * results_per_page) .limit(results_per_page);
  • 35. Logging • insert/update/remove is fast • Capped collections • Schemaless • $inc for counts
  • 36. Storing Files Max: 4Mb
  • 37. Storing Files (More than 4 Mb)
  • 38. Storing Files J J J chunks J J J J J J _id : J files
  • 39. Storing Files ObjectId fileId = new ObjectId(); fileObj = { _id : fileId, filename : "ggbridge.png", user : "joe", takenIn : "San Francisco" } chunkObj = { fileId : fileId, chunkNum : N data : <binary data> }
  • 40. Aggregation group =~ GROUP BY Map/Reduce db.runCommand({ mapreduce : <collection>, map : <mapfunction>, reduce : <reducefunction> [, query : <query filter object>] [, out : <outputcollectionname>] [, keeptemp: <true|false>] [, finalize : <finalizefunction>] })
  • 41. www.mongodb.org
  • 42. Drivers C#, Erlang, Factor
  • 43. Thank you! kristina@10gen.com @kchodorow @mongodb irc.freenode.net#mongodb www.mongodb.org

×