Your SlideShare is downloading. ×
0
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
 pt slab for high rise building   peer am 2009
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

pt slab for high rise building peer am 2009

378

Published on

Published in: Engineering, Technology, Business
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
378
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
133
Comments
0
Likes
5
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Seismic behavior and modeling of gravity- slab-framing system in concrete core wall high-rise buildings Tony Yang, Ph.D. Assistant Professor, University of British Columbia
  • 2. •  116 Completed (>75m ~= 240 ft.) •  43 Planned •  20 Demolished •  5 under construction •  13 Never built Source: http://www.emporis.com/ High-rise buildings in San Francisco (On hold….)
  • 3. Concrete core shear wall buildings MKA
  • 4. San Francisco, Rincon Center
  • 5. MKA Concrete core shear wall buildings Core shear wall Link beamPT slab
  • 6. Concrete core shear wall buildings http://activerain.com Gravity columnCore wall PT slab
  • 7. Structural design Code design: •  Design the core wall without the gravity system. •  Design the gravity system without the seismic effect. •  Gravity system need to be design for the ductility… Questions: Is it safe …? Is it all? MKA
  • 8. PT slab column wall gravity system UCB
  • 9. PT slab column wall gravity system
  • 10. PT slab column wall gravity system
  • 11. PT slab column wall gravity system
  • 12. PT slab column wall gravity system m1 m2 w m2 Slab (BC element with lumped plastic hinges). Wall (BC element) Column (BC element) F1, D1 (master) F1, D1 (slaved)
  • 13. PT slab column wall gravity system -0.1 -0.05 0 0.05 -30 -20 -10 0 10 20 30 40 Drift ratio [-] Force[kips] Experimental Test Analytical Simulation
  • 14. FloorNumber Lateral system Gravity-only system Nonlinear analytical model Fiber section
  • 15. UCLA – J. Wallace Modeling the concrete coupling beams M,θ M,θ Analytical Experimental M θ
  • 16. Perform3D – gravity framing systems A A Plane A-A view Lump plastic hinge model:
  • 17. Nonlinear dynamic analyses  3D bi-directional shaking.  Ground motion are selected based on:   Database: PEER NGA database.   Magnitude (Mw): 6.5 - 8.   Distance (R): 10 km (0 - 20 km).   Useable periods: > 8 sec.
  • 18. Selection of the ground motions 0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Period [sec] Sa[g] CW48WGF (T1 = 4.3 sec) CapCPM (SF = 2.1) CapFOR (SF = 4.1) CapPET (SF = 2.3) DuzDZC (SF = 1.2) GazGAZ (SF = 1.8) KobAMA (SF = 2.1) KobFKS (SF = 2.5) KobPRI (SF = 1.4) LomLGP (SF = 1.1) LomSTG (SF = 2.5) LomWVC (SF = 2.1) Target spectrum (MCE - SF) Mean (MCE - SF) 0.2 T1 to 1.5 T1
  • 19. Variation of EDP vs. story height
  • 20. Variation of EDP vs. story height X S -9 -8 -7 -6 -5 -4 -3 -2 -1 0 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] x 1e3 GL + GM GL + PushoverX GL + mean GM GL + mean GM ± std GM CW48WGF Average = 96% of PushoverXMax = 99% of PushoverXMin = 90% of PushoverX
  • 21. Maximum un-factored axial forces -12 -10 -8 -6 -4 -2 0 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] DL LL LLred EQ -14 x 10 3
  • 22. Maximum factored axial forces -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 x 10 4 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] 1.4*DL 1.2*DL+1.6*LLred 1.0*DL+0.25*LL+EQ 90% of design load.
  • 23. Effect of modeling the gravity system   Change in structural periods and stiffness T1 T2 T3 CW48NGF 4.72 sec 4.10 sec 2.66 sec CW48WGF 4.27 sec 3.86 sec 2.65 sec % change in stiffness 22% 13% 1%
  • 24. Effect of modeling the gravity system 0 50 100 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Floornumber[-] Story Drift – H1 [in.] 0 1e4 2e4 3e4 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Core Shear - H1 [kips] 0 1 2 3 x10 7B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Core Moment - H2
 [kip-in.] CW48WGF CW48NGF 1.5% of building height
  • 25. Summary and conclusions  Slab-wall-column framing is a prevalent design.  Experimental tests and analytical simulations have been conducted to study the seismic effect.  Effect on structural responses:  Stiffness:  Core wall:  Gravity column: (10% ~ 25% ).Modest change. Insignificant. a) Potential significance. b) Simplified plastic analysis.
  • 26. Questions and suggestions?Thank you for your attention! Contact information: Tony Yang: yangtony2004@gmail.com http://peer.berkeley.edu/~yang/
  • 27. PT slab column wall gravity system Hwang and Moehle (2000) ACI Structural Journal Beff = 120” Beff = 80” Effective slab width:
  • 28. PT slab column wall gravity system 8” 120” 1.5 ”1.5 ” #5 A615 Grade 60 steel @ 12” o.c. fc’ = 6100 psi (@ 17 days) 67 100 Stress [ksi] Strain [-] 0.08 0.12 E = 2900 ksi 90 A615 Grade 60 steel rebar: 0 Stress [ksi] Strain [-]0.002 0.005 Concrete (fc’ = 6100 psi @ 17 days): 0 6.1
  • 29. PT slab column wall gravity system Plastic rotation [-] M1[kip-in.] -0.2 -0.1 0 0.1 0.2 -2 -1 0 1 2 -0.1 -0.05 0 0.05 0.1 -4 -3 -2 -1 0 1 x1e3 x1e3 M2[kip-in.] Plastic rotation [-] M
+,
θ+

×