Hadoop
Upcoming SlideShare
Loading in...5
×
 

Hadoop

on

  • 743 views

 

Statistics

Views

Total Views
743
Views on SlideShare
742
Embed Views
1

Actions

Likes
2
Downloads
15
Comments
0

1 Embed 1

https://tasks.crowdflower.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Hadoop Hadoop Presentation Transcript

  • Introduction To Hadoop Kenneth Heafield Google Inc January 14, 2008Example code from Hadoop 0.13.1 used under the Apache License Version 2.0and modified for presentation. Except as otherwise noted, the content of thispresentation is licensed under the Creative Commons Attribution 2.5 License. Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 1 / 12
  • Outline1 Word Count Code Mapper Reducer Main2 How it Works Serialization Data Flow3 Lab Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 2 / 12
  • Word Count Code MapperMapper< “wikipedia.org”, “The Free” >→ < “The”, 1 >, < “Free”, 1 >public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String line = ((Text)value).toString(); StringTokenizer itr = new StringTokenizer(line); Text word = new Text(); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, new IntWritable(1)); }} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 3 / 12 View slide
  • Word Count Code MapperMapper< “wikipedia.org”, “The Free” >→ < “The”, 1 >, < “Free”, 1 >public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String line = ((Text)value).toString(); StringTokenizer itr = new StringTokenizer(line); Text word = new Text(); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, new IntWritable(1)); }} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 3 / 12 View slide
  • Word Count Code MapperMapper< “wikipedia.org”, “The Free” >→ < “The”, 1 >, < “Free”, 1 >public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String line = ((Text)value).toString(); StringTokenizer itr = new StringTokenizer(line); Text word = new Text(); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, new IntWritable(1)); }} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 3 / 12
  • Word Count Code MapperMapper< “wikipedia.org”, “The Free” >→ < “The”, 1 >, < “Free”, 1 >public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String line = ((Text)value).toString(); StringTokenizer itr = new StringTokenizer(line); Text word = new Text(); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, new IntWritable(1)); }} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 3 / 12
  • Word Count Code MapperMapper< “wikipedia.org”, “The Free” >→ < “The”, 1 >, < “Free”, 1 >public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String line = ((Text)value).toString(); StringTokenizer itr = new StringTokenizer(line); Text word = new Text(); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, new IntWritable(1)); }} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 3 / 12
  • Word Count Code ReducerReducer< “The”, 1 >, < “The”, 1 >→ < “The”, 2 >public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += ((IntWritable) values.next()).get(); } output.collect(key, new IntWritable(sum));} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 4 / 12
  • Word Count Code ReducerReducer< “The”, 1 >, < “The”, 1 >→ < “The”, 2 >public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += ((IntWritable) values.next()).get(); } output.collect(key, new IntWritable(sum));} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 4 / 12
  • Word Count Code ReducerReducer< “The”, 1 >, < “The”, 1 >→ < “The”, 2 >public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += ((IntWritable) values.next()).get(); } output.collect(key, new IntWritable(sum));} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 4 / 12
  • Word Count Code ReducerReducer< “The”, 1 >, < “The”, 1 >→ < “The”, 2 >public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += ((IntWritable) values.next()).get(); } output.collect(key, new IntWritable(sum));} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 4 / 12
  • Word Count Code MainMainpublic static void main(String[] args) throws IOException { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setMapperClass(MapClass.class); conf.setCombinerClass(ReduceClass.class); conf.setReducerClass(ReduceClass.class); conf.setNumMapTasks(new Integer(40)); conf.setNumReduceTasks(new Integer(30)); conf.setInputPath(new Path("/shared/wikipedia_small")); conf.setOutputPath(new Path("/user/kheafield/word_count")); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); JobClient.runJob(conf);} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 5 / 12
  • Word Count Code MainMainpublic static void main(String[] args) throws IOException { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setMapperClass(MapClass.class); conf.setCombinerClass(ReduceClass.class); conf.setReducerClass(ReduceClass.class); conf.setNumMapTasks(new Integer(40)); conf.setNumReduceTasks(new Integer(30)); conf.setInputPath(new Path("/shared/wikipedia_small")); conf.setOutputPath(new Path("/user/kheafield/word_count")); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); JobClient.runJob(conf);} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 5 / 12
  • Word Count Code MainMainpublic static void main(String[] args) throws IOException { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setMapperClass(MapClass.class); conf.setCombinerClass(ReduceClass.class); conf.setReducerClass(ReduceClass.class); conf.setNumMapTasks(new Integer(40)); conf.setNumReduceTasks(new Integer(30)); conf.setInputPath(new Path("/shared/wikipedia_small")); conf.setOutputPath(new Path("/user/kheafield/word_count")); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); JobClient.runJob(conf);} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 5 / 12
  • Word Count Code MainMainpublic static void main(String[] args) throws IOException { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setMapperClass(MapClass.class); conf.setCombinerClass(ReduceClass.class); conf.setReducerClass(ReduceClass.class); conf.setNumMapTasks(new Integer(40)); conf.setNumReduceTasks(new Integer(30)); conf.setInputPath(new Path("/shared/wikipedia_small")); conf.setOutputPath(new Path("/user/kheafield/word_count")); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); JobClient.runJob(conf);} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 5 / 12
  • How it Works SerializationTypesPurposeSimple serialization for keys, values, and other dataInterface Writable Read and write binary format Convert to String for text formats WritableComparable adds sorting order for keysExample Implementations ArrayWritable is only Writable BooleanWritable IntWritable sorts in increasing order Text holds a String Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 6 / 12
  • How it Works SerializationA Writablepublic class IntPairWritable implements Writable { public int first; public int second; public void write(DataOutput out) throws IOException { out.writeInt(first); out.writeInt(second); } public void readFields(DataInput in) throws IOException { first = in.readInt(); second = in.readInt(); } public int hashCode() { return first + second; } public String toString() { return Integer.toString(first) + "," + Integer.toString(second); } Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 7 / 12
  • How it Works SerializationWritableComparable Methodpublic int compareTo(Object other) { IntPairWritable o = (IntPairWritable)other; if (first < o.first) return -1; if (first > o.first) return 1; if (second < o.second) return -1; if (second > o.second) return 1; return 0;} Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 8 / 12
  • How it Works Data FlowData FlowDefault Flow 1 Mappers read from HDFS 2 Map output is partitioned by key and sent to Reducers 3 Reducers sort input by key 4 Reduce output is written to HDFS 1 HDFS 2 Mapper 3 Reducer 4 HDFS Input Map Sort Reduce Output Input Map Sort Reduce Output Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 9 / 12
  • How it Works Data FlowCombinersConcept Add counts at Mapper before sending to Reducer. Word count is 6 minutes with combiners and 14 without.Implementation Mapper caches output and periodically calls Combiner Input to Combine may be from Map or Combine Combiner uses interface as Reducer Mapper Combine Sort Reduce OutputInput Map Cache Sort Reduce Output Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 10 / 12
  • LabExercisesRecommended: Word CountGet word count running.BigramsCount bigrams and unigrams efficiently.CapitalizationWith what probability is a word capitalized?IndexerIn what documents does each word appear? Where in the documents? Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 11 / 12
  • LabInstructions 1 Login to the cluster successfully (and set your password). 2 Get Eclipse installed, so you can build Java code. 3 Install the Hadoop plugin for Eclipse so you can deploy jobs to the cluster. 4 Set up your Eclipse workspace from a template that we provide. 5 Run the word counter example over the Wikipedia data set. Kenneth Heafield (Google Inc) Introduction To Hadoop January 14, 2008 12 / 12