Your SlideShare is downloading. ×
Adsorption and Electron Injection for CdSe on TiO2
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Adsorption and Electron Injection for CdSe on TiO2

1,825
views

Published on

This presentation is based on the recent publication from our group entitled, "Tracking the Adsorption and Electron Injection Rates of CdSe Quantum Dots on TiO2: Linked versus Direct Attachment," …

This presentation is based on the recent publication from our group entitled, "Tracking the Adsorption and Electron Injection Rates of CdSe Quantum Dots on TiO2: Linked versus Direct Attachment," published in 2011 in the Journal of Physical Chemistry C. Presented by Doug Pernik, an undergraduate in the Kamat lab.

Figures in this presentation are reprinted with permission from J. Phys. Chem. C, 2011, 115, 13511-13519. Copyright 2011 American Chemical Society.

Visit our website, KamatLab.com, for the latest news, publications, and research from our group.

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,825
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Tracking  the  Adsorp2on  and  Electron  Injec2on   Rates  of  CdSe  Quantum  Dots  on  TiO2:     Linked  versus  Direct  ADachment   Douglas  R.  Pernik,  Kevin  Tvrdy,  James  G.  Radich,  Prashant  V.  Kamat   J.  Phys.  Chem.  C,  2011,  115  (27),  pp  13511-­‐13519   Department  of  Chemical  and  Biomolecular  Engineering   Department  of  Chemistry  and  Biochemistry   RadiaHon  Laboratory,  University  of  Notre  Dame  
  • 2. Big  Picture  •  Quantum  dot  sensiHzed  solar  cells  (QDSSCs)  are  cheap            devices  for  converHng  solar  energy  to  electricity  •  Current  QDSSCs  lack  in  efficiency  compared  to  crystalline            silicon    •  Improvements  are  needed  at  the  QDSSC  working  electrode  Goals  of  this  work:      –  Understand  quantum  dot  adsorpHon  phenomenon  on  TiO2    –  Examine  charge  carrier  dynamics  for  QD-­‐TiO2  assemblies  
  • 3. Goal  1:  Understand  QD  AdsorpHon   Phenomenon  on  TiO2  Experimental  setup  for  monitoring  CdSe  QD  adsorpHon  on  TiO2.    AdsorpHon  is  seen  over  Hme  with  UV-­‐Visible  absorpHon  spectrometry.  
  • 4. AdsorpHon  Processes  QDs  begin  to  form  a  monolayer  on  TiO2  before  aggregaHng  on  the  TiO2  surface  
  • 5. AdsorpHon  Modeling   0.06 Experimental Adsorption Data Sub-Monolayer Adsorption QD AggregationFractional Coverage of TiO2 0.05 Total Fit 0.04 0.03 0.02 0.01 0.00 0 10 20 30 40 50 Time (Hours) AdsorpHon  is  seen  as  a  combinaHon  of  monolayer   formaHon  and  QD  aggregaHon  on  TiO2  
  • 6. Effect  of  Washing  on  QD  AdsorpHon   25 QD Adsorbed Per TiO2 Nanoparticle 5 Washes 20 15 3 Washes 10 5 1 Wash 0 0 10 20 30 40 50 Time (Hours) Methanol  pretreatment  (washing)  improves  QD  affinity  for  TiO2  
  • 7. Goal  2:  Examine  Charge  Carrier  Dynamics  for   QD-­‐TiO2  Assemblies     Flow of Electrons Electron Electrolyte Light Transfer QD TiO2 Photoanode Photocathode How  does  the  presence  of  a  molecular  linker  affect  electron  injecHon  rates?  
  • 8. Electron  InjecHon  Rates   "#$%&!($)* +,- +,. +,/ 0,1 !D! (3D3I* !"#$%&()$"%*+%#,-./,-<=>, ∆<=>,?/,0 0 !"#$%&()*+,-),./01$)$ !D! (=D=I* !"#$%"0$1*&2%3**314$"%*+%#,-./,- 5$67+($(*3&%5$8*9:* ! !!!!!!!!!!! |∆<=>@%=3#A$B!(#@%8,!83C?0* ()9 ∆<?/,//+ (89 3 #-234!"#$%&()*+ = ! 3I ()9∆<=>@%=3#A$ ∆<?/,//+ (89 .-234!"#$%&()*+ =I ()9 ∆<?/,//+ (89 #-23456#4!"#$%&()*+ ! ()9 ∆<?/,//- (89 .-2345674!"#$%&()*+ / 9-/ -// --/ :// :-/ ;// / +/ 9/ :/ 1/ 0// 234$5$#&67!(#8* E$53!FG8$!(H>* Electron  injecHon  is  more  rapid  when  QDs  are  directly  adsorbed  onto  TiO2.     The  linker  molecule  3-­‐MPA  acts  as  a  physical  barrier  to  charge  transfer  
  • 9. Summary  •  Development  of  a  method  to  monitor  and  model  QD  adsorpHon   onto  TiO2  over  Hme  •  Importance  of  QD  washing  to  achieve  high  coverage  of  TiO2  •  AdsorpHon  is  seen  as  a  combinaHon  of  monolayer  formaHon  and   parHcle  aggregaHon  •  Linker  molecules  have  a  detrimental  effect  on  electron  injecHon   rates   These  findings  will  aid  in  construcHng  quantum  dot  sensiHzed  solar   cells  with  higher  efficiency  
  • 10. Special  Thanks   –  U.S.  Department  of  Energy  for  project  funding   –  Vincent  P.  Slac  Fellowship  for  Undergraduate  Research,  provided  by   Notre  Dame  Energy  Center   This  work  is  published  in  the  Journal  of  Physical  Chemistry  C:   J.  Phys.  Chem.  C,  2011,  115  (27),  pp  13511-­‐13519   DOI:  10.1021/jp203055d  AddiHonal  informaHon  about  the  Kamat  group  is  on  the  group  website:     hcp://nd.edu/~pkamat/