Computer Organisation Part 3
Upcoming SlideShare
Loading in...5
×
 

Computer Organisation Part 3

on

  • 1,035 views

Computer Organisation by Mukesh Upadhyay from Lachoo Memorial College Jodhpur

Computer Organisation by Mukesh Upadhyay from Lachoo Memorial College Jodhpur

Statistics

Views

Total Views
1,035
Views on SlideShare
1,035
Embed Views
0

Actions

Likes
0
Downloads
25
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Computer Organisation Part 3 Computer Organisation Part 3 Presentation Transcript

  • 01001001000001001001001000100010010000100101111010101010100101010100101001010100100100000100100100100010001001000010010111101010101010010101010010100101001001010010010000010010010010001000100100001001011110101010101001010101001010010101001001000001001001001000100010010000100101111010101010100101010100101001010100100100000100100100100010001001000010010111101010101010010101010010100101010010010000010100100100000100100100100010001001000010010111101010101010010101010010100101010010010000010010010010001000100100001001011110101010101001010101001010010100100100100010001001000010010111101010101010010101010010100101010010010000010010010010001000100100001001011110101010101001010101001010010101001001000001001001001000100010010000100101111010101010100101010100101001010010000010010010010001000100100011001011110101010101001010101001010010110010010000010010010010001000100100001001011110101010101001010101001010010101001001000001001001001000100010010000100101111010101010100101010100101001010100100100000100100
    Number system
    Simplicity of complexity
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • NUMBERS
    FIXED POINT
    FLOATING POINT
    REAL NUMBERS
    FLOATING
    POINT
    Number means, Value assigned to a particular symbol.
    35
    Tens Unit
    3 X 10 + 5 X 1
    23.45
    Whole Part Fractional Part
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • 23.4500 X 100
    234.500 X 10-1
    2345.00 X 10-2
    2.34500 X 101
    .234500 X 102
    Representation of Floating Point Number :
    +/- m X b+/-e
    exponent
    mantissa
    base
    .
    power
    .
    power
    ( Therefore, it is floating point )
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Arithmetic Operation :
    Addition and Subtraction
    i.) make e1 = e2
    ii.) Add/Subtract m1 and m2
    Example :
    N1 N2
    29.32 2.48
    29.32 X 100 2.48 X 100
    2.932 X 101 .248 X 101
    2.932 X 101
    .248 X 101
    --------------------------
    3.580 X 101
    --------------------------
    Multiplication
    i.) Add e1 = e2
    ii.) Multiply m1 and m2
    Division
    i.) Subtraction e1 = e2
    ii.) Divide m1 and m2
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Normalization of Numbers :
    After decimal there is always non zero value than representation
    is called NORMALIZED
    But, ZERO can not be normalized, because zero
    can not contain any non zero value therefore it is so.
    For –ve
    0 For +ve
    __ . __ __ __ __ __ __ __ __ __ __ __
    m
    Exp
    sign
    sign
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Errors are of 2 types :
    1.) Truncation Error
    .0003899  .00038
    here,
    99 X 10-7
    2.) Round off Error
    .0003899  .00039
    here,
    99 X 10-7
    In both the above cases there is intolerable. Therefore we go for
    After decimal there is always non zero value than representation
    is called NORMALIZED
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Examples :
    .0003899  .3899000 X 10-3 
    0 3 8 9 9 0 1 0 3
    + . 3 8 9 9 0 - 1003
    235.8  .2358 X 103 
    0 2 3 5 8 0 0 0 4
    1 9 9 9 9 9 0 0 2
    + . 3 8 9 9 0 + 1003
    99.999  .99999 X 102 
    - . 9 9 9 9 9 + 1002
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Examples :
    -.00836  .836 X 10-2 
    1 8 3 6 0 0 1 0 2
    - . 3 8 9 9 0 - 1002
    -00235.7  .23587 X 105 
    1 2 3 5 8 7 0 0 5
    1 9 9 9 9 9 1 0 2
    - . 2 3 5 8 7 + 1005
    -.00999  .99999 X 10 -2 
    - . 9 9 9 9 9 - 10 -02
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • +/- m X b +/-e
    23
    8
    1
    IEEE 754 Standard :
    Double
    Single
    for exponent
    biased value 127 (default number)
    EXPONENT
    MANTISSA
    32
    32 bits because it is decided in standard in 1EEE 754 floating point standard
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Examples
    (11)10
    (1)10
    0
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    1 1 1 1 1 1 1 1
    Krishna Kumar Bohra (KKB), MCA LMCST
    www.selectall.wordpress.com
  • Ccontd…