Polythecnic University of Puerto Rico<br />Chemical Engineering Department<br />Course – CHE- 5916 <br />Capstone Project ...
Acknowledgment<br />Prof. Sylvia M. VélezVillamil<br />	Biology Department<br />	University of Puerto Rico at Humacao<br /...
Agenda<br />
Problem Statement<br />
Introduction<br />
Introduction: Algae Fuel<br />Introduction<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biod...
ResearchDescription<br />
ResearchObjectives<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Research Contributions<br />Determine if the use of CO2  during algae cultivation is beneficial to its growth and lipid co...
Literature Review<br />
Biodiesel fromAlgae<br />Production of Oil from differentcrops<br />Advantages:<br /><ul><li>The yields of oil and fuels a...
Grows practically anywhere, ensuring no competition with food crops.
Excellent bioremediation agents - they have the potential to absorb massive amounts of CO2 and can play an important role ...
Only feedstock that has the potential to completely replace world's consumption of transportation fuels.</li></li></ul><li...
Microscopic (µm)
Saline or fresh water
Grow extremely quickly
Large amounts of lipids within their cell structure
Multicellular
Macroscopic (up to 60 m)
Saline or fresh water
Grow extremely quickly
Food, medicine, fertilizer</li></li></ul><li>Properties of Green Microalgae<br />
Microalgae Strain<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Scenedesmusdimorphus<br />
Production of Lipids from Microalgae<br />Light (Photons)<br />CO2<br />O2<br />Microalgae<br />(Photosynthetic CO2 fixati...
Cultivation<br />
Cell growth<br />
Temperature<br />
CO2<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Nutrients<br /><ul><li>After Carbon, Nitrogen is the most important nutrient.
Contributes to the biomass production.
Influence on algae lipid yield
Response to nitrogen limitations, mechanism of survival, increase lipid content.
Stops its divisions and start to store energy in the form of lipids.</li></li></ul><li>Nitrogen; Urea<br /><ul><li>Urea
Each strain prefers different source.
Kansas State University
Best source for Scenedesmusdimorphusgrowth.
Replacing nitrogen source KNO3</li></li></ul><li>Harvesting<br />
Flocculation<br />
Flocculation<br />
Extraction<br />
Lipid Extraction<br />Concentrated Algae<br />Cell Disruption<br />Mechanical<br />Chemical<br />Press<br />Solvents<br />...
Lipid Extraction - Solvents<br />
Transesterification<br />
Transesterification<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Transesterification Reaction<br />
Proposed Experiment<br />Co2 vs. non Co2<br />Algae Culture<br />Daily<br />Cell Count<br />N Measure<br />After 17 days<b...
Cell Count<br />
Nitrogen Measure<br />
Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Proposed Experiment<br />Optimal Lipid Yield<br />Algae Culture<br />1.2, 1.8, 2.4 g/L Urea<br />Daily<br />Cell Count<br ...
Cell Count<br />
Nitrogen Measure<br />
Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Proposed Experiment<br />Biodiesel Production<br />Algae Culture<br />Daily<br />Cell Count<br />After  a fixed period<br ...
Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
Stock Culture<br />  Prepare the Stock Culture (SC) in a beaker of 1000mL.<br />1.<br />algae<br />1000mL<br />SC<br />
Stock Culture<br />Leave the algae to grow and reproduce for about 7 days before using it.<br />12:12<br />2.<br />Agitati...
Upcoming SlideShare
Loading in...5
×

Maximization of algae lipid yield Scenedesmus dimorphus for the production of biodiesel

11,309

Published on

Published in: Education, Technology, Business
13 Comments
26 Likes
Statistics
Notes
  • can you plz send this ppt to my mail sathyamicro17@gmail.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Please send my this pp. my email is nguyenthithanhtra1990@gmail.com
    thank you very much
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Hi can u pls mail me the ppt.. am working on biodiesel using diatoms.

    mail id- jeyselva86@gmail.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • well done. good job. could you allow free access to the presentation. thanks.@trsram
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Do you have results for this?
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
11,309
On Slideshare
0
From Embeds
0
Number of Embeds
28
Actions
Shares
0
Downloads
0
Comments
13
Likes
26
Embeds 0
No embeds

No notes for slide

Transcript of "Maximization of algae lipid yield Scenedesmus dimorphus for the production of biodiesel"

  1. 1. Polythecnic University of Puerto Rico<br />Chemical Engineering Department<br />Course – CHE- 5916 <br />Capstone Project Presentation<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />Group:<br />Sara Currás Medina<br />Gustavo Mendez Santos<br />Carlos A. Ramos Encarnación<br />Germano Salazar Benites<br />Advisor:<br />Dr. Alessandro Anzalone<br />Date:<br />July 24, 2009<br />
  2. 2. Acknowledgment<br />Prof. Sylvia M. VélezVillamil<br /> Biology Department<br /> University of Puerto Rico at Humacao<br />Prof. Edgardo González, Ph.D.<br />Bureau of Forest Services, Director<br /> Department of Natural and Environmental Resources<br />Alessandro Anzalone, Ph.D. – Advisor<br />Chemical Engineering Department, Director<br />
  3. 3. Agenda<br />
  4. 4. Problem Statement<br />
  5. 5. Introduction<br />
  6. 6. Introduction: Algae Fuel<br />Introduction<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  7. 7. ResearchDescription<br />
  8. 8. ResearchObjectives<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  9. 9. Research Contributions<br />Determine if the use of CO2 during algae cultivation is beneficial to its growth and lipid content.<br />Maximize the lipid content varying the urea concentration and nutrient depravation time.<br />Detailed documentation of the process.<br />
  10. 10. Literature Review<br />
  11. 11. Biodiesel fromAlgae<br />Production of Oil from differentcrops<br />Advantages:<br /><ul><li>The yields of oil and fuels are much higher than competing energy crops.
  12. 12. Grows practically anywhere, ensuring no competition with food crops.
  13. 13. Excellent bioremediation agents - they have the potential to absorb massive amounts of CO2 and can play an important role in sewage and wastewater treatment.
  14. 14. Only feedstock that has the potential to completely replace world's consumption of transportation fuels.</li></li></ul><li>Microalgae vs. Macroalgae<br />Microalgae<br />Macroalgae<br /><ul><li>Unicellular
  15. 15. Microscopic (µm)
  16. 16. Saline or fresh water
  17. 17. Grow extremely quickly
  18. 18. Large amounts of lipids within their cell structure
  19. 19. Multicellular
  20. 20. Macroscopic (up to 60 m)
  21. 21. Saline or fresh water
  22. 22. Grow extremely quickly
  23. 23. Food, medicine, fertilizer</li></li></ul><li>Properties of Green Microalgae<br />
  24. 24. Microalgae Strain<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  25. 25. Scenedesmusdimorphus<br />
  26. 26. Production of Lipids from Microalgae<br />Light (Photons)<br />CO2<br />O2<br />Microalgae<br />(Photosynthetic CO2 fixation)<br />Nutrients<br />(N, P, Si)<br />Biomass (carbon)<br />Lipid storage<br />Carbohydrate storage<br />
  27. 27. Cultivation<br />
  28. 28. Cell growth<br />
  29. 29. Temperature<br />
  30. 30.
  31. 31. CO2<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  32. 32. Nutrients<br /><ul><li>After Carbon, Nitrogen is the most important nutrient.
  33. 33. Contributes to the biomass production.
  34. 34. Influence on algae lipid yield
  35. 35. Response to nitrogen limitations, mechanism of survival, increase lipid content.
  36. 36. Stops its divisions and start to store energy in the form of lipids.</li></li></ul><li>Nitrogen; Urea<br /><ul><li>Urea
  37. 37. Each strain prefers different source.
  38. 38. Kansas State University
  39. 39. Best source for Scenedesmusdimorphusgrowth.
  40. 40. Replacing nitrogen source KNO3</li></li></ul><li>Harvesting<br />
  41. 41. Flocculation<br />
  42. 42. Flocculation<br />
  43. 43. Extraction<br />
  44. 44. Lipid Extraction<br />Concentrated Algae<br />Cell Disruption<br />Mechanical<br />Chemical<br />Press<br />Solvents<br />Filtering<br />Distillation<br />Algae Oil<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  45. 45. Lipid Extraction - Solvents<br />
  46. 46. Transesterification<br />
  47. 47. Transesterification<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  48. 48. Transesterification Reaction<br />
  49. 49.
  50. 50. Proposed Experiment<br />Co2 vs. non Co2<br />Algae Culture<br />Daily<br />Cell Count<br />N Measure<br />After 17 days<br />Biomass Wt.<br />Lipid Wt.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  51. 51. Cell Count<br />
  52. 52. Nitrogen Measure<br />
  53. 53. Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  54. 54. Proposed Experiment<br />Optimal Lipid Yield<br />Algae Culture<br />1.2, 1.8, 2.4 g/L Urea<br />Daily<br />Cell Count<br />N Measure<br />After N Consumption<br />Biomass Wt.<br />Lipid Wt.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  55. 55. Cell Count<br />
  56. 56. Nitrogen Measure<br />
  57. 57. Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  58. 58. Proposed Experiment<br />Biodiesel Production<br />Algae Culture<br />Daily<br />Cell Count<br />After a fixed period<br />Process the oil<br />Obtain Biodiesel<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  59. 59. Biomass and Lipid Weight<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  60. 60.
  61. 61. Stock Culture<br /> Prepare the Stock Culture (SC) in a beaker of 1000mL.<br />1.<br />algae<br />1000mL<br />SC<br />
  62. 62. Stock Culture<br />Leave the algae to grow and reproduce for about 7 days before using it.<br />12:12<br />2.<br />Agitation <br />SC<br />90°F<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  63. 63. Growth Media<br />Prepare the Growth Media(GM) in an Erlenmeyer of 1000mL.<br />1.<br />GM<br />
  64. 64. Cultivation<br /><ul><li>To prepare one culture for any experiment.</li></ul>1000mL<br />SC<br />GM<br />227mL GM<br />23mL SC<br />250mL<br />Culture<br />
  65. 65. CO2 vs. Without CO2<br /><ul><li>For this experiment we want to determine if the use of carbon dioxide during algae cultivation is beneficial to its growth and lipid content.</li></ul>90°F<br />12:12<br />250mL<br />250mL<br />Culture<br />Culture<br />x3<br />x3<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  66. 66. Measuring Algae Growth<br /><ul><li>Measure the growing rate using a hemacytometer every day.</li></ul>100X<br /> magnification<br />250mL<br />Culture<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  67. 67. Measuring Nitrogen Concentration<br />Spectrophotometer<br />250mL<br />Culture<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  68. 68. Lipid Yield<br /><ul><li> After certain days of algae culturing, extract 100 mL</li></ul> from the culture and transfer it to a 250 mL beaker.<br /><ul><li> Using aluminum sulfate flocculate the sample.
  69. 69. With a 1.5µm filter , separate the sample using a </li></ul> vacuum Erlenmeyer of 1000 ml.<br /><ul><li> Measure and record the weight of a 500 mL bottle </li></ul> with cap.<br /><ul><li> Deposit the biomass contained in the filter in to the </li></ul> weighted bottle and measure again.<br />
  70. 70. Lipid Yield<br /><ul><li> For every gram of algae biomass add 18 ml of </li></ul> Hexane/Isopropyl (3:2) (solvent) and agitate manually until <br /> the biomass is dissolved.<br /><ul><li> Measure the weight of a vacuum Erlenmeyer of 1000 mL.
  71. 71. With a 1.5µm filter, separatethe sample using the previously </li></ul> weighed Erlenmeyer.<br /><ul><li>Put the Erlenmeyer with the filtrated solution in the hood.
  72. 72. Using a heat plate, apply heat to the solution (95˚C) to </li></ul> evaporate the solvent solution.<br /><ul><li>With the solution dry, measure the weight and evaluate the </li></ul> results.<br />
  73. 73. Dry Weight Biomass<br /><ul><li> After 17 days put a filter paper in an oven at 75˚C for </li></ul> 5 hours.<br /><ul><li> Measure the weight of the paper.
  74. 74. Take 30 mL from the culture and filtrate in a vacuum </li></ul> Erlenmeyer of 1000mL.<br /><ul><li> After filtrating the sample put the filter paper in the </li></ul> oven at 75˚C for 5 hours.<br /><ul><li>Leave the sample overnight in the desecator.
  75. 75. Measure the weight of the sample.
  76. 76. Compare the weight of the dry lipids vs. the dry </li></ul> biomass.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  77. 77. Optimization of Lipid Yield<br /><ul><li> Prepare 15 cultures in 15 beakers of 250 mL with three different concentrations (1.2, 1.8 and 2.4 g/L Urea)</li></ul>1.2 g/L Urea<br />1.8 g/L Urea<br />2.4 g/L Urea<br /><ul><li> Measure the growing rate </li></ul> and the nitrogen <br /> consumption every day.<br />
  78. 78. Biodiesel<br />Measure the growing rate every day.<br />1.<br />Measure the nitrogen consumption every day.<br />2.<br />90°F<br />When the culture is prepared to be processes, flocculate the sample<br />3.<br />12:12<br />With a 1.5µm filter , filtrate the sample using a vacuum.<br />4.<br />For every gram of biomass add 18 ml of a mixture of Hexane/Isopropyl (3:2) <br />5.<br />After agitation, filtrate the sample again.<br />6.<br />Separate by distillation the solvent from the oil.<br />7.<br />CO2 or Air<br />
  79. 79. Transesterification<br />1. Add the extracted oil to a 1 liter flask.<br />2. In another flask mix KOH with ethanol<br />3. Heat the ethanol to dissolve KOH if needed.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  80. 80. Transesterification<br />4. Mix KOH and ethanol blend into algae oil <br /> and agitate vigorously.<br />5. After 120 minutes of reaction time, allow time <br /> for separation. The mixture will separate into<br /> two layers biodiesel on top, glycerin on bottom.<br />Biodiesel<br />Glycerin<br />6. Separate the biodiesel on another flask.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  81. 81. Transesterification<br />8. Allow 24-48 hours for water to settle, <br /> biodiesel will float to the top and become<br /> clearer.<br />7. Place the biodiesel in a glass column<br /> and spray water into the top..<br />Biodiesel<br />Water<br />9. Separate the biodiesel from water.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  82. 82. References<br />“Oil Crisis”. Health and Energy. 13 July 2009 &lt;http://healthandenergy.com/oil_crisis.htm&gt;.<br />Sheehan, John, Terri Dunahay, John Benemann, and Paul Roessler. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. Colorado: NationalRenewableEnergyLaboratory, 1998.<br />“Scenedesmus Dimorphus-Algae Culture”. Algae Depot. 2009. 12 June 2009 &lt;http://www.algaedepot.com/servlet/the-1/Scenedesmus-dimorphus--dsh--Algae/Detail&gt;.<br />“Kunikane. S, M. Kakeko, and R. Maehara. Growth and Nutrient Uptake of Green Alga, Scenedesmus Dimorphous, Under a Wide Range of Nitrogen/Phosphorous Ratio-I. Setsunan, Japan: University of Setsunan, 1984.<br />Shen, Ying, Zhijian Pei, Wenqiao Yuan, and Enrong Mao. Effect of Nitrogen and Extraction Method on Algae Lipid Yield. Kansas State: University of Kansas State, 2009.<br />Tzann, Stelios T. “Non Mechanical Methods”. Tutorial on Cell Disruption. 3 June 1996. 7 July 2009 &lt;http://128.113.2.9/dept/chem-eng/Biotech Environ/DOWNSTREAM/disrupt.htm&gt;.<br />Maximization of ScenedesmusDimorphusLipid Yield for the Production of Biodiesel<br />
  83. 83. Thanks for <br />listening!<br />

×