Your SlideShare is downloading. ×
0
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Day 9-4 Notes
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Day 9-4 Notes

493

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
493
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Intro To Trigonometry Day 4 Radian Measure/Reciprocal Functions 1. Name the quadrant in which an angle of measure x  could lie when:   a)  sin x < 0 and cos x > 0 b)  tan x > 0 and cos x < 0
  • 2. A Central Angle of a circle is an angle with a vertex at the center of a circle. Intercepted Arc Central Angle When a central angle intercepts an arc that has the same length as a  radius of the circle, the measure of the angle is defined to be one radian. r 1 radian r
  • 3. The Radian Measure of an angle θ is: arc length s θ =  r radius Example:  What is the radian measure of a half a revolution? Example:  What is the radian measure of the following? a)  3600 = c)  900 = b)  1800 = d)  300 =
  • 4. Examples: 1.  A circle with radius of 22 inches, has a central angle that intercepts an arc of exactly 22 inches.   What is the measure of this central angle (in radians)? 2.  Example:  A central angle of 3 radians in a circle intercepts an arc of 61 cm.  Find the measure of  the radius to the nearest tenth.
  • 5. Conversion Formulas 1.  Degrees to Radians multiply by  π radians 0 180 2.  Radians to Degrees  1800 multiply by  π radians Examples:  Convert from degrees to radians. a) 3150 b) ­1500 Examples:  Convert from radians to degrees . a)  2π b)  π 3 4
  • 6. Reciprocal Trigonometric Functions In earlier lessons in this chapter, you studied three trigonometric functions—sine, cosine, and tangent.  Three other functions—cosecant, secant, and cotangent—are reciprocals of the three you have used.
  • 7. Example:  Find all 6 trig functions if: a)  tan θ = (√7/3) and sinθ<0
  • 8. Example:  Find all 6 trig functions if: a)  csc θ = (­√10/3) and cotθ<0
  • 9. Attachments Terminal­Initial Sides of Rotations.gsp

×