Upcoming SlideShare
×

# ESAUnit2.ppt

438
-1

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
438
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
4
0
Likes
0
Embeds 0
No embeds

No notes for slide

### ESAUnit2.ppt

1. 1. Aristotle<br />Natural Motion<br />
2. 2. Galileo<br />Experimentation<br />
3. 3. Newton<br />Newton’s Laws of Motion, Gravity<br />
4. 4. Linear Motion<br /> distance<br />SPEED = time <br />
5. 5. Linear Motion<br /> displacement<br />VELOCITY = time <br />
6. 6. Earth -&gt; Sun<br /> distance 1.497 x 1011m<br />Time = velocity = 3 x 108m/s<br /> = 498.9 seconds<br /> = 8.3 minutes<br />
7. 7. Sun -&gt; Mars<br />d 2.28 x 1011m<br />t = v = 3 x 108m/s<br /> = 760.3 seconds<br /> = 12.67 minutes <br />
8. 8. Acceleration<br /> change in velocity<br />Acceleration = time<br />
9. 9. Deceleration<br />= Negative Acceleration<br />
10. 10. Saleen S7 Turbo<br />vf– vi 60 mph – 0 mph mph<br />a = t = 3.3 s = 18.2 s<br /> = 0.005 mi/s2<br />
11. 11. Gravitational Acceleration<br />
12. 12. Free Fall<br />Acceleration due to GRAVITY<br />Mass doesn’t matter<br />
13. 13. Gravitational Acceleration<br />Velocity increases at a constant rate<br />vf - vi<br />a = t<br />20m/s - 10 m/s<br /> = 1 second<br /> = 9.8 m/s2<br /> = 32 ft/s2<br />
14. 14. Distance Fallen<br />Distance = Velocityaverage x time<br /> vi + vf<br /> = 2 x t<br /> 0 + gt<br /> = 2 x t<br /> = 1/2 gt2<br />
15. 15. Transamerica Building<br />46 g golf ball droppedfrom top of Transamericabuilding <br />7.35 seconds to hit ground<br />d = ????<br />
16. 16. Transamerica Building<br />46 g golf ball droppedfrom top of Transamericabuilding <br />7.35 seconds to hit ground<br />d = 1/2gt2<br /> = (0.5)(9.8 m/s2)(7.35s)2<br />= 265 m<br /> = 853 ft<br />
17. 17. g and elevation<br />ATT vs. Coors Field<br /> sea level 5280 ft<br /> 9.8185 m/s2 9.8136 m/s2<br />
18. 18. G force<br />Extreme Acceleration<br /> &gt; 1g<br />Breathing difficultiesblackout<br />
19. 19. Gravity<br />
20. 20. Newton’s Laws of Motion<br />Every body continues in a state of rest or in uniform motion in a straight line unless compelled to change that state by forces impressed upon it.<br /> INERTIA<br />
21. 21. Inertia<br />
22. 22. Newton’s Laws of Motion<br />2) The acceleration produced by a Force acting upon on body is directly proportional to the mass of the body.<br /> F = m x a<br />
23. 23. Force Units<br />F = m x a<br /> = 2000 kg x 0.05 m/s2<br />= 100 kg m/s2 = 100 Newtons<br />
24. 24. Force of Gravity<br />F = m x a<br />Fg = m x g<br />Fg = WEIGHT<br />
25. 25. Mass vs. Weight<br />60 kg person<br />Weight = m x g<br />Earth Moon Jupiter<br />(60 kg)(9.8m/s2) (60 kg)(1.67 m/s2) (60 kg)(25.9 m/s2)<br />588 N 100 N 1552 N<br />
26. 26. Weightlessness<br />“less” gravityNOT<br /> no gravity<br />
27. 27. Newton & Gravity<br />1687<br />Principia<br />“Every object in the universe is attracted to<br /> and attracts every other<br /> object in the universe by<br /> a force called gravity”<br />
28. 28. Gravitational Force<br />Mutually <br /> attractive force<br />Inverse square<br /> GM1M2<br />Fg = r2 where G = 6.67 x 10-11Nm2/kg2<br />
29. 29. g on Uranus?<br />Fg = m x g = GM1M2/r2<br />G Mplanet<br /> g = rplanet2<br />(6.67 x 10-11 Nm2/kg2)(8.44 x 1025 kg)<br />g =(2.56 x 107 m)2<br /> g = 8.59 m/s2<br />
30. 30. Size of Gravitational Force<br /> (6.67 x 10-11 Nm2/kg2) (60 kg)(60 kg)<br />Fg = (1 m)2<br />Fg = 2.4 x 10-7 N<br />
31. 31. Size of Gravitational Force<br /> (6.67 x 10-11 Nm2/kg2) (6 x 1024 kg)(7.35 x 1022kg)<br />Fg = (3.83 x 108 m)2<br /> Fg = 2 x 1020 N <br />
32. 32. Escape Velocity<br />d = 1/2gt2 for objects in free fall<br /> 2d = gt2 but t = v/g for free fall2d/g = t2 = (v/g)2<br /> 2 dg = v2<br /> √2dg = v = ESCAPE VELOCITY<br />
33. 33. Escape Velocity<br />vE = √2dg<br /> = √2gREarth<br /> = √2(9.8m/s2)(6.378 x 106 m)<br /> = 11.18 X 103 m/s<br />
34. 34. How high will it go?<br />V2 = 2dg<br />V2/2g = d<br />(10 m/s)2<br />2 (9.8 m/s2) = d<br />d = 5.1 m <br />
35. 35. Newton’s Laws of Motion<br />In the absence of outside forces, the total momentum of a set of objects remains the same no matter how the objects interact with one another.<br />p = m v<br />
36. 36. Conservation of Momentum<br />m vbefore = m vafter<br />(3000 kg)(10m/s) + (1000 kg)(0 m/s) = (3000 kg)v’ + (1000 kg) (15 m/s)<br />30,000 kg m/s = (3000 kg) v’ + 15,000 kg m/s<br />15,000 kg m/s = (3000 kg) v’ -------&gt; v’ = 5 m/s<br />
37. 37. Conservation of Momentum<br />m vbefore = m vafter<br />(2000 kg) (8 m/s) + (50 kg) (0 m/s) = (2000 + 50 kg) v’<br />16,000 kg m/s ÷ 2050 kg = v’ = 7.8 m/s<br />
38. 38. Inelastic Collisions<br /> (2 kg)(10 m/s) 3 kg<br /> v = 0 m/s v’ =?<br />
39. 39. Elastic Collisions<br /> (2 kg)(10 m/s) 3 kg<br /> v = -2 m/s v’ =?<br />
40. 40. Angular Momentum<br />m1 x v1 x r1 = m2 x v2 x r2<br />
41. 41. Circular Motion<br />2 r = diameter<br />2πr = circumference<br />Magnitude of v doesn’t<br /> change but direction<br /> does<br />
42. 42. Centripetal Acceleration<br />v<br />a = t<br />vt - vb<br /> = 1/2(2r)/v<br /> 2v<br /> =r/v<br /> v2 mv2<br /> ac = rFc = r<br />
43. 43. Applications<br />Spin cycle<br /> washer<br />
44. 44. Car turning<br />
45. 45. The ROTOR<br />
46. 46. Centripetal Force<br /> mball = 0.25 kg<br />r = 0.5 m<br /> v = 2 m/s <br /> Fc = ?<br />
47. 47. Centripetal Force<br />mball = 0.25 kg<br />r = 0.5 m<br />v = 2 m/s <br />(0.25 kg)(2 m/s)2<br />Fc = 0.5 m<br /> = 2 Newtons<br />
48. 48. Roller Coaster Loop<br />Fc &gt; Fg<br />mv2<br /> r &gt; mg<br />V2/r &gt; g<br />
49. 49. Conservation of Energy<br />The Energy of the Universe<br />Is neither created nor destroyed;<br />It merely changes form.<br />
50. 50. Forms of Energy<br />
51. 51. Work and Power<br />W = F x d<br /> work<br />Power = time <br />
52. 52. Work<br />W = F x d<br />W = m x g x d<br />W = (50 kg)(9.8m/s2)(5m)<br /> = 2450 kg m2/s2<br /> = 2450 Joules<br />
53. 53. Power<br /> Work<br />Power = time<br /> 2450 J<br /> = 30 s<br /> = 81.67 J/s<br /> = 81.67 Watts<br />
54. 54. Kinetic Energy<br />Work = F x d = (m x a) x d<br />If d = 1/2at2 and v = atthen d = 1/2a(v/a)2 = 1/2v2/a<br />W = m a d = m a (1/2 av2/a) = 1/2mv2<br />
55. 55. Potential Energy<br />Potential Energy = m x g x h <br />
56. 56. Potential & Kinetic Energy<br />PE + KE = Total Energy<br />PEtop = KEbottom<br />mgh = 1/2mv2<br />2gh = v2<br />V = √2gh<br />
57. 57. Escape Velocity<br />vE = √2dg<br /> = √2gREarth<br /> = √2(9.8m/s2)(6.378 x 106 m)<br /> = 11.18 X 103 m/s<br />
58. 58. Terminal Velocity<br />1 Kg book falls 1 meter<br />vf = ?<br />V = √2gh<br /> = √2(9.8m/s2)(1m)<br /> = √19.6 m2/s2 = 4.4 m/s<br />
59. 59. How tall is the incline?<br />V = 5.42 m/s<br />V = √2gh<br />Thus h = v2/2g<br /> = (5.42 m/s)2/2(9.8 m/s2)<br /> = 1.5 m<br />
60. 60. Roller Coaster<br />
61. 61. Pole Vault<br />World Record = 6 m<br />V = √2gh<br /> = √2 (9.8m/s2)(6 m)<br /> = 10.9 m/s<br />
62. 62. Heat transfer<br />Heat:<br /> Energy<br /> transferred between<br /> 2 systems in contact<br /> and at different <br /> temperatures<br />
63. 63. Temperature<br />Average kinetic energy<br /> of atoms or molecules<br />
64. 64. Temperature scales<br />
65. 65. Biological Temperature Regulation<br />Human: 37C = 98.6 F<br />Shivering, flushing<br />
66. 66. Biological Temperature Regulation<br />Birds<br />Animal fat layer<br />
67. 67. Specific Heat<br />The Amount of heat <br /> energy necessary to <br /> raise the <br /> temperature<br /> of a given <br /> substance<br />
68. 68. Heat Energy Q<br />Q = m C T<br /> C in units of <br /> Joules/g °C or calories/g °C<br />Heat Energy<br />
69. 69. Heat Capacity C<br />
70. 70. Calories<br />1 calorie: <br /> amount of <br /> heat needed to raise temp<br /> of 1.0 gram <br /> H2O 1° C<br />
71. 71. Dietary Calories<br />1 Calorie = 1000 calories<br />100 Calories<br />100,000 calories!<br />
72. 72. Calorie burning<br />
73. 73. Heat Transfer<br />Wooden vs. Aluminum<br />Each pot contains 500 cal.<br />Each spoon 100 g<br />How hot will each one get?<br />
74. 74. Heat Transfer<br />Aluminum spoon<br />Q = mCT = 500 cal<br /> = (100g)(0.22cal/gºC) T<br /> 500 cal<br />T = (100g) (0.22cal/gºC) <br /> = 22.73°C<br />
75. 75. Heat Transfer<br />Wooden spoon<br />Q = mCT = 500 cal<br /> = (100g)(0.58cal/gºC) T<br /> 500 cal<br />T = (100g) (0.58cal/gºC) <br /> = 8.82°C<br />
76. 76. Identifying Unknowns<br />A 400 g metal<br /> w/3680 Joules of Heat<br /> Temp 50°C -&gt; 60°C<br />What is C?<br /> Q<br />C = mT<br /> = 3680 J/400g (10°C)<br /> = 0.92 J/g °C<br />
77. 77. Limiting Heat Transfer<br />Cair = 0.17 cal/g°C<br />
78. 78. Refrigeration<br />
79. 79. Sound Energy<br />Result of Vibrations<br />Air molecules disturbed<br />Ear membrane vibration<br />Auditory nerve -&gt; Brain<br />
80. 80. Hearing<br />
81. 81. Cochlea<br />
82. 82. Waves<br />
83. 83. Wavelength: distance between crests()<br />Frequency: # crests pass a given pt/time (f)<br /> x f = velocity of sound<br /> (m) (1/sec)<br />1/sec = HERTZ<br />
84. 84. Infrasound<br />f of elephant communication<br /> if  is 34 m?<br />f x  = vs = 340 m/s<br /> vs<br />Thus f =  = 10 1/s = 10 Hz <br />
85. 85. Ultrasound<br />f of dolphin communication<br /> if  is 0.0034 m?<br />f x  = vs = 340 m/s<br /> vs<br />Thus f =  = 105 Hz<br />
86. 86. Audible Sound Waves<br />Hearing range fornormal human:20 - 20,000 Hz<br />S,z,c soundsvs.<br />M,b sounds<br />
87. 87. Sound & Medium<br />Velocity of sound in different media<br />
88. 88. Sound & Temperature<br />vs = vo + (0.61 m/sºC)T<br />
89. 89. Hot Day vs. Cold Day<br />110° F vs. –30 ° F?<br />At 110° F = 43.33 °C<br />vs = 331 m/s + (0.61m/s °C) (43.3 °C) = 357.43 m/s<br />At –30 ° F = –34.4 ° Cvs = 331 m/s + (0.61m/s °C) (–34.4 ° C) = 310 m/s<br />
90. 90. Echolocation<br />Bat sends signal and <br /> receives echo 0.7 slater in 4° C cave --how far is the wall?<br />vs = 331 m/s + (0.61m/s °C) (4°C) =333.4m/s<br />d = v x t = vs x t/2 = (333.4m/s)(0.35s) =116.7 m<br />
91. 91. Sound Intensity<br />Bel = 10 db intensity doubling <br /> (d2)2 I1<br /> (d1)2 = I2<br />Intensity drops with (distance)2<br />
92. 92. Sound Intensity<br />
93. 93. Intensity comparison<br />Standing 2 m vs. 200 m<br /> from jet taking off?<br />(200m)2 120 db<br /> (2 m)2 x<br />40000/4 = 105 = 5 factors of 10<br /> x = 70 db<br />
94. 94. Doppler Effect<br />
95. 95. Doppler Effect<br />Approaching sound f<br /> Vs<br />f’ = f VS - V<br />Retreating sounds f<br /> Vs<br />f’ = f VS + V<br />
96. 96. Doppler Example<br />Approaching at 30m/s:<br /> 340m/s<br /> f’ = (440 Hz) 340 - 30 m/s<br /> = 483 Hz<br />Retreating at 30 m/s:<br /> 340m/s<br /> f’ = (440 Hz) 340 + 30 m/s<br /> = 404 Hz<br />
97. 97. Medical Doppler<br />Blood flow velocity<br />F= 80000 Hz, f’ = 80020 Hz<br />f’ vs 1500 m/s<br />f = vs - v = 1.00025 = 1500 - v m/s<br /> =&gt; v = 0.375 m/s = 37.5 cm/s <br />
98. 98. Sonic Boom<br />
99. 99. Music<br />Pythagoras<br />Octave = 2 f<br />Harmonious frequencies = simpler ratio<br />
1. #### A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.