8 GráFicas De Funciones

72,909 views

Published on

Published in: Technology
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
72,909
On SlideShare
0
From Embeds
0
Number of Embeds
40,051
Actions
Shares
0
Downloads
184
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

8 GráFicas De Funciones

  1. 1. Gráfica de Funciones Prof. Lic. Javier Velásquez Espinoza
  2. 2. GRÁFICAS EN COORDENADAS RECTANGULARES Un punto se ubica en el plano por medio de sus coordenadas rectangulares , escritas en la forma de un par ordenado. “ a” : Abscisa de “P” “ b” : Ordenada de “P” (a; b) : Coordenadas de “P” Y (Eje de ordenadas) X (Eje de abscisas) P=(a; b) a b
  3. 3. Utilizando un sistema de coordenadas rectangulares podemos representar geométricamente a una función, entre las principales tenemos: FUNCIÓN LINEAL: y = mx + b Ejemplo: Graficar y = 2x + 6 (  3; 0) : Intersección sobre el eje X (0; 6) : Intersección sobre el eje Y. (  3; 0) (0: 6) Hacemos una tabulación: Dominio = R Rango = R X Y x y 0 6 -3 0
  4. 4. FUNCIÓN CONSTANTE: y = c Ejemplo: Graficar y = 5 (0; 5) : Intersección sobre el eje Y (0; 5) Dominio = R Rango =  5  Y X
  5. 5. (0; 0) : Origen de la curva (0; 0) : Intersección sobre el eje X (0; 0) : Intersección sobre el eje Y. Dominio =  0;   Rango =  0;   FUNCIÓN RAÍZ CUADRADA: y = Y X
  6. 6. VARIACIONES DE LA GRÁFICA FUNCIÓN RAÍZ CUADRADA: Y X Gráfica reflejada respecto al eje X y luego respecto a Y ORIGEN: (0;0) Y X Gráfica reflejada respecto al eje Y Y X Gráfica reflejada respecto al eje X Y X Gráfica original
  7. 7. Ejemplo: Graficar SOLUCIÓN Primero debemos encontrar el punto que corresponde al origen de la curva, para lo cual igualamos a cero la cantidad subradical. 15 – x = 0  x = 15 Reemplazando en la función: y = 3 Luego el punto donde se inicia la curva es: (15; 3) Dominio:   ; 15  Rango:   ; 3  El signo menos que antecede al radical indica que la curva se extiende hacia la izquierda Y X (6; 0) (15; 3)
  8. 8. FUNCIÓN CUADRÁTICA: y = ax 2 +bx +c y = x 2 y =  x 2 La gráfica de toda función cuadrática es una parábola. Un caso especial y recurrente es: VÉRTICE: (0;0) VÉRTICE: (0;0) Y X Y X
  9. 9. Ejemplo: Graficar la función: y =  x 2 + 6x + 7 SOLUCIÓN Primero debemos encontrar el vértice de la parábola, para lo cual aplicamos el método de completar cuadrados: y =  (x – 3) 2 + 16 Igualando a cero el binomio al cuadrado: x = 3 Reemplazando en la función: y = 16 Luego el vértice de la parábola está en el punto: ( 3; 16) y se abre hacia abajo Dominio: R Rango:  ; 16  Y X (3; 16) (7; 0) (  1; 0) (0; 7)
  10. 10. FUNCIÓN VALOR ABSOLUTO: VÉRTICE: (0;0) VÉRTICE: (0;0) Y X y =  X  Y X y =   X 
  11. 11. Ejemplo: Graficar la función: y =  x  3  + 6 SOLUCIÓN Primero debemos encontrar el vértice de la gráfica, para lo cual igualamos a cero el valor absoluto  x  3  = 0  x = 3 Reemplazando en la función: y = 6 Luego el vértice de la gráfica es: (3; 6) y se abre hacia abajo Dominio: R Rango:  ; 6  Y X (3; 6) (9; 0) (  3; 0) (0; 3)
  12. 12. Dominio = R  0  Rango = R  0  No existen intersecciones sobre los ejes Asíntota horizontal Asíntota vertical Las asíntotas se determinan así: a) La A. Vertical: se iguala a cero el denominador de la fracción. b) La A. Horizontal: se iguala a cero la fracción que contiene a “x”. HIPÉRBOLA LA FUNCIÓN: Y X
  13. 13. Ejemplo: Graficar la función: SOLUCIÓN Debemos encontrar las asíntotas de la gráfica, para lo cual: a) Igualamos a cero el denominador  La asíntota vertical es : x = 5 b) Igualamos a cero la fracción Dominio: R –  5  Rango: R –  6   La asíntota horizontal es : y = 6 x = 5 y = 6 X Y
  14. 14. OBSERVACIONES: 1. Toda recta vertical debe intersecar sólo en un punto a la gráfica de una función. <ul><li>Si la gráfica de una función interseca a los ejes coordenados, los puntos de intersección se obtienen de la siguiente forma: </li></ul><ul><li>Intersección sobre el eje Y : se obtiene haciendo que x = 0, es decir calculando f(0). Si no existe f(0) significa que la gráfica no interseca al eje Y. </li></ul><ul><li>Intersección sobre el eje X : se obtiene haciendo que y = 0 y resolviendo la ecuación para x. Si la ecuación no tiene solución significa que la gráfica no interseca al eje X. </li></ul><ul><li>Si la variable “x” se cambia por “  x”, la gráfica se refleja respecto al eje Y </li></ul>4. Si la función “f(x)” se cambia por “  f(x)”, la gráfica se refleja respecto al eje X

×