0
Divisibilidad <ul><li>Prof. Lic. Javier Velásquez Espinoza </li></ul>
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul><ul><ul><li>D I V I S I B I L I D A D </li></ul></ul>1. Múltiplos ...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Una división exacta proporciona: 54 = 6 × 9 Una multiplicación pro...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Observa: 35  7 5 0  Esta división es exacta Decimos que  7 es divi...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Los múltiplos de un número se obtienen multiplicando ese número po...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número es  divisor  de otro cuando la división del segundo por ...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Vamos a calcular todos los divisores de  66. Dividimos  66  por to...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número puede tener varios divisores Por ejemplo: 18 tiene por d...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Los criterios de divisibilidad son útiles para descomponer un núme...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>45  1 4 05 5 0 Divisores:  1  y  45 45  2 2 05 2 1 Divisores:  3  ...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número es divisible por 2, por 5 o por 10 si lo es el número fo...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Ejemplos: Por 3: Un número es divisible por 3 si la suma de los va...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Para saber si un número es divisible por 11: Se suman separadament...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Ejemplo: 2058 Seleccionamos el  último dígito  del número  (8)  y ...
<ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Problema :  El número de habitantes del pueblo de Yolanda es un nú...
Upcoming SlideShare
Loading in...5
×

6 Divisibilidad

19,626

Published on

0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
19,626
On Slideshare
0
From Embeds
0
Number of Embeds
20
Actions
Shares
0
Downloads
327
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

Transcript of "6 Divisibilidad"

  1. 1. Divisibilidad <ul><li>Prof. Lic. Javier Velásquez Espinoza </li></ul>
  2. 2. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul><ul><ul><li>D I V I S I B I L I D A D </li></ul></ul>1. Múltiplos y divisores de un número 2. Cálculo de todos los divisores de un número 3. Criterios de divisibilidad 4. Números primos y compuestos 5. Descomposición de un número en factores primos 6. Máximo común divisor de varios números 7. Mínimo común múltiplo de varios números Index
  3. 3. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Una división exacta proporciona: 54 = 6 × 9 Una multiplicación proporciona dos divisiones exactas. 54 : 6 = 9 54 : 9 = 6 18 : 3 = 6 18 = 3 × 6 18 : 6 = 3 Un producto. Otra división exacta. Recuerda. Multiplicación y división
  4. 4. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Observa: 35 7 5 0 Esta división es exacta Decimos que 7 es divisor de 35. También decimos que 35 es múltiplo de 7. 47 9 5 2 Esta división no es exacta Así que 9 no es divisor de 47 . También decimos que 47 no es múltiplo de 9. Podemos saber si un número es divisor de otro de dos maneras: · Dividiendo el mayor entre el menor : · Escribiendo el segundo número como producto del primero por otro número. 7 es divisor de 56 porque la división 56 : 7 es exacta 7 es divisor de 56 porque 56 = 7 × 8 Múltiplos y divisores
  5. 5. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Los múltiplos de un número se obtienen multiplicando ese número por los números naturales Como sabes: 5 · 0 = 0 5 · 2 = 10 5 · 7 = 35 5 · 11 = 55 Cada vez que multiplicas 5 por cualquier número se obtiene otro número que es múltiplo de 5 . Así: 21 es múltiplo de 3, pues 21 = 3 · 7. ( Y múltiplo de 7) 44 es múltiplo de 11, pues 44 = 11 · 4 44 no es múltiplo de 5 , pues multiplicando 5 por cualquier otro número natural no da 44 0 es múltiplo de 2, y de 7, y de 15, pues: 0 = 2 · 0 = 7 · 0 = 15 · 0 ... 0 es múltiplo de todos los números Múltiplos de un número
  6. 6. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número es divisor de otro cuando la división del segundo por el primero es exacta. 44 : 5 no es exacta 44 dividido entre 11 da 4 Se dice que 11 es divisor de 44 5 no es divisor de 44 Divisor y factor significa lo mismo . Observa: 44 : 4 = 11 44 = 4 · 11 44 = 4 · 11 4 es divisor de 44 44 es producto de los factores 4 y 11 44 es múltiplo de 4 y de 11 (También 11 es divisor de 44) Si un número es divisor el otro, este es múltiplo de aquel. Divisores de un número
  7. 7. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Vamos a calcular todos los divisores de 66. Dividimos 66 por todos los número menores que él. Cuando la división es exacta, obtenemos también otra división y, por tanto dos divisores. Divisiones exactas: 66 1 6 06 6 0 66 : 1 = 66 Divisores: 1 y 66 66 2 3 06 3 0 Divisiones exactas: Divisores: 2 y 33 Divisores: 3 y 22 66 : 66 = 1 No es exacta: 4 no es divisor No es exacta: 5 no es divisor Divisores: 6 y 11 No es exacta: 7 no es divisor No es exacta: 8 no es divisor Nos detenemos cuando el cociente es menor o igual que el divisor. FIN Los divisores o factores de 66 son: D ( 66 ) = { 1, 2, 3, 6, 11, 22, 33, 66 } Cálculo de los divisores de un número (I) 66 3 2 06 2 0 66 : 2 = 33 66 : 33 = 2 Divisiones exactas: 66 : 3 = 22 66 : 22 = 3 66 4 1 26 6 2 66 5 1 16 3 1 66 6 1 06 1 0 Divisiones exactas: 66 : 6 = 11 66 : 11 = 6 66 7 9 3 66 8 8 2
  8. 8. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número puede tener varios divisores Por ejemplo: 18 tiene por divisores a 1, 2, 3, 6, 9 y 18 Para hallar todos los divisores de un número: Se escribe como producto de dos factores, empezando por el factor 1. Se termina cuando se repitan los factores. Ejemplo: 45 = 1 · 45 45 = 3 · 15 1 y 45 son factores 3 y 15 son factores 45 = 5 · 9 5 y 9 son factores 45 = 9 · 5 Se repiten los factores Los divisores de 45 son: 1, 3, 5, 9, 15 y 45 Compruébalo Los factores aparecidos son todos los divisores del número. Cálculo de los divisores de un número (III)
  9. 9. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Los criterios de divisibilidad son útiles para descomponer un número en sus factores primos. Por la tabla de multiplicar sabes que 24 es divisible por 4, pues 24 = 4 · 6. También que 72 es divisible por 9, pues 72 = 9 · 8. Un criterio de divisibilidad es una regla que permite reconocer, sin efectuar la división, si un número es o no divisible por otro. ¿Sabes si 29058 es divisible por 3? ¿Habría que dividir? No es necesario, pues la suma de las cifras de 29058, 2 + 9 + 0 + 5 + 8 = 24, es múltiplo de 3 Esto es un truco, que llamamos criterio. Criterios de divisibilidad
  10. 10. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>45 1 4 05 5 0 Divisores: 1 y 45 45 2 2 05 2 1 Divisores: 3 y 15 Para practicar hallemos todos los divisores de 45 . 4 no es divisor 2 no es divisor Divisores: 5 y 9 6 no es divisor 7 no es divisor FIN Para calcular todos los divisores de un número: Se divide el número por todos los número menores que él, ordenadamente, de menor a mayor. Cuando la división es exacta, se obtienen dos divisores. El proceso se termina cuando el cociente es menor o igual que el divisor. Terminamos porque el cociente (6) es menor que el divisor (7) Los divisores de 45 son: D (45) = { 1, 3, 5, 9, 15, 45} Cálculo de los divisores de un número (II) 45 3 1 15 5 0 45 4 1 05 1 1 45 5 9 0 45 6 7 3 45 7 6 3
  11. 11. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Un número es divisible por 2, por 5 o por 10 si lo es el número formado por la cifra de las unidades. Luego: 170 8 es divisible por 2; no lo es ni por 5 ni por 10. Ejemplos: 28 0 es divisible por 10, y por 5, y por 2. 1039 5 es divisible por 5. Observa: 438 = 43 · 10 + 8 10 es divisible por 2, por 5 y por 10 Luego, 438 será divisible por 2, por 5 o por 10 si lo es 8 Como 8 es divisible por 2, 438 es divisible por 2. Como 8 no es divisible por 5 ni por 10, 438 tampoco lo es. Un número es divisible por 2 si termina en 0 o en cifra par. Un número es divisible por 5 si termina en 0 o en 5. Un número es divisible por 10 si termina en 0. 232451 no es divisible ni por 2, ni por 5 ni por 10. Divisibilidad por 2, por 5 y por 10
  12. 12. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Ejemplos: Por 3: Un número es divisible por 3 si la suma de los valores de sus cifras es divisible por 3. a) 1428 es divisible por 3, pues la suma de sus cifras es 1 + 4 + 2 + 8 = 15, y 15 es divisible por 3. Por 9: Un número es divisible por 9 si la suma de los valores de sus cifras es divisible por 9. Ejemplo: 5643 es divisible por 9, pues la suma de sus cifras es 5 + 6 + 4 + 3 = 18 , y 18 es divisible por 9. Observación: Si un número es divisible por 9 también lo será por 3; lo contrario no siempre es cierto. 50067 es divisible por 9 (y por 3). 78105 es divisible por 3, pero no por 9 b) 1429 no es divisible por 3, pues la suma de sus cifras es 16. Criterios de divisibilidad por 3 y por 9
  13. 13. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Para saber si un número es divisible por 11: Se suman separadamente las cifras que ocupan los lugares pares y los impares en la escritura del número. Si la diferencia entre ambas sumas es múltiplo de 11, el número dado es divisible por 11. Ejemplo: 709181 es múltiplo de 11, pues : 7 0 9 1 8 1 Cifras que ocupan lugares pares: 7 + 9 + 8 = 24 Cifras que ocupan lugares impares: 0 + 1 + 1 = 2 Como 22 es múltiplo de 11, el número 709181 también lo es . Diferencia: 24 - 2 = 22 La división 44968 : 11 es exacta. 44968 es múltiplo de11. Distingamos en 44968 las cifras que ocupan lugares pares y las que ocupan lugares impares: 4 4 9 6 8 Las cifras que ocupan lugares pares suman: 4 + 6 = 10 Las cifras que ocupan lugares impares suman: 4 + 9 + 8 = 21 Divisibilidad por 11 21 – 10 = 11
  14. 14. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Ejemplo: 2058 Seleccionamos el último dígito del número (8) y lo multiplicamos por 2 El resultado (16) se lo restamos a la parte no utilizada del número 8 x 2 = 16 205 – 16 = 189 Seleccionamos el último dígito del número (9) y lo multiplicamos por 2 9 x 2 = 18 El resultado (18) se lo restamos a la parte no utilizada del número 18 – 18 = 0 Si el resultado final de las restas es 0 o múltiplo de 7; El número será divisible por 7 205 8 Divisibilidad por 7
  15. 15. <ul><li>11 de marzo de 2010 </li></ul><ul><li></li></ul>Problema : El número de habitantes del pueblo de Yolanda es un número muy curioso. Si se divise entre 9 el resto es 1. Si se divide entre 11 el resto es 1. Además, es el número más pequeño que cumple estas condiciones. ¿Cuántos habitantes tiene el pueblo de Yolanda? 1º. Tantear para comprender mejor ¿Podrían ser 901 habitantes? 2º. Pensar un problema más fácil Si el número diera de resto 0 al dividirlo por 9 y por 11, sería múltiplo de ambos. 3º. Comprobar el resultado 100 : 9 da de resto es 1. 100 : 11 da de resto 1. Al dividir por 9, sobra 1, 901 = 100 · 9 +1. Podría ser Pero al dividir por 11, sobran 10. Luego, no vale. Y por ser el menor posible debería ser 9 · 11. Pero este no es el problema. El problema dice que da de resto 1. ¿Y qué diferencia hay entre dar de resto 0 y dar de resto 1? El número será: 9 · 11 + 1 = 100 Resolución de problemas ¡Pues 1 !
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×