Your SlideShare is downloading. ×
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Jurong Port Carbon Footprint Report 2011
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Jurong Port Carbon Footprint Report 2011

3,883

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
3,883
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
83
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Carbon Footprint Report 2010
  • 2. Preface & AcknowledgementsWith the advent of climate protection issues and concerns in recent years, enterprises aroundthe world are under intense pressure from regulators, stakeholders, customers and their immediatecommunity to become more environmentally sustainable. Many ports have been proactive inmeasuring, managing and reducing their carbon footprint in their effort to be more sustainable,with US and European ports leading the way in this regard. In Asia, some ports have startedto follow suit with considerable success. In 2010, to comply with impending regulations and inline with our strategic intent to become a cleaner and greener port, Jurong Port embarked on aconcerted effort to identify measures and initiatives to realise this aspiration with measuring andsetting a baseline of our carbon footprint as one of the key initiatives.Establishing Jurong Port’s carbon footprint necessitated the gathering, extraction and collationof a huge amount of operational data and information, which often were not readily available,were difficult to interpret and inevitably had to come from a wide spectrum of sources. Knowingwhat type of information to extract and how to analyse them did not come intuitively to us.Fortunately, we did not have to start from scratch as we were able to adopt the methodologiesof the Greenhouse Gas Protocol – Carbon Footprinting for Ports, the International Association ofPorts and Harbours (IAPH) Toolbox for Greenhouse Gases and the World Ports Climate Initiatives(WPCI) Carbon Footprinting Guidance Document for guidance. These allowed us to leveragethe combined knowledge and experiences of many reputable ports worldwide that have alreadysuccessfully established their carbon footprint inventories.The next step of our journey required significant efforts in collating important operational-relateddata, without which the calculation and analysis of our carbon footprint would have been moredifficult. There were many contributors but we would like to acknowledge the few esteemedcolleagues that deserve special attention:OperationsAlan Eng Ganesh Raj Sanjar Tan Yih Kuen Jack NgEric Foo Bernard Koh Rahman Hashim Ivan TanStanley Tham Edmund Fong Teo Kee KiatEngineering Human Resources IT FinanceLim Kian Giap Wendy Teo Ho Kong Meng Shirley GomesLim Gek Ngoh Frances Tan Jacky Choong
  • 3. We are grateful to Professor Ang Beng Wah (Energy Studies Institute), Calvin Tan and Li Juxin(Centre for Maritime Studies) from the National University of Singapore for their support and inputsto this project. We are also grateful to Satyanarayan Ramamurthy, Rahul Kar, Catherine Yeo andSoekendro Harjono from the Carbon Advisory team, KPMG for their commitment and contributionpertaining to the entire carbon footprinting exercise.This endeavour would not have been possible without the dedicated project management supportof Teo Kai Kee and Vincent Fu from the Corporate Development team. Their combined ability tomarry the rigour of fact-finding with oftentimes difficult-to-manage data sources, and subsequentlypresenting all of it in a coherent manner, was a definitive key success factor.Lastly, on behalf of Jurong Port’s Board of Directors and management, we would like toacknowledge our ever-expanding community of partners, customers and stakeholders as theyopenly shared with us their achievements and challenges in being environmentally sustainablein their own distinct ways, both from the private as well as public sectors. Their lessons helpedto shape our choices and create new opportunities for closer collaboration as we embark onthis journey of becoming a cleaner and greener port.Matthew Chan Royston LekChief Executive Officer Vice President, Corporate Development
  • 4. Jurong PortCarbonFootprintReport2010
  • 5. Content1 Executive Summary 042 Introduction 063 Objectives 094 Methodology & Scope 105 Jurong Port’s Carbon Footprint 196 Next Steps 27Appendix 30About Jurong Port 44
  • 6. 1 Executive Summary This report sets out Jurong Port’s carbon footprint for the calendar year 2009 (year of assessment: 2010) with a starting baseline of 130,601 tonnes of carbon dioxide equivalent (tCO2e). This is the first carbon footprint assessment conducted by Jurong Port. Employing the methodology developed by the World Ports Climate Initiative, we assessed our operations and determined carbon emissions for the three different “scopes” as defined under the Greenhouse Gas Protocol. Our assessment shows that Scope 3 accounts for 88.3 percent (115,267 tCO2e) of the total emission with the rest split almost equally between Scope 1 (7,020 tCO2e) and Scope 2 (8,314 tCO2e). In Scope 1, 97 percent of the emissions are from RTGs. The cement terminal was the largest single source of Scope 2 emissions (22.4%). Emissions from the use of electricity in warehouses and yards (23.9%), area lightings (21.9%) as well as cargo handling equipment, inclusive of the aforementioned cement terminal, owned by Jurong Port (43.1%) are also major contributors in Scope 2. In Scope 3, emissions from vessel and tug operations account for more than 93 percent and cargo handling equipment owned by the stevedoring companies accounted for 4.6 percent. From our assessment, it is evident that in order to effectively reduce overall port emissions, abatement strategies should centre on levers that reduce emissions relating to shipping as well as from cargo handling equipment. Notwithstanding, initiatives that can improve the overall management and efficiency of energy as well as reduce carbon footprint that are within Jurong Port’s operational control span will be a strategic priority moving forward.4
  • 7. Scope 1 Emissions – Port Direct Sources. Refers to the direct GHG emissions occurring from sources which are owned or controlled by the port (e.g. emissions from use of generators and vehicles).Scope 2 Emissions– Port Indirect Sources. Refers to the indirect GHG emissions from generating electricity by sources which are not owned by the port, but such electricity is used by the port. Scope 3 Emissions – Other Indirect Sources. Refers to the indirect GHG emissions which are a consequence of port activities, but occur from sources not owned or controlled by the port.
  • 8. 2 Introduction Global climate change is now widely regarded as one of, if not the most significant environmental threat the modern world is facing. As global average temperatures rise, the impact to our way of life can potentially be catastrophic – extreme temperatures, rising sea levels, flooding leading to loss of land, crops and fresh water supply. The science of climate change is simple. Greenhouse gases (GHG) trap heat within our atmosphere warming the Earth. As industrial activities increase, human introduce anthropogenic (or man-made) emissions of GHGs into the atmosphere, primarily through the use of fossil fuels. This has led to an increase in concentration of GHGs in our atmosphere which has in turn led to rising average global temperatures. Consequently, there has been an increasing focus on climate change mitigation. At an international level, representatives from close to 200 nations were at Copenhagen in 2009 and at Cancun in 2010 trying to forge an international climate deal to battle climate change. The latter, just recently concluded, produced a non-binding agreement which aims to limit global warming to less than 2 degrees Celsius above pre-industrial levels1. In Singapore, the Government is committed to reduce emissions by 7 to 11 percent below 2020 Business-As-Usual levels. This target will be increased to 16 percent if a legally binding global agreement is reached; something that still eludes global leaders even after the end of the Cancun talks. Singapore’s leaders have also publicly hinted at the possibility of rolling out a carbon tax if a global deal is reached2. Shipping, as an industry, accounts for 3.9 percent of the global output of carbon dioxide (or 1,260 million tonnes of CO2) and is one of the single largest sources of anthropogenic carbon emissions. The International Maritime Organization (IMO) is also under pressure to self-regulate and implement measures to cut carbon emissions or to face external regulations3. In the face of greater regulatory pressures and demand for greater accountability in the near future, Jurong Port recognises the need to measure and identify ways to reduce its carbon footprint while remaining a profitable, competitive and socially responsible corporation. 1 “AWG-KP approves draft accord.” COP16 CMP6 Mexico 2010. Web. Accessed Dec 2010 2 Cheam, Jessica. “A price on carbon of climate pact is inked.” The Straits Times, 2 Nov 2010, B5 3 “Shipping under pressures to cut emissions.” Business Times, 7 Dec 20106
  • 9. Shipping, as an industry, accounts for3.9 percent of the global output ofcarbon dioxide
  • 10. Jurong Portaims to establish itself as aclean, greenand environmentallysustainable port.
  • 11. 3 Objectives Our carbon footprinting exercise is a corporate initiative and represents the first step for our organisation in methodically evaluating its sources of carbon emissions. In doing so, we will use this information to help us: • Better understand the emissions from our operations • Make more accurate emissions forecasts • Identify areas with the greatest potential for emissions reduction and energy efficiency • Implement an effective carbon abatement strategy Through this and future endeavours, Jurong Port aims to establish itself as a clean, green and environmentally sustainable port to our customers, employees and the community. 9
  • 12. 4 Methodology & Scope There are several published documents that are useful for developing and managing a carbon emissions inventory. This assessment will draw reference from three documents in particular: i) the Greenhouse Gas Protocol; ii) the IAPH Toolbox for Greenhouse Gases; and iii) the WPCI Carbon Footprinting Guidance Document. For a detailed description of the origins and purpose of the literature, please refer to Appendix A. The WPCI Carbon Footprinting Guidance Document details three different approaches that can be used in developing carbon emissions inventories, namely i) Activity-Based; ii) Surrogate-Based; and, iii) Hybrid. The activity-based inventories make use of the greatest levels of detail and provide the highest level of accuracy as it uses source specific data. For reasons that will be further elaborated in Section 4.1, this assessment adopts the activity-based approach and uses the emissions inventory development methodology that is illustrated in Figure 2. This methodology closely follows that of the WPCI Carbon Footprinting Guidance Document and adapted for application in Jurong Port’s context. FIG.1: RELATIONSHIP BETWEEN EXISTING LITERATURES ON MANAGING A CARBON EMISSIONS INVENTORY General corporate guide for World Resources Institute greenhouse gas emissions accounting and reporting World Business Council for Sustainable Development International standards for greenhouse gas accounting ISO and verification Technical guidance and best practices for implementing a carbon emissions WPCI IAPH management system Employed by Ports worldwide, including Jurong Port, in their carbon emissions management system10
  • 13. FIG.2: EMISSIONS INVENTORY DEVELOPMENT METHODOLOGY 7 Emissions Estimation 6 Define Assumptions 5 Gather Port Specific Data 4 Assess Availability of Data 3 Determine Inventory Boundaries 2 Identify Source Categories Required1 Determine Purpose for Developing Inventory
  • 14. Methodology & Scope4.1 Determine Purpose For Developing Inventory The purpose of developing an emissions inventory is a key policy decision that must be established at the onset. It will guide subsequent decisions regarding the level of detail, accuracy and the boundaries of the inventory. For Jurong Port, the aim of the emissions inventory is to develop strategies to set up a carbon emissions management system for the accurate tracking and reporting of carbon emissions and reduce carbon emissions. In view of these requirements, the level of detail required then necessarily precludes the use of a surrogate based approach, an approach more suited for creating an indicative emissions inventory. The preference would be to adopt an activity-based approach in developing the carbon emissions inventory which is based on source specific data as and when possible. However, due to a lack in the availability of data, certain assumptions were made in order to fill in the data gaps. Section 4.4 elaborates on the data gaps that were encountered.12
  • 15. Methodology & Scope4.2 Identify Source Categories Required According to the Greenhouse Gas Protocols, emissions-producing activities for ports should be grouped into Scope 1, 2 or 3 emissions. Based on the Greenhouse Gas Protocol Corporate Standard, companies are required to report as a minimum Scope 1 and 2 emissions, with Scope 3 reporting being optional. However, for the purpose of this assessment, Scope 1, 2 and 3 emissions will be reported under Jurong Port’s emissions inventory. The definition of emission scopes are as follows: Scope 1 - Port Direct Sources. Refers to the direct GHG emissions occurring from sources which are owned or controlled by the port (e.g. emissions from use of generators and vehicles). Scope 2 - Port Indirect Sources. Refers to the indirect GHG emissions from generating electricity by sources which are not owned by the port, but such electricity is used by the port. Scope 3 - Other Indirect Sources. Refers to the indirect GHG emissions which are a consequence of port activities, but occur from sources not owned or controlled by the port. FIG.3: SCOPE 1, 2 AND 3 EMISSIONS CO2 CH4 N2O SCOPE 1 Port Direct SCOPE 3 Port Tenants Indirect SCOPE 2 Port Indirect Purchased Electricity for Port - Owned Port -Owned Fleet Ships, Trucks, Cargo Handling Buildings and Operations Vehicles, Buildings Equipment, Rail, Harbor Craft, Buildings and Purchased Electricity Source: IAPH Toolbox for Port Clean Air Programs 13
  • 16. Methodology & Scope4.3 Determine Inventory Boundaries In defining the boundaries of the emissions inventory, there are three boundaries that determine and classify the scope of emissions that are included in the assessment. They are i) Physical; ii) Organisational; and, iii) Operational Boundaries4. Physical and Organisational boundaries define the emission sources that are included in the inventory. Operational boundaries define the scope classification of the emission sources. The physical and organisational boundaries used in this assessment include the Jurong Port Facility as well as the waterways in and around the port to the vessel anchorage points. FIG.4: BOUNDARIES OF JURONG PORT FACILITY Out of Scope Jurong Port Boundaries 4 Please refer to Appendix B for a detailed explanation on determining inventory boundaries in Jurong Port’s context14
  • 17. FIG.5: SCOPE 1, 2 AND 3 EMISSIONS IN JURONG PORT S/N Emission Sources Scope 1 Scope 2 Scope 3 Out of Scope 1 Warehouse and Yard 2 Buildings • Jurong Port Admin Building • General Cargo Office Building • Bulk Cargo Site Office • West Gate • Immigration & Checkpoints Authority Station • Penjuru Terminal • Jalan Buroh 3 Area Lighting • Mainland Area Lighting • Pulau Damar Laut Area Lighting 4 Cargo Handling Equipment • Mainland Bulk Unloader • Cement Terminal • Quay Cranes • Rubber Tyred Gantry Cranes • Mobile Harbour Cranes • Ro-Ro Ramp • Forklifts, Reach-Stackers Mobile Cranes etc 5 Port Vehicles 6 Trucking and Haulage 7 Refrigerant Loss (Reefer) 8 Shipping Emissions • Waiting, Hotelling and Manoeuvring 9 Harbour Craft Operations • Tugboat Piloting Activities 10 Tenants5 • SIS Sugar Operations • Mainland Cement Operations • Lube Oil Operations • Pulau Damar Laut Cement Storage 11 Staff Travel 6 5 The emissions from the list of tenants were deemed out of scope as Jurong Port has very little or no operational control, direct or indirect, over the activities of the said tenants; hence its inclusion would provide no value add in forming carbon abatement strategies. 6 Staff Travel was initially accounted for but its emissions were so small as to be considered insignificant to the overall scope of port emissions and thus considered as out of scope. 15
  • 18. Methodology & Scope4.4 Assess Availability Of Data An activity-based approach requires the energy usage of the emission sources. While such data for Scope 1 and 2 were readily available from Jurong Port’s records, this was not always the case for Scope 3 emission sources. Specifically, there were some data gaps for i) vessels calling and operating in Jurong Port; ii) the cargo handling equipment owned by tenants in Jurong Port; and, iii) trucks and other heavy goods vehicles travelling within port premises. Thus, assumptions had to be made to bridge the data gaps for Scope 3 emissions. This was done by using existing data in Jurong Port’s records to develop an approximation for energy and fuel consumption of these emission sources. Please see Appendix C for the indicators that were employed to address the specific data gaps. Methodology & Scope4.5 Gather Port Specific Data And Define Assumptions Fuel consumption and energy usage data, as well as the data for the indicators, were collected for the calendar year 2009. The most recent full year data was selected in order to produce the most meaningful baseline. Using the indicators for the identified data gaps, assumptions were made for the following: • Shipping and Tug Boat Operations • Tenant Cargo Handling Operations • Trucking and Haulage Please refer to Appendix D for details on the assumptions made.16
  • 19. Methodology & Scope4.6 Emissions Estimation Emissions are generally estimated using the following equation: Emissions = Energy or Fuel Consumption x Emissions Factor where, Energy or Fuel Consumption – is the combination of activity data (actual or derived); typically expressed as kWh, litre or tonnes in this assessment Emissions Factor – represents the emission producing characteristics which, vary by source types per unit of energy consumption; typically expressed as kg CO2e /kWh, kg CO2e /litre or kg CO2e / tonnes in this assessment In instances where energy consumption data was not available, alternative methods were used. For example, to measure emissions of vehicles, the emissions per distance travelled by vehicle was used. Please refer to Appendix D for a detailed description of the emissions estimation methodology that was used for the various emissions sources in this assessment. FIG.6: CALCULATION METHODOLOGY Emission Electricity CO2 grid from electricity consumption X emission factor = consumption Simple operating margin emission factor from National Environmental Agency + (NEA) Singapore Fuel CO2 Emission from Fuel consumption X emission factor = fuel combustion Using published emission factor from DEFRA Total CO2e and EMEP/CORINAIR Emission Inventory + Guidebook for Shipping Activities tonnes Vehicle CO2 Emission from Distance travelled X = emission factor vehicle transport Using published emission factor from DEFRA + Refrigerant Emission GWP of Emission from charge X factor (%) X refrigerant = refrigerant loss Using data from IPCC 2006 DEFRA – Department for Environment, Food and Rural Affairs, UK EMEP – European Monitoring and Evaluation Programme CORINAIR – CORe INventory AIR emissions GWP – Global Warming Potential 17
  • 20. Abatement levers thatreduce emissions fromvessels and cargohandling equipmentswill have greatest impacton overall emissions.
  • 21. 5 Jurong Port’s Carbon Footprint The following table summarises the results of the carbon footprinting exercise for Jurong Port for the 2010 year of assessment. Total emissions % of total S/N Emission Sources Scope Methodology 7 (tCO2e) emissions 1 Shipping (Vessel) and Tug Operation 3 Shipping 107,840 82.6% 2 Cargo Handling Equipment – Diesel (JP) 1 Fuel 6,822 5.2% 3 Cargo Handling Equipment (Tenant) 3 Fuel 5,337 4.1% 4 Cargo Handling Equipment – Electricity (JP) 2 Electricity 3,582 2.7% 5 Warehouse and Yard (JP) 2 Electricity 1,987 1.5% 6 Area Lighting 2 Electricity 1,817 1.4% 7 Trucking and Haulage 3 Trucking 1,580 1.2% 8 Building 2 Electricity 928 0.7% 9 Refrigerant Loss (Reefer) 3 Refrigerant 274 0.2% 10 Port Vehicle 1 Fuel 199 0.2% 11 Building (Tenant usage) 3 Electricity 163 0.1% 12 Warehouse (Tenant usage) 3 Electricity 72 0.1% Total 130,601 100% 7 Please refer to Appendix D for details on methodology Jurong Port’s Carbon Footprint5.1 Scope 1, 2 And 3 Emissions Jurong Port’s emissions are primarily Scope 3 emissions. Scope FIG.7: BREAKDOWN BY SCOPE 3 emissions account for 88.3% of all port related emissions or 115,267 tCO2e. Scope 3 88.3% Scope 1 emissions are mainly resulting from cargo handling activities by Jurong Port. Scope 2 emissions come from port-related infrastructure and equipment such as warehouses, area lighting, buildings and cargo handling equipment. Scope 3 emissions mainly result from shipping activities. FIG.8: BREAKDOWN OF SCOPE 1, 2 & 3 Scope 1 Sc Shipping 5.3% op e 3 Scope 2 93.6% Cargo Handling 6.4% 43.1% Area Lighting Sc op 21.9% e 2 Building 11.1% Warehouse and Yard Cargo Handling Sc 97.2% 23.9% op e 1 19
  • 22. 82.6% of emissionsin Jurong Port come fromvessels and tugboats.
  • 23. Jurong Port’s Carbon Footprint5.2 Scope 3 Emissions Consistent with emission inventories of other ports, vessel operation related emissions at Jurong Port are the largest source of carbon emissions at 93.6%. (or 82.6% of all port emissions) The second largest source of carbon emissions are from cargo handling equipments of port users representing 5% of all emissions. Shipping and land side fuel combustion related emissions make up almost all of Scope 3 emissions. FIG.9: BREAKDOWN OF SCOPE 3 EMISSIONS Shipping (Vessel) and Tug Operation 93.6% Cargo Handling Others Equipment 0.4% Trucking 4.6% and Haulage 1.4% Others: Refrigerant Loss, Building & Warehouse Total emissions % of total S/N Emission Sources Type (tCO2e) emissions 1 Shipping (Vessel) and Tug Operation Shipping 107,840 93.6% 2 Cargo Handling Equipment Fuel Combustion 5,337 4.6% 3 Trucking and Haulage Fuel Combustion 1,580 1.4% 4 Refrigerant Loss Refrigerant 274 0.2% 5 Building Electricity 163 0.1% 6 Warehouse and Yard Electricity 72 0.1% Total 115,266 100% 21
  • 24. Jurong Port’s Carbon Footprint5.3 Scope 2 Emissions Scope 2 emissions, which account for 6.4% of all port Warehouse and Yard emissions (8,314 tCO2e), are primarily from cargo handling 23.9% equipments. Warehouses and Yards, inclusive of the reefer points, constitutes the second largest source of emissions. Area Lighting FIG.10: BREAKDOWN OF SCOPE 2 EMISSIONS 21.9% Cargo Handling Equipment 43.1% Buildings FIG.11: SCOPE 2 CARGO HANDLING EQUIPMENT 11.1% Quay Cranes 19.1% Mainland Bulk Cement Unloader Terminal 1.6% 22.4% CARGO HANDLING EQUIPMENT A further breakdown showed that the cement terminal was the primary source of cargo handling equipment emissions and is also the largest single source of Scope 2 emissions at Jurong Port (1,862 tCO2e). Quay cranes also constitute a significant portion of cargo handling equipment emissions. These findings are consistent with the degree of activity in container port operations.22
  • 25. AREA LIGHTING AND WAREHOUSESArea lighting for the Mainland and Pulau Damar Laut (PDL) are the second largest source ofemissions. As adequate lighting during night operations is a safety requirement, the level of energyuse for area lighting is significant. However there are opportunities for energy reductions throughthe use of energy efficient lighting solutions which have the potential to reduce energy usage byas much as 50%.Warehouses are the third largest source of emissions. Likewise, there are opportunities for use ofmore energy efficient lighting solutions to reduce emissions. The roofs of warehouses are also ideallocations for installation of solar panels which can potentially reduce overall Scope 2 emissions. Total emissions % of total S/N Emission Sources Details (tCO2e) emissions 1 Cargo Handling Equipment Cement Terminal 1,862 22.4% 2 Area Lighting Area Lighting 1,817 21.9% 3 Warehouse and Yard Warehouses 1,627 19.6% 4 Cargo Handling Equipment Quay Crane 1,589 19.1% 5 Building Jurong Port Admin Building 571 6.9% 6 Warehouse and Yard Reefer Yard 360 4.3% 7 Building General Cargo Office Building 212 2.6% 8 Cargo Handling Equipment Mainland Bulk Unloader 131 1.6% 9 Building West Gate 130 1.5% 10 Building Bulk Cargo Site Office 15 0.1% Total 8,314 100% 23
  • 26. Jurong Port’s Carbon Footprint5.4 Scope 1 Emissions Scope 1 emissions mostly originate from the diesel powered Rubber Tyre Gantry Cranes (RTG) operated by the port. This represents 96.7% of Scope 1 emissions. At the time of assessment, Jurong Port owned and operated 34 RTGs. However, due to the scaling down of our container business, the number of RTGs owned by Jurong Port, and its consequent emissions, is expected to be reduced from 2010 onwards. Total emissions % of total S/N Emission Sources Details (tCO2e) emissions 1 Cargo Handling Equipment Rubber Tyre Gantry Crane 6,788 96.7% 2 Port Vehicle Port Vehicle 199 2.8% 3 Cargo Handling Equipment Mobile Harbour Crane 33 0.5% Total 7,020 100% Jurong Port’s Carbon Footprint5.5 Cargo Handling Equipment Combined cargo handling equipment emissions, with the exception of shipping emissions, account for the largest port related emissions at 12.1% or 15,741 tCO2e. Of these emission sources, tenant equipment (forklifts, reach-stackers, mobile cranes etc) used for general cargo operations account for approximately 34% of cargo handling equipment emissions. However, due to insufficient breakdown of data, tenant equipment emissions cannot be analysed in greater detail. The remaining cargo handling equipment emissions are Scope 1 and 2 emissions which fall within Jurong Port’s operational control. These emissions make up 67.8% of all Scope 1 and 2 emissions. The implication of this 3 pe is that measures that reduce these emission sources will have the Sco largest impact on Scope 1 and 2 emissions. 2 1& pe Sco Tenant FIG.12: BREAKDOWN OF CARGO HANDLING Equipment EQUIPMENT EMISSION SOURCES Quay 33.9% Crane Cement 10.1% Terminal Others 11.8% 1.1% Rubber Tyre Gantry Crane 43.1%24
  • 27. 67.8% of scope 1 and 2emissions come from cargohandling equipments.
  • 28. NextSteps
  • 29. Next Steps6.1 Some Potential Abatement Levers The emissions inventory provides insights on potential areas where abatement levers can be implemented in order to reduce its carbon footprint. The following are just some of the potential abatement levers. Potential Emission S/N Abatement Description Scope Impact Source Levers Implementing shore-to-ship power can help 1 Cold Ironing to reduce carbon emissions and other ship Shipping 3 High related emissions. Slowing vessel speeds when they are within Vessel Speed coastal waters of a port is considered to 2 Shipping 3 High Reduction be one of the most cost effective ways of lowering emissions. Purchase of newer equipment with cleaner Equipment engines or replacing engines of old equipment Replacement with 1, 2 3 will reduce emissions. This can be coupled Cargo Handling Med Engines Meeting &3 with technologies like regenerative breaking Cleaner Standards for greater effect. Use of cleaner fuels such as biodiesel, Cargo Handling 4 Cleaner Fuels 1&3 Med oxygenated fuels, CNG, LNG etc. & Trucking Adoption of electric powered or hybrid Electrification of RTGs, (diesel-electric) vehicles and cargo handling Cargo Handling 5 1&3 Med Forklifts and Vehicles equipments as opposed to pure fuel powered & Trucking ones. Cargo handling equipments can be retrofitted Emissions Control with emission control technologies like diesel 6 Cargo Handling 1&3 Med Technologies particulate filters and selective catalytic reduction. Replacing older trucks with cleaner and 7 Cleaner Trucks newer trucks will reduce emissions from Trucking 3 Low inefficient combustion. High operational efficiencies will reduce Shipping, Operational 1, 2 8 emissions resulting from idling vehicles or Cargo Handling High Improvements &3 reduced travelling distances. & Trucking LED or Energy Efficient Energy efficient solutions will lower 9 Lighting Systems for emissions resulting from port lighting energy Port Facility 2 Low Port Lighting consumption. Use of renewable energy sources may be Renewable/ used. E.g. installation of solar panels on 10 Alternative Energy Buildings 2 Low warehouse roofs allows port to generate zero Sources emissions electricity and lower emissions. General improvements to the office building such as efficient air condition systems, double 11 Building Improvements Buildings 2 Low glazed glass and energy saving lightings will reduce overall building energy consumption. 27
  • 30. Next Steps6.2 Limitations And Improvements Given that the largest emission sources are vessel emissions, the lack of accurate and reliable source specific data of these emissions has made our assessment difficult. Nonetheless, the indicators used to derive the assumptions for this assessment was useful in establishing a baseline from which abatement strategies can be devised. Moving forward, the details and accuracy of the data will improve and enable Jurong Port to better track and monitor the success of its abatement levers. This is particularly important as these shipping emissions related levers are expected to have the greatest impact on overall port carbon emissions. Jurong Port needs to implement a system to gather source specific data on shipping and trucking activities within the port. Jurong Port is already collecting detailed vessel data via JP-Online, our proprietary IT system. Therefore, the broad infrastructure for data collection is already in place. Notwithstanding, our operational systems can be expanded to include data mining for information to aid in measuring emissions. Likewise, Jurong Port also tracks the entry into and exit of all vehicles from the port. So vehicle specific data can be mined to construct a more complete picture of the types of vehicles operating within the port. Next Steps6.3 Conclusion For Jurong Port, the development of an emissions inventory is an important first step in developing future action plans to reduce our carbon footprint as we ensure that, as a company, we are growing in a manner that is sustainable and environmentally responsible. Jurong Port will continually improve our carbon footprinting process to reflect shifting operational and business scopes; for example with the planned expansion of our business operations into new areas both in and outside of our current port facility. This will necessitate a firm commitment by the company to enhance the accuracy of our emissions tracking system, set targets as well as to report our carbon footprint annually. Jurong Port’s emphasis will continue to be on reducing the carbon footprint within our immediate span of control, including improving our energy efficiency. At the same time, we will still take steps to reduce the largest source of carbon emissions in our port i.e. shipping-related emissions, despite practical limitations that restrict our ability as a port operator to address this in a comprehensive manner. Notwithstanding, we are committed to working collaboratively with our community of partners and stakeholders to identify and implement measures that can further this cause.28
  • 31. Jurong Port is committed to managingour carbon footprint and improving ourenergy efficiency
  • 32. Appendix A GREENHOUSE GAS PROTOCOL8 The Greenhouse Gas Protocol is the most widely used international accounting tool for government and business leaders to understand, quantify, and manage GHGs emissions. This is achieved by providing a general corporate guideline for carbon emissions accounting and reporting. A decade-long partnership between the World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD), it serves as the foundation for nearly every GHG standard and program in the world - from the International Standards Organization (ISO 14064) to The Climate Registry - as well as hundreds of GHG inventories prepared by individual companies. IAPH TOOLBOX FOR GREENHOUSE GASES9 The International Association of Ports and Harbors (IAPH) Air Quality and Greenhouse Gas Toolbox provides users with quick access to the tools needed to start the planning process for addressing port-related air quality and climate change related issues. This tool Box provides information on air and climate issues and their relationship to port and maritime activities. Based on actual port experiences, it describes strategies to reduce emissions and guidance on how to develop a Clean Air Program and a Climate Protection Plan. WPCI CARBON FOOTPRINTING GUIDANCE DOCUMENT10 The World Ports Climate Initiative (WPCI) Carbon Footprinting Guidance Document is produced by WPCI in collaboration with a number of Ports11. The Guidance Document is aimed at assisting ports interested in developing their own carbon footprint by providing users a resource for technical guidance. This is complementary with the IAPH toolbox which provides insights on best practices and emissions reduction strategies through case studies. 8 “Greenhouse Gas Protocol.” The Greenhouse Gas Protocol Initiative. Web. Accessed Dec 2010. (http://www.ghgprotocol.org/) 9 “IAPH Toolbox for Port Clean Air Programs” International Association of Ports and Harbors. Web. Accessed Dec 2010 (http://iaphtoolbox.wpci.nl/index.html) 10 “Carbon Footprinting for Ports Guidance Document” World Ports Climate Initiative. Web. Accessed Dec 2010. (http://www.wpci.nl/docs/presentations/PV_DRAFT_WPCI_Carbon_Footprinting_Guidance_Doc-June-30-2010_scg.pdf) 11 Port of Amsterdam, Port of Antwerp, Finnish Port Association, International Association of Ports and Harbors, Port of Houston Authority, Port of Long Beach, Port Authority of New York/New Jersey, Port of Oakland, Port of Oslo, Port of Rotterdam Authority, Port of Seattle30
  • 33. Appendix BIn defining the boundaries of the emissions inventory, there are three boundaries that define and determine thescope of emissions that will be included in the assessment.1) PHYSICAL BOUNDARIES Physical boundaries refer to the geographical area within which all of the port’s physical assets and infrastructure are located. The physical boundaries for the port include a total land area of 152 hectares (124 hectares of FTZ). In this particular case, since emissions from ocean going vessels are also included in the assessment, the physical boundary defined is extended to include a maritime boundary. The proposed maritime boundary includes the water channels in and around Jurong Port to the anchorage points for vessels calling in Jurong Port.BOUNDARIES OF JURONG PORT FACILITY Out of Scope Jurong Port Boundaries2) ORGANISATIONAL BOUNDARIES Organisational boundaries are used to allocate emissions in a parent company with a more complex company structure. The boundaries are determined either by the equity approach or the control approach. Equity approach. Company account for GHG emissions based on the company’s share of equity in the operation. Control approach. Companies account for 100% of emissions from operations that they have financial or operational control over. A company has financial control over the operation if the former has the ability to direct financial and operating policies of the latter with a view to gaining economic benefits from its activities. A company has operational control over an operation if the former or one of its subsidiaries has the full authority to introduce and implement its operating policies for the operation or business process.12 Together, the physical and organisational boundaries define the set of emission sources to be included in the assessment. In Jurong Port’s case, the physical and organisational boundaries are similar since the organisational boundaries do not extend beyond the defined physical boundaries. 12 “A Corporate Accounting and Reporting Standard.” The Greenhouse Gas Protocol Initiative. Web. Accessed Dec 2010. (http://www.ghgprotocol.org/files/ghg-protocol-revised.pdf) 31
  • 34. 3) OPERATIONAL BOUNDARIES Operational boundaries are based on management or financial responsibility of the port, tenant and other relevant parties. Operational boundaries can be drawn based on the equity, financial or operational control approach. This report utilizes the operational control approach, as defined in the Greenhouse Gas Protocol13, in classifying Scope 1, 2 and 3 emissions. DETERMINING INVENTORY BOUNDARIES Physical and organisational boundaries define set of emission sources to be included in study Physical boundaries Organisational boundaries Port Related Emission Sources Operational boundaries define the classification of scope1, 2 and 3 emissions Operational boundaries Within operational control Outside operational control Scope 1 & 2 Scope 3 13 “A Corporate Accounting and Reporting Standard.” The Greenhouse Gas Protocol Initiative. Web. Accessed Dec 2010. (http://www.ghgprotocol.org/files/ghg-protocol-revised.pdf)32
  • 35. Appendix CData gaps were observed for the following emission sources:• Shipping and Tugboat Operations• Tenant Cargo Handling Equipment• Trucking and HaulageNonetheless, this assessment was able to use available data present in Jurong Port’s records to estimate theactivity level for Scope 3 emission sources. The following indicators were used as the basis of forming theassumptions required to estimate the emissions. The details of how this data was used to form the assumptionsare elaborated upon in Appendix D. Emissions Source Indicator Shipping and Tugboat Operations Vessel call details at Jurong Port Tenant Cargo Handling Equipment Records of non-JP fuel usage at diesel top-up points Trucking & Haulage Records of vehicles entering and leaving Jurong Port 33
  • 36. Appendix D Methodologies: Equations And Assumptions This document comprises the methodologies, i.e. equations and assumptions, used in estimating emissions for Jurong Port in the calendar year 2009. The follow sections are the parameters covered in the assessment. Electricity Consumption D�1 Fuel Consumption D�2 Trucking and Haulage D�3 Refrigerant Loss D�4 Shipping (Vessel) and Tug Boat D�5 EMISSION SOURCES AND METHODOLOGY USED S/N Emission Sources Methodology 1 Warehouse and Yard Electricity Consumption 2 Buildings • Jurong Port Admin Building Electricity Consumption • General Cargo Office Building Electricity Consumption • Bulk Cargo Site Office Electricity Consumption • West Gate Electricity Consumption • Immigration & Checkpoints Authority Station Electricity Consumption • Penjuru Terminal Electricity Consumption • Jalan Buroh Electricity Consumption 3 Area Lighting • Mainland Area Lighting Electricity Consumption • Pulau Damar Laut Area Lighting Electricity Consumption 4 Cargo Handling Equipment • Mainland Bulk Unloader Electricity Consumption • Cement Terminal Electricity Consumption • Quay Cranes Electricity Consumption • Rubber Tyred Gantry Cranes Fuel Consumption • Mobile Harbour Crane Fuel Consumption • Ro-Ro Ramp Electricity Consumption • Forklifts, Reach Staker, Mobile Crane Fuel Consumption 5 Port Vehicles Fuel Consumption 6 Trucking and Haulage Trucking and Haulage 7 Refrigerant Loss (Reefer) Refrigerant Loss (Reefer) 8 Shipping Emissions • Waiting, Hotelling and Manoeuvring Shipping (Vessel) and Tug Boat 9 Harbour Craft Operations • Tugboat Piloting Activities Shipping (Vessel) and Tug Boat34
  • 37. Appendix D – Methodologies: Equations And AssumptionsD –1 Electricity Consumption The calculation procedure is developed based on the United Nation Framework Convention on Climate Change (UNFCCC) methodology “Tool to calculate baseline, project and/or leakage emissions from electricity consumption”14 The CO2 emission is calculated as per the following formula: ECO2 = ( Σ E C x E F grid electricity) i i 1,000 Where: ECO2 : CO2 emissions from electricity consumption (tCO2e) ECi : Total annual electricity consumption for area i (KWh) EFgrid electricity : Singapore’s grid CO2 emissions factor (0.5016 kg CO2e /kWh)15 i : Area covered for carbon footprint estimation EMISSION SOURCES COVERED UNDER THIS METHODOLOGY S/N Emission Sources Details 1 Warehouse • Mainland Warehouse (J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J12A, J12b, J13, J15, J16, J17, J14(A/B), J14C, J14 Yard, W/H B) • Pulau Damar Luat Warehouse (B13 – incl. CTO office, W15, W16) • Reefer Point 2 Buildings • Jurong Port Admin Building • General Cargo Office Building • Bulk Cargo Site Office • West Gate • Immigration & Checkpoints Authority Station • Penjuru Terminal • Jalan Buroh 3 Area Lighting • Mainland Area Lighting • Pulau Damar Laut Area Lighting 4 Cargo Handling Equipment • Mainland Bulk Unloader • Cement Terminal • Quay Cranes • Ro-Ro Ramp 14 “Tool to calculate baseline, project and/or leakage emissions from electricity consumption” United Nations Framework Convention on Climate Change. Web. Accessed Dec 2010 (http://cdm.unfccc.int/Reference/tools/index.html) 15 Emissions factor for electricity purchased from the grid is estimated using the simple operating margin emission factor available from NEA. Source: “Information on Emission Factors” National Environment Agency. Web. Accessed Dec 2010. (http://www.nccc.gov.sg/cdm/InformationOnEmissionFactors.pdf) 35
  • 38. Appendix D – Methodologies: Equations And AssumptionsD –2 Fuel Consumption The emissions from combustion of fuel in vehicles and equipment are calculated based on the United Nation Framework Convention on Climate Change (UNFCCC) methodology “Tool to calculate project or leakage emissions from fossil fuel combustion”16 The CO2 emission is calculated based on the following equation: ECO2 = ( Σ F C x E F Fuel ) i i j 1,000 Where: ECO2 : CO2 emissions from fuel combustion (tCO2e) FCi : Total annual fuel combustion for vehicle/equipment i (litre) EFFuel j : CO2 emissions coefficient of the fuel used (kg CO2e /litre)17 (Diesel: 2.647kg CO2e /litre) (Petrol: 2.318kg CO2e /litre) i : Vehicle/equipment covered for carbon footprint estimation j : Type of fuel used in i EMISSION SOURCES COVERED UNDER THIS METHODOLOGY S/N Emission Sources Details 1 Cargo Handling Equipment • Rubber Tyred Gantry Cranes • Mobile Harbour Crane 2 Port Vehicles • Port Admin Vehicles (GCO, BCO, CTO, EE, EPM, FSS, Admin, AETOS) • JP Forklifts 4 Cargo Handling Equipment • Forklifts (Tenant) • Reach Staker • Mobile Crane • Mobile Harbour Crane The assumptions made in the estimation are as follows: i. Cargo Handling Equipment fuel usage is based on the total non-JP fuel usage captured at the fuel top-up points located within the port. Since the majority of fuel usage for tenant cargo handling equipment is drawn from the diesel top-up points within the port, this is considered a good approximation. It is recognised that there are some leakages in data for diesel topped-up offsite; however, this number is deemed to be negligible. 16 “Tool to calculate project or leakage emissions from fossil fuel combustion” United Nations Framework Convention on Climate Change. Web. Accessed Dec 2010 (http://cdm.unfccc.int/Reference/tools/index.html) 17 Emission factor from IPCC with density value from UK Energy Statistic (2008). 36
  • 39. Appendix D – Methodologies: Equations And AssumptionsD –3 Trucking and Haulage The emissions from vehicle movement relating to trucking and haulage within Jurong Port premises is calculated based on the distance travelled by each vehicle (i.e. from Jurong Port’s gate to the point of destination and vice versa) and the respective emissions for the vehicle. The CO2 emission is calculated based on the following equation: ECO2 = (Σ n i=1 D T x N x E C vehicle ) 1,000 Where: ECO2 : CO2 emissions from vehicle movement in Jurong Port (tCO2e) ECvehicle : CO2 emissions coefficient for the vehicle per unit distance travelled (kg CO2/km) DT : Average distance travelled by each vehicle (km)18 N : CO2 emissions coefficient of the fuel used (kg CO2e /litre)19 n : Total number of gates (West gate and Main gate) The assumptions made in the estimation are as follows: i. All the vehicles are diesel Heavy Goods Vehicle (HGV), with tonnage of greater than 17 tonnes. The CO2 emission factor (EF) of this type of vehicle is 0.93362 kg CO2e/vehicle km. ii. The number of general cargo vehicles which went through the main gate is the sum of vehicles assigned with Unloading Advice (UA) and Delivery Note (DN). iii. The number of vehicles for bulk cargo which went through the main gate was determined by dividing the total cargo weight (for incoming and outgoing vehicles) with the estimated average cargo weight. The estimated average weight of the cargo is calculated as follows: a. Outgoing vehicles. It is estimated that 50% of the vehicles carries 30 tonnes per vehicle and the other 50% carries 20 tonnes per vehicle, thus the average cargo weight is 25 tonnes per vehicle. b. Incoming vehicles. It is estimated that all the vehicles carries 20 tonnes per vehicle. iv. The distance travelled by each vehicle was estimated by measuring the round trip distance between the gate and its destination within the port. The destination is assumed based on the type of vehicle (container to container terminal etc). The following is the assumed distance for each type of vehicle a. 2.4 km (Container vehicles) b. 2.8 km (60% of general cargo vehicles) c. 1.0 km (30% of general cargo vehicles) d. 4.4 km (10% of general cargo vehicles) e. 2.2 km (80% of bulk cargo vehicles) f. 0.5 km (20% of bulk cargo vehicles) v. All data was annualized from the available data for the period Jul 09 – Dec 09. 18 The distance travelled in this equation is based on the return trip (i.e. gate-point destination-gate), except for bulk cargo in main gate where the vehicles are classified according to incoming and outgoing. One-way trip distance is applicable for bulk cargo in main gate. 19 Emission factor from IPCC with density value from UK Energy Statistic (2008). 37
  • 40. Appendix D – Methodologies: Equations And AssumptionsD –4 Refrigerant Loss The calculation procedure for refrigerant loss due to reefer containers is based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 3, Chapter 720. In the case where the quantity of the refrigerant to replace the loss amount is not available, the annual loss is estimated on a default percentage loss provided by the IPCC. The emission due to refrigerant loss is calculated based on the following formula: DS Σ i ( ARC x EF x x N i x GWPRefrigerant) ECO2 = 365 1,000 Where: ECO2 : CO2 emissions from refrigerant loss in reefer containers (tCO2e) ARC : Annual refrigerant charge in reefer containers21 (5.5kg) EF : Emissions factor or leakage of refrigerant22 (50%) DS : Duration of stay of reefer containers in Jurong Port (days) Ni : Annual number of reefer containers in Jurong Port for reefer size i GWPRefrigerant : Global Warming Potential of refrigerant in reefer containers, i.e. HFC 134a (1,300) i : Index for size of reefer containers (i.e. 20ft and 40ft) The assumptions made in the estimation are as follows: i. As the refrigerant type used in the reefer containers (at Jurong Port) is not available, HFC 134a, a common refrigerant used in typical reefer container23, is assumed to be used. ii. As the total refrigerant charge for the reefer containers is not available, an average value of 5.5kg from the IPCC Guideline is used. iii. As the reefer containers are not stationed permanently at Jurong Port, the refrigerant leakage is estimated based on refrigerant leakage percentage as per 2006 IPCC Guideline and the duration of stay. 20 http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_volume/v3_7_ch_7_ODS_Substitutes.pdf 21 Annual refrigerant charge is an average from the range provided in table 7.9 volume 3 chapter 7 IPCC 2006 22 Emissions factor is obtained from Table 7.9 IPCC 2006 Guideline Volume 3 Chapter 7. Reefer container is considered as transport refrigeration 23 Type of refrigerant is assumed to be HFC 134a as per common refrigerant used in reefer container according to http://www.energy.kth.se/index.asp?pnr=11&ID=1383&lang=0 38
  • 41. Appendix D – Methodologies: Equations And AssumptionsD –5 Shipping (Vessel) and Tug Boat The emission from shipping (vessel) and tug boat activities in the Jurong Port premises is calculated based on ship movement methodology by EMEP/CORINAIR Emission Inventory Guidebook, December 2006 for shipping activities. SHIPPING (VESSEL) EMISSIONS The emission from vessel activities is calculated as per the following equation: ti Σ i [( Σ i 24 hrs x F j ) x N j x EF ] ECO2 = 1,000 Where: ECO2 : CO2 emissions from shipping (vessel) activities in the port (tCO2e) i : Index for shipping (vessel) activities (i.e. waiting berthing or hotelling and manoeuvring j : Index for type of ships identified (i.e. cargo, container and tug) ti : Time spend during each vessel activity i (day) Fj : Fuel consumption rate for each ship j as a function of gross tonnage (tonne/day) Nj : Total number of each type of ship j (vessel) EF : Emissions factor of the fuel combusted in the vessel (kg CO2e /tonne) (3,170 kg/tonnes fuel)24 The assumptions made in the estimation are as followss: i. The ships are classified into 3 different categories which are general cargo, container and tugs. All containers related ships are classified as “Container”. Tug boats are classified as “Tugs”, while remaining are classified as “General Cargo” ii. As the waiting and manoeuvring time for each ship is not availability, the following is assumed for all ships: a. Average waiting time is 1.17 hours as per recorded b. Average manoeuvring time is taken as 4 hours 24 Emissions factor is based on Table 8.1 of EMEP/CORINAIR Emission Inventory Guidebook, December 2006 (http://www.eea.europa.eu/publications/EMEPCORINAIR4/B842vs3.4.pdf) 39
  • 42. The fuel consumption rate of each type of ship (vessel) is based on the rate corresponding to the gross tonnage (GT) of the ship. This fuel consumption rate is given in the following table25. Vessel Type Fuel Consumption Rate (tonne/day) General Cargo 9.8197 + 0.00143 * GT Container 8.0552 + 0.00235 * GT Tugs 5.6511 + 0.01048 * GT TUG BOAT EMISSION The emission from tug boat activities is calculated based on the following equation: Σ i ( N j x F j x ttug x E F ) ECO2 = 1,000 ECO2 : CO2 emissions from tug boat operations (tCO2e) j : Tug boat size (i.e. small, medium or big) ttug : Duration of tug boat operations (hr) Fj : Fuel consumption rate for tug boats given size j (tonne/day) Nj : Number of tug boats in operation for each tug boat size j (vessel) EF : Emissions factor of the fuel combusted in tug boat (kg CO2e /tonne) (3,170 kg/tonnes fuel)26 The assumptions made in the estimation are as follows: i. As data for average gross tonnage (GT) for each tug boat operating in Jurong Port is unknown, the gross tonnage (GT) of each tug boat size is assumed as either the median or the lowest value in the range describe below. The range is derived as per MPA’s definition27. Tug Boat Size Lower Limit Upper Limit Average Small 10 16 13 Medium 17 25 21 Big 26 � 26 25 The fuel consumption rate is based on Table 8.6 of EMEP/CORINAIR Emission Inventory Guidebook, December 2006 26 Emissions factor is based on Table 8.1 of EMEP/CORINAIR Emission Inventory Guidebook, December 2006 (http://www.eea.europa.eu/publications/EMEPCORINAIR4/B842vs3.4.pdf) 27 MPA: Maritime and Port Authority, Singapore40
  • 43. GlossaryAnchorage Greenhouse Gas (GHG)The portion of a harbour or area outside a harbour suitable Substances in the atmosphere that absorb radiated heatfor anchoring or in which ships are permitted to anchor. form the earth’s surface and also radiate heat back to the surface, causing a net retention of heat energy.Anthropogenic Carbon dioxide, methane, and nitrous oxide areResulting from the influence of human beings. common examples.Carbon Dioxide Equivalent (CO2e) HaulageThis refers to a unit for which air emissions are The transport of goods by road or rail.standardised for comparison based on their “globalwarming potential” (GWP) as greenhouse gases. Each Hotellinggreenhouse gas differs in its ability to absorb heat in Refers to a ship’s operations at berth, and includesthe atmosphere so will be presented in units of carbon providing electric power for lights and loading equipment,equivalents, which weighs each gas by its GWP relative climate control for cargo and crew as well as heating.to carbon dioxide. For example, methane traps over21 times more heat per molecule than carbon dioxide, Light-Emitting Diode (LED)and nitrous oxide absorbs 310 times more heat per A semiconductor device that emits visible light and hasmolecule than carbon dioxide. low energy requirements and higher efficiency compared to incandescent and fluorescent illuminating devices.Carbon FootprintThe amount of greenhouse gases and specifically carbon Mobile Harbour Cranedioxide emitted by a company, household or individual See ‘Cargo Handling Equipment’.during a given period. Quay CraneCargo Handling Equipment A common piece of cargo handling equipment at marineEquipment used to move cargo to and from marine vessels, terminals used to transfer containers from ship to shorerailcars and trucks. This includes equipment such as and vice versa.cranes, rubber tyre gantry cranes, terminal trucks, container Reeferhandlers, bulk loaders, and forklifts A refrigerated container.Carbon Tax RefrigerantAn environmental tax that is levied on the carbon content A compound used in a heat cycle that undergoes a phaseof fuels used. change from gas to liquid and back. Used typically in refrigerators and freezers.Cement TerminalA terminal in Jurong Port dedicated to cement operations. Regenerative BreakingCold Ironing An energy recovery mechanism which converts kinetic energy into another form, which can be used immediatelyAlso called “Alternative Maritime Power” and more or stored for later use.generally referred to as “Shore Power.” This specificallyrefers to an electrical connection made between the vessel Rubber Tyre Gantry Crane (RTG)and the terminal to provide full or partial operational A common piece of cargo handling equipment at marinepower during hotelling periods. The primary motivation for terminals used to transfer containers from stacked storagecold ironing has been as a method to reduce emissions to a vehicle.from the exhausts of auxiliary engines that would normallyoperate during hotelling. “Cold iron” is a reference to Roll-on-Roll-off (Ro-Ro)when ships mainly used boilers to produce steam for A vessel featuring a built-in ramp for wheeled cargo topropulsion, heat, and power. When the steam production be ‘rolled-on’ and ‘rolled-off” of the vessel. In Jurong Port’swas shut down, the iron in the boiler housing would context it is the shore side infrastructure that support saidgo cold. vessel operations.Diesel Particulate Filter Selective Catalytic ReductionA filter installed on the exhaust pipe of diesel engine A process where a gaseous or liquid reductant (mostto physically separate particulate matter from the commonly ammonia or urea) is added to the flue orexhaust stream. Some filters are single use (disposable), exhaust gas stream and absorbed onto a catalyst.while others are designed to burn off the accumulated The reductant reacts with NOX in the exhaust gas toparticulate, either through the use of a catalyst (passive), form H2O (water vapour) and N2 (nitrogen gas).or through an active technology, such as a fuel burnerwhich heats the filter to soot combustion temperatures. Tugboat (Tug) A boat that manoeuvres vessels by pushing orEmissions Factor towing them.A number specific to an engine or system that describesthe amount of a pollutant that is generated per unit of Waterwayactivity. Any given navigable body of water. 41
  • 44. Jurong Port aspires to be a cleaner and greener portand is embarking on a journey to achieving greatercarbon and energy efficiency through implementationof measures to its operations and working with itscommunity of stakeholders & partners.
  • 45. This Carbon Footprint Reportis a Jurong PortGoGreen initiative.
  • 46. About Jurong Port Jurong Port is a leading international multi-purpose port operator and the only multi-purpose gateway port in Singapore. The port handles bulk, breakbulk (general) and container cargo, with more than 40,000 vessel-calls annually. The Port’s General Cargo Terminal is the hub for steel products, metals, heavy machinery, conventional containers, project cargo including roll-on-roll-off cargo and more. Its Bulk Cargo Terminal handles cement, copper slag and sugar imports through its fully-enclosed and non-pollutive air slide conveyor systems. In addition, the port offers integrated facilities to support cargo storage, packing, consolidation and distribution activities in its Free Trade Zone (FTZ). It is also an approved facility by the London Metal Exchange (LME) for the storage of LME-traded metals. Jurong Port has won numerous awards since its corporatisation in 2001, having collected some 13 awards across various categories. In 2010, Jurong Port was awarded the Multi-Purpose Terminal Operator of the Year (Asia Pacific) Award at the Frost and Sullivan Asia Pacific Transportation & Logistics Awards 2010. Jurong Port aspires to be a cleaner and greener port and is embarking on a journey to achieving greater carbon and energy efficiency through implementation of measures to its operations and working with its community of stakeholders & partners. Jurong Port is also a founding partner of the Energy Efficiency National Partnership in Singapore.44
  • 47. Disclaimer: “All rights reserved. This Carbon Footprint Report (Report) is produced for internal informational and business purposes by Jurong Port Pte Ltd(JPPL) and may be shared with external parties, where necessary. Nothing in this Report constitute an endorsement, approval or recommendation of anykind by any persons or organisations.JPPL and participating persons and organisations make no warranties or representations of any kind regarding the information in this Report, including,without limitation, accuracy, application, compliance with any law or regulation, or any other purpose. The information and related materials are provided“as is” basis and should not be used as a substitute for seeking professional advice. In no event will JPPL /any person or any organisation be responsiblefor damages of any kind resulting from the use or reliance upon the Report.All expressed opinions, suggestions, recommendations, and conclusions in this Report are those of JPPL and not of any participating person or organisation.”
  • 48. Jurong Port Pte Ltd 37 Jurong Port Road Singapore 619110 www.jp.com.sg This Report is Printed with FSC 100% Recycled Paper and FSC Credited Printer

×