Planos arquitectonicos el modelo de 4+1 vistas de la
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Planos arquitectonicos el modelo de 4+1 vistas de la

  • 2,267 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
2,267
On Slideshare
2,264
From Embeds
3
Number of Embeds
1

Actions

Shares
Downloads
26
Comments
0
Likes
0

Embeds 3

http://socialstudents2011.blogspot.com 3

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Planos Arquitect´nicos: El Modelo de “4+1” Vistas de la o Arquitectura del Software∗ Philippe Kruchten Abstract Este art´ıculo presenta un modelo para describir la arquitectura de sistemas de software, bas´ndose a en el uso de m´ ltiples vistas concurrentes. Este uso de m´ltiples vistas permite abordar los intereses u u de los distintos “stakeholders” de la arquitectura por separado: usuarios finales, desarrolladores, inge- nieros de sistemas, administradores de proyecto, etc., y manejar los requisitos funcionales y no funcionales separadamente. Se describe cada una de las cinco vistas descritas, conjuntamente con la notaci´n para o captarla. Las vistas se dise˜ an mediante un proceso centrado en la arquitectura, motivado por escenarios n y desarrollado iterativamente.1 Introducci´n oTodos hemos visto muchos libros y art´ ıculos donde se intenta capturar todos los detalles de la arquitecturade un sistema usando un unico diagrama. Pero si miramos cuidadosamente el conjunto de cajas y flechas que ´muestran estos diagramas, resulta evidente que sus autores han trabajado duramente para intentar representarm´s de un plano que lo que realmente podr´ expresar la notaci´n. ¿Es acaso que las cajas representan a ıa oprogramas en ejecuci´n? ¿O representan partes del c´digo fuente? ¿O computadores f´ o o ısicos? ¿O acaso merasagrupaciones de funcionalidad? ¿Las flechas representan dependencias de compilaci´n? ¿O flujo de control? oGeneralmente es un poco de todo. ¿Ser´ que una arquitectura requiere un estilo unico de arquitectura? A veces la arquitectura del software a ´tiene secuelas de un dise˜o del sistema que fue muy lejos en particionar prematuramente el software, o de un n´nfasis excesivo de algunos de los aspectos del desarrollo del software: ingenier´ de los datos, o eficiencia ene ıatiempo de ejecuci´n, o estrategias de desarrollo y organizaci´n de equipos. A menudo la arquitectura tampoco o oaborda los intereses de todos sus “clientes”. Varios autores han notado este problema, incluyendo a David Garlan y Mary Shaw [7], Gregory Abowd yRobert Allen [1], y Paul Clements [4]. El modelo de 4+1 vistas fue desarrollado para remediar este problema. El modelo 4+1 describe la ar-quitectura del software usando cinco vistas concurrentes. Tal como se muestra en la Figura 1, cada vista serefiere a un conjunto de intereses de diferentes stakeholders del sistema. • La vista l´gica describe el modelo de objetos del dise˜o cuando se usa un m´todo de dise˜o orientado a o n e n objetos. Para dise˜ar una aplicaci´n muy orientada a los datos, se puede usar un enfoque alternativo n o para desarrollar alg´n otro tipo de vista l´gica, tal como diagramas de entidad-relaci´n. u o o • La vista de procesos describe los aspectos de concurrencia y sincronizaci´n del dise˜o. o n • La vista f´ ısica describe el mapeo del software en el hardware y refleja los aspectos de distribuci´n. o • La vista de desarrollo describe la organizaci´n est´tica del software en su ambiente de desarrollo. o a Los dise˜adores de software pueden organizar la descripci´n de sus decisiones de arquitectura en estas n ocuatro vistas, y luego ilustrarlas con un conjunto reducido de casos de uso o escenarios, los cuales constituyenla quinta vista. La arqutitectura evoluciona parcialmente a partir de estos escenarios. ∗ Art´ ıculo publicado en IEEE Software 12(6), Noviembre 1995. Traducido por Mar´ Cecilia Bastarrica en Marzo 2006 ıa 1
  • 2. En Rational, aplicamos la f´rmula de Dwayne Perry y Alexander Wolf [9] de manera independiente para ocada vista:Arquitectura del software = {Elementos, Formas, Motivaci´n/Restricciones} o Para cada vista definimos un conjunto de elementos (componentes, contenedores y conectores), captamosla forma y los patrones con que trabajan, y captamos la justificaci´n y las restricciones, relacionando la oarquitectura con algunos de sus requisitos. Cada vista se describe en lo que llamamos “diagrama” (blueprint) que usa su notaci´n particular. Los oarquitectos tambi´n pueden usar estilos de arquitectura para cada vista, y por lo tanto hacer que coexistan edistintos estilos en un mismo sistema. El modelo de 4+1 vistas es bastante gen´rico: se puede usar otra notaci´n y herramientas que las aqu´ e o ıdescritas, as´ como tambi´n otros m´todos de dise˜o, especialment para las descomposiciones l´gica y de ı e e n oprocesos.2 El Modelo de 4+1 VistasLa arquitectura del software se trata de abstracciones, de descomposici´n y composici´n, de estilos y est´tica. o o eTrambi´n tiene relaci´n con el dise˜o y la implementaci´n de la estructura de alto nivel del software. e o n o Los dise˜adores construyen la arquitectura usando varios elementos arquitect´nicos elegidos apropiada- n omente. Estos elementos satisfacen la mayor parte de los requisitos de funcionalidad y performance del sis-tema, as´ como tambi´n otros requisitos no funcionales tales como confiabilidad, escalabilidad, portabilidad y ı edisponibilidad del sistema. Figure 1: Modelo de “4+1” vistas3 La Arquitectura L´gica o La arquitectura l´gica apoya principalmente los requisitos funcionales –lo que el sistema debe brindar en ot´rminos de servicios a sus usuarios. El sistema se descompone en una serie de abstracciones clave, tomadas e(principalmente) del dominio del problema en la forma de objetos o clases de objetos. Aqu´ se aplican los ıprincipios de abstracci´n, encapsulamiento y herencia. Esta descomposici´n no s´lo se hace para potenciar el o o oan´lisis funcional, sino tambi´n sirve para identificar mecanismos y elementos de dise˜o comunes a diversas a e npartes del sistema. Usamos el enfoque de Booch/Rational para representar la arquitectura l´gica, mediante diagramas de oclases y templates de clases [3]. Un diagrama de clases muestra un conjunto de clases y sus relaciones l´gicas: o 2
  • 3. asociaciones, uso, composici´n, herencia y similares. Grupos de clases relacionadas pueden agruparse en ocategor´ de clases. Los templates de clases se centran en cada clase individual; enfatizan las operaciones ıasprincipales de la clase, e identifican las principales caracter´ ısticas del objeto. Si es necesario definir el com-portamiento interno de un objeto, esto ser realiza con un diagrama de transici´n de estados o diagrama de oestados. Los mecanismos y servicios comunes se definen como utilities de la clase.Notaci´n. La notaci´n para la vista l´gica se deriva de la notaci´n de Booch [3]. Esta se simplifica consider- o o o oablemente de tal modo de tener en cuenta solamente los items relevantes para la arquitectura. En particular,los numerosos adornos disponibles son bastante in´tiles a este nivel de dise˜o. Usamos Rational Rose para u napoyar el dise˜o l´gico de la arquitectura. n o Figure 2: Notaci´n para la vista l´gica o oEstilo. El estilo usado para la vista l´gica es el estilo de orientaci´n a objetos. La principal gui´ para el o o ıadise˜o de la vista l´gica es el intentar mantener un modelo unico y coherente de objetos a lo largo de todo el n o ´sistema, para evitar la especializaci´n prematura de las clases y mecanismos particulares o de un procesador. oEjemplos. La Figura 3 muestra las principales clases que forman parte de la arquitectura de una muestrade PBX que desarrollamos en Alcatel. Un PBX establece comunicaciones entre terminales. Un terminal puede ser un tel´fono, una l´ e ınea troncal(i.e. una l´ınea a la oficina central), una l´ ınea de uni´n (i.e. de un PBX privado a una l´ o ınea PBX), o unacaracter´ıstica de una l´ ınea telef´nica. o Diferentes tarjetas de interfaz de l´ınea soportan distintas l´ıneas. El objeto controlador decodifica e inyectatodas las se˜ales en la tarjeta de interfaz de la l´ n ınea, traduce las se˜ales espec´ n ıficas desde y hacia un conjuntopeque˜o y uniforme de eventos: comenzar, deterner, d´ n ıgito, etc. El controlador tiene tambi´n todas las erestricciones hard de tiempo real. Esta clase tiene muchas subclases a las que proporciona distintos tipos deinterfaces. El objeto terminal mantiene el estado de una terminal, y negocia los servicios para esa l´ ınea. Por ejemplo,usa los servicios del plan de numeraci´n para interpretar el discado. o El objeto conversaci´n representa un conjunto de terminales que participan de una conversaci´n. Usa los o oservicios de traducci´n (directorio, mapeo de direcciones l´gicas a f´ o o ısicas, rutas), y servicios de conexi´n para oestablecer una ruta de voz entre los terminales. Para sistemas mucho m´s grandes, que contienen varias docentas de clases de relevancia para la arquitec- atura, la Figura 3b muestra un diagrama de clases de alto nivel para un sistema de control de tr´fico a´reo a edesarrollado por Hughes Aircraft of Canada que contiene 8 categor´ de clases (i.e. grupos de clases). ıas 3
  • 4. Figure 3: (a) Diagrama l´gico del T´lic PBX; (b) Diagrama de un sistema de control de tr´fico a´reo o e a e4 La Vista de ProcesosLa arquitectura de procesos toma en cuenta algunos requisitos no funcionales tales como la performance y ladisponibilidad. Se enfoca en asuntos de concurrencia y distribuci´n, integridad del sistema, de tolerancia a ofallas. La vista de procesos tambi´n especifica en cu´l hilo de control se ejecuta efectivamente una operaci´n e a ode una clase identificada en la vista l´gica. o La arquitectura de procesos se describe en varios niveles de abstracci´n, donde cada nivel se refiere a odistintos intereses. El nivel m´s alto la arquitectura de procesos puede verse como un conjunto de redes l´gicas a ode programas comunicantes (llamados “procesos”) ejecut´ndose en forma independiente, y distribuidos a lo alargo de un conjunto de recursos de hardware conectados mediante un bus, una LAN o WAN. M´ltiples redes ul´gicas pueden usarse para apoyar la separaci´n de la operaci´n del sistema en l´ o o o ınea del sistema fuera de ´ ınea,as´ como tambi´n para apoyar la coexistencia de versiones de software de simulaci´n o de prueba. ı e o Un proceso es una agrupaci´n de tareas que forman una unidad ejecutable. Los procesos representan el nivel oal que la arquitectura de procesos puede ser controlada t´cticamente (i.e., comenzar, recuperar, reconfigurar, y adetener). Adem´s, los procesos pueden replicarse para aumentar la distribuci´n de la carga de procesamiento, a oo para mejorar la disponibilidad.Partici´n. El software se particiona en un conjunto de tareas independientes: hilo de control separado que opuede planificarse para su ejecuci´n independiente en un nodo de procesamiento. o Podemos entonces distinguir: • tareas mayores son elementos arquitect´nicos que pueden ser manejados en forma un´ o ıvoca. Se comu- nican a trav´s de un conjunto bien definido de mecanismos de comunicaci´n inter-tarea: servicios de e o comunicaci´n sincr´nicos y asincr´nicos basados en mensajes, llamados a procedimientos remotos, di- o o o fusi´n de eventos, etc. Las tareas mayores no debieran hacer suposiciones acerca de su localizaci´n con o o otras tareas dentro de un mismo proceso o un mismo nodo de procesamiento. • tareas menores son tareas adicionales introducidas localmente por motivos de implementaci´n tales como o actividades c´ ıclicas, almacenamiento en un buffer, time-out, etc.). Pueden implementarse en Ada por ejemplo, o como hilos de control liviano (threads). Pueden comunicarse mediante rendezvous o memoria compartida. El flujo de mensajes y la carga de procesos puede estimarse en base al diagrama de procesos. Tambi´n es eposible implmentar una vista de procesos “vac´ıa”, con cargas dummy para los procesos y medir entonces superformance en el sistema objetivo [5]. 4
  • 5. Notaci´n. La notaci´n que usamos para la vista de procesos se expande de la notaci´n originalmente o o opropues por Booch para las tareas de Ada yse centra solamente en los elementos arquitect´nicamente relevantes o(Figura 4). Figure 4: Notaci´n para el diagrama de procesos o Hemos usado el producto Universal Network Architecture Services (UNAS) de TRW para dise˜ar e imple- nmentar un conjunto de procesos y tareas (con sus respectivas redundancias) como redes de procesos. UNAScontiene una herramienta –el Software Architects Lifecycle Environment (SALE)– el cual apoya dicha no-taci´n. SALE permite describir gr´ficamente la arquitectura de procesos, incluyendo la especificaci´n de las o a oposibles rutas de comunicaci´n inter-tareas del cual se puede generar autom´ticamente el correspondiente o ac´digo fuente Ada o C++. La generaci´n autom´tica de c´digo permite hacer cambios f´cilmente a la vista o o a o ade procesos.Estilo. Varios estilos podr´ servir para la vista de procesos. Por ejemplo, tomando la taxonom´ de Garlan ıan ıay Shaw [7] tenemos: tubos y filtros, o cliente/servidor, con variantes de varios clientes y un unico servidor ´o m´ltiples clientes y m´ltiples servidores. Para sistemas m´s complejos, podemos usar un estilo similar a u u ala forma de agrupaci´n de procesos del sistema ISIS descrito por Kenneth Birman con otra notaci´n y otras o oherramientas [2].Ejemplo. La Figura 5 muestra una vista de procesos parcial para el sistema PBX. Todas las terminalesson adminsitradas por un unico proceso terminal, el cual es manejado a trav´s de mensajes en sus colas de ´ einput. Los objetos controladores se ejecutan en alguna de las tres tareas que componen el proceso controlador:una tarea c´ ıclica de baja tasa que chequea todas las terminales inactivas (200ms), pone toda terminal que setorna activa en la lista de b´squeda del la tarea c´ u ıclica de alta tasa (10ms), la cual detecta cualquier cambiode estado significativo, y lo pasa a la tarea controladora principal la cual interpreta el cambio y lo comunicamediante un mensaje con el terminal correspondiente. Aqu´ el mensaje pasa dentro del controlador a trav´s ı ede memoria compartida.5 Vista de DesarrolloLa vista de desarrollo se centra en la organizaci´n real de los m´dulos de software en el ambiente de desarrollo o odel software. El software se empaqueta en partes peque˜as –bibliotecas de programas o subsistemas– que npueden ser desarrollados por uno o un grupo peque˜o de desarrolladores. Los subsistemas se organizan en nuna jerarqu´ de capas, cada una de las cuales brinda una interfaz estrecha y bien definida hacia las capas ıasuperiores. 5
  • 6. Figure 5: Diagrama (parcial) de procesos para T´lic PBX e La vista de desarrolla tiene en cuenta los requisitos internos relativos a la facilidad de desarrollo, admin-istraci´n del software, reutilizaci´n y elementos comunes, y restricciones impuestas por las herramientas o el o olenguaje de programaci´n que se use. La vista de desarrollo apoya la asignaci´n de requisitos y trabajo al o oequipo de desarrollo, y apoya la evaluaci´n de costos, la planificaci´n, el monitoreo de progreso del proyecto, o oy tambi´n como base para analizar reuso, portabilidad y seguridad. Es la base para establecer una l´ e ınea deproductos. La vista de desarrollo de un sistema se representa en diagramas de m´dulos o subsistemas que muestran las orelaciones exporta e importa. La arquitectura de desarrollo completa s´lo puede describirse completamente ocuando todos los elementos del softare han sido identificados. Sin embargo, es posible listar las reglas que rigenla arquitectura de desarrollo – partici´n, agrupamiento, visibilidad– antes de conocer todos los elementos. oNotaci´n. Tal como se muestra en la Figura 6, usamos una variante de la notaci´n de Booch limit´ndonos o o aa aquellos items relevantes para la arquitectura. Figure 6: Notaci´n para el diagrama de desarrollo o El ambiente de desarrollo Apex de Rational apoya la definici´n e implementaci´n de la arquitectura de o o 6
  • 7. desarrollo, la estrategia de capas antes descrita, y el cumplimiento de las reglas de dise˜o. Se puede dibujar nla arquitectura de desarrollo en Rational Rose a nivel de m´dulos y subsistemas, en ingenier´ hacia adelante o ıay reversa a partir de c´digo fuente Ada y C++. oEstilo para la vista de desarrollo. Recomendamos adptar el estilo de capas para la vista de desarrollo,definido en 4 a 6 niveles de subsistemas. Cada capa tiene una responsabilidad bien definida. La regla dedise˜o es que un subsistema en una cierta capa s´lo puede depender de subsistemas que est´n o bien en la n o emisma capa o en capas inferiores, de modo de minimizar el desarrollo de complejas redes de dependenciasentre m´dulos y permitir estrategias de desarrollo capa por capa. oEjemplo de Arquitectura de Desarrollo. La Figura 7 representa la organizaci´n del desarrollo en cinco ocapas de la l´ ınea de productos de sistemas de control de tr´fico a´reo desarrollados por Hughes Aircraft de a eCanad´ [8]. Esta es la arquitectura de desarrollo correspondiente a la arquitectura l´gica que se muestra en a ola Figura 3b. Figure 7: Las 5 capas del Sistema de Tr´fico A´reo de Hughes (HATS) a e Las capas 1 y 2 constituyen la infraestructura distribuida independiente del dominio que es com´n a toda ula l´ ınea de productos y la independiza de las variaciones de la plataforma de hardware, sistema operativo, oproductos comerciales tales como administradores de bases de datos. La capa 3 agrega a esta infraestrucuraun framework ATC para forma una arquitectura de software dependiente del dominio. Usando este framework,en la capa 4 se construye una paleta de funcionalidad. La capa 5 es dependiente del cliente y del producto, ycontiene la mayor parte de las interfaces con el usuario y con sistemas externos. Tantos como 72 subsistemasforman parte de la capa 5, cada uno de los cuales contiene entre 10 y 50 m´dulos, y puede representarse en odiagramas adicionales.6 Arquitectura F´ ısicaMapeando el software al hardware La arquitectura f´ısica toma en cuenta primeramente los requisitos no funcionales del sistema tales comola disponibilidad, confiabilidad (tolerancia a fallas), performance (throughput), y escalabilidad. El softwareejecuta sobre una red de computadores o nodos de procesamiento (o tan solo nodos). Los variados elementosidentificados –redes, procesos, tareas y objetos– requieren ser mapeados sobre los variados nodos. Esperamosque diferentes configuraciones puedan usarse: algunas para desarrollo y pruebas, otras para emplazar elsistema en varios sitios para distintos usuarios. Por lo tanto, el mapeo del software en los nodos requiere seraltamente flexible y tener un impacto m´ ınimo sobre el c´digo fuente en s´ o ı. 7
  • 8. Notaci´n para la arquitectura f´ o ısica. Los diagramas f´ ısicos pueden tornarse muy confusos en grandessistemas, y por lo tanto toman diversas formas, con o sin el mapeo de la vista de procesos. Figure 8: Notaci´n para el diagrama f´ o ısico UNAS de TRW nos brinda los medios de datos para mapear la arquitectura de procesos en la arquitecturaf´ ısica permitiendo realizar una gran cantidad de clases de cambios en el mapeo sin modificar el c´digo fuente. o Figure 9: Diagrama f´ ısico de PABXEjemplo de diagrama f´ ısico. La Figura 9 muestra una configuraci´n de hardware posible para un gran oPABX, mientras que las Figuras 10 y 11 muestran el mapero de la arquitectura de procesos en dos arquitecturasf´ ısicas diferentes, que corresponden a un PABX peque˜o y uno grande, respectivamente. C, F y K son tres ntipos de computadores de diferente capacidad que soportan tres tipos diferentes de ejecutables.7 EscenariosTodas las partes juntas 8
  • 9. Figure 10: Una peque˜a arquitectura f´ n ısica de PABX con emplazamiento de procesosFigure 11: Diagrama f´ ısico para un PABX m´s grande incluyendo emplazamiento de procesos a 9
  • 10. Los elementos de las cuatro vistas trabajan conjuntamente en forma natural mediante el uso de un conjuntopeque˜o de escenarios relevantes –instancias de casos de uso m´s generales– para los cuales describimos sus n ascripts correspondientes (secuencias de interacciones entre objetos y entre procesos) tal como lo describenRubin y Goldberg [10]. Los escenarios son de alguna manera una abstracci´n de los requisitos m´s importantes. o aSu dise˜o se expresa mediante el uso de diagramas de escenarios y diagramas de interacci´n de objetos [3]. n o Esta vista es redundante con las otras (y por lo tanto “+1”), pero sirve a dos prop´sitos principales: o • como una gu´ para descubrir elementos arquitect´nicos durante el dise˜o de arquitectura tal como lo ıa o n describiremos m´s adelante a • como un rol de validaci´n e ilustraci´n despu´s de completar el dise˜o de arquitectura, en el papel y o o e n como punto de partido de las pruebas de un prototipo de la arquitectura.Notaci´n para escenarios. La notaci´n es muy similar a la vista l´gica para los componentes(ver Figura 2), o o opero usa los conectores de la vista de procesos para la interacci´n entre objetos (ver Figura 4). N´tese que o olas instancias de objetos se denotan con l´ ıneas s´lidas. Para el diagrama l´gico, capturamos y administramos o olos diagramas de escenarios de objetos usando Rational Rose.Ejemplo de escenario. La Figura 12 muestra un fragmento del PABX peque˜o. El script correspondiente npodr´ ser: ıa 1. el controlador del tel´fono de Joe detecta y valida la transici´n desde colgado a descolgado y env´ un e o ıa mensaje para despertar la objeto terminal correspondiente. 2. el terminal reserva recursos y le indica al controlador que emita cierto tono de discado. 3. el controlador recibe los d´ ıgitos y los transmite hacia el terminal. 4. el terminal usa el plan de numeraci´n para analizar el flujo de d´ o ıgitos. 5. cuando se ingresa una secuencia v´lida de d´ a ıgitos, el terminal abre una conversaci´n. o Figure 12: Embri´n de un escenario de una llamada local–fase de selecci´n o o8 Correspondencia entre las VistasLas distintas vistas no son completamente ortogonales o independientes. Los elementos de una vista est´n aconectados a los elementos de las otras vistas siguiendo ciertas reglas y heur´ ısticas de dise˜o. n 10
  • 11. De la vista l´gica a la vista de procesos. o Identificamos varias caracter´ ısticas importantes de las clasesde la arquitectura l´gica: o • Autonom´ ¿Los objetos son activos, pasivos o protegidos? ıa: – un objeto activo toma la iniciativa de invocar las operaciones de otros objetos o sus propias op- eraciones, y tiene el control completo sobre la invocaci´n de sus operaciones por parte de otros o objetos. – un objeto pasivo nunca invoca espont´neamente ninguna operaci´n y no tiene ning´n control sobre a o u la invocaci´n de sus operaciones por parte de otros objetos. o – un objeto protegido nunca invoca espont´neamente ninguna operacio´n pero ejecuta cierto arbitraje a o sobre la invocaci´n de sus operaciones. o • Persistencia: ¿Los objetos son permanentes o temporales? ¿Qu´ hacen ante la falla de un proceso o un e procesador? • Subordinaci´n: ¿La existencia o persistencia de un objeto depende de otro objeto? o • Distribuci´n: ¿Est´n el estado y las operaciones de un objeto accesibles desde varios nodos de la arqui- o a tectura f´ ısica, ydesde varios procesos de la arquitectura de procesos? En la vista l´gica de la arquitectura consideramos que cada objeto es activo y potencialmente “concur- orente”, i.e. teniendo comportamiento en paralelo con otros objetos, y no prestamos m´s atenci´n al grado a opreciso de concurrencia que requerimos para alcanzar este efecto. Por lo tanto, la arquitectura l´gica tiene en ocuenta s´lo el aspecto funcional de los requisitos. o Sin embargo, cuanto definimos la arquitectura de procesos, implementar cada objeto con su propio threadde control (e.g., su propio proceso Unix o tarea Ada) no es muy pr´ctico en el estado actual de la tecnolog´ a ıadebido al gran overhead que esto impone. M´s a´n, si los objetos son concurrentes, deber´ haber alguna a u aforma de arbitraje para invocar sus operaciones. Por otra parte, ser requiere m´ltiples threads de control por varias razones: u • para reaccionar r´pidamente a ciertas clases de estmulos externos, incluyendo eventos relativos al tiempo a ´ • para sacar partido de las m´ltiples CPUs en un nodo, o los m´ltiples nodos en un sistema operativo u u • para aumentar la utilizaci´n de la CPU, asignando la CPUa otras actividades mientras alg´n thread de o u control est´ suspendido esperando que otra actividad finalice (e.g., acceso a cierto dispositivo externo, a o acceso a otro objeto activo) • para priorizar actividades (y potencialmente mejorar la respuesta) • para apoyar la escalabilidad del sistema (con procesos adicionales que compartan la carga) • para separar intereses entre las diferentes ´reas del software a • para alcanzar una mayor disponibilidad del sistema (con procesos de backup) Usamos dos estrategias concurrentemente para determinar la cantidad correcta de concurrencia y definirel conjunto de procesos que se necesitan. Considerando el conjunto de posibles arquitecturas f´ ısicas, podemosproceder o bien:Inside-out Comenzando a partir de la arquitectura l´gica: definir las tareas agentes que multiplexan un unico o ´ thread de control entre m´ltiples objetos activos de una clase; los objetos cuya persistencia o vida est´ u a subordinada a un objeto activo tambi´n se ejecutan en ese mismo agente; muchas clases que requieren ser e ejecutadas con mutua exclusi´n, o que requieren s´lo un peque˜o procesamiento comparten el mismo o o n agente. Este clustering prosigue hasta que se reducen los procesos hasta un n´mero razonablemente u peque˜o que a´n permite distribuci´n y uso de los recursos f´ n u o ısicos. 11
  • 12. Outside-in Comenzando con la arquitectura f´ ısica: identificar los est´ ımulos externos (requerimientos) al sistema, definir los procesos cliente para manejar los est´ımulos y procesos servidores que s´lo brindan o servicios y que no los inician; usar la integridad de los datos y las restricciones de serializaci´n del o problema para definir el conjunto correcto de servidores, y asignar objetos a los agentes cliente y servidor; identificar cu´les objetos deben ser distribuidos. a El resultado es el mapeo de las clases (y sus objetos) en un conjunto de tareas y procesos de la arquitecturade procesos. T´ıpicamente existe una tarea agente para una clase activa con algunas variaciones: varios agentespara una clase dada para aumentar el throughput, o varias clases mapeadas en un mismo agente porque susopraciones se no se invocan frecuentemente o para garantizar su ejecuci´n secuencial. o N´tese que esto no es un proceso lineal y determin´ o ıstico que nos lleva a una arquitectura de procesoso´ptima; requiere una serie de iteraciones para lograr un compromiso aceptable. Hay numerosas otras formasde hacerlo, tal como lo establecen por ejemplo Birman et al. [2] o Witt et al. [11]. El m´todo preciso a usar een la contrucci´n del mapeo est´ fuera del alcance de este art´ o a ıculo, pero podemos ilustrarlo con un peque˜onejemplo. La Figura 13 muestra c´mo un peque˜o conjunto de clases de un sistema de control de tr´fico a´reo o n a ehipot´tico puede mapearse en procesos. e Figure 13: Mapeo de la vista l´gica a la vista de procesos o La clase vuelo se mapea a un conjunto de agentes de vuelo: existen muchos vuelos a procesar, una altatasa de est´ ımulos externos, el tiempo de respuesta es cr´ıtico, la carga debe distribuirse entre m´ltiples CPUs. uM´s a´n, los aspectos de persistencia y distribui´n del procesamiento a´reo se difieren a un servidor de vuelos, a u o eel cual est´ duplicado por motivos de disponibilidad. a Un perfil de vuelo o una liquidaci´n siempre est´n subordinadas a un vuelo, y a pesar que son clases o acomplejas, ellas comparten los mismos procesos que la clase vuelo. Los vuelos se distribuyen en variosprocesadores, de forma notable para el despliegue y las interfaces externas. Una clase sectorizaci´n, que establece una partici´n del espacio a´reo para la asignaci´n de jurisdicci´n de o o e o ocontroladores de vuelos, debido a sus restricciones de integridad puede ser manejada solamente por un agenteunico, pero puede compartir el proceso servidor con el vuelo: las modificaciones son infrecuentes.´ Localizaci´n y espacio a´reo y otra informaci´n aeron´utica est´tica son objetos protegidos, compartidos o e o a aentre muchas otras clases, y raramente modificados; se mapean en su propio servidor, y se distribuye a otrosprocesos.De la l´gica al desarrollo. Una clase se implementa generalmente como un m´dulo, por ejemplo un tipo de o ola parte visible de un paquete Ada. Las clases grandes se descomponen en m´ltiples paquetes. Colecciones de u 12
  • 13. clases ´ ıntimamente relacionadas –categor´ de clases– se agrupan en subsistemas. Deben tambi´n considerarse ıas eotras restricciones para la definici´n de subsistemas tales como la organizaci´n del equipo de desarrollo, el o otama˜o esperado del c´digo (t´ n o ıpicamente 5K a 20K SLOC por subsistema), grado de reuso y comonalidadesperado, principio de distribuci´n en capas (visibilidad), pol´ o ıticas de liberaci´n, y administraci´n de la o oconfiguraci´n. Por lo tanto, generalmente terminamos con una vista que no tiene necesariamente una relaci´n o ouno a uno con la vista l´gica. o Las vistas l´gica y de desarrollo son muy cercanas, aunque se refieren a distintos asuntos. Hemos encontrado oque cuanto mayor es el proyecto, mayor es tambi´n la distancia entre estas dos vistas. Similarmente para las evistas de procesos y f´ ısica: cuanto mayor el proyecto, mayor es la distancia entre estas vistas. Por ejemplo,si comparamos las figuras 3b y 7, no existe una correspondencia uno a uno de las categor´ de clases y las ıascapas. Si tomamos la categor´ “Interfaces externas–Gateway”, su implementaci´n se distribuye a lo largo ıa ode varias capas: los protocolos de comunicaci´n est´n en los subsistemas dentro o debajo de la capa 1, los o amecanismos generales de gateways est´n en los subsistemas de la capa 2, y los gateways espec´ a ıficos realesest´n en los subsistemas de la capa 5. aDe procesos a f´ ısico. Los procesos y grupos de procesos se mapean sobre el hardware f´ ısico disponibleen varias configuraciones para testing o distribuci´n. Birman describe algunos esquemas eleaborados para orealizar este mapeo dentro del proyecto Isis [2]. Los escenarios se relacionan esencialmente con la vista l´gica, en t´rminos de cu´les clases se usan y con o e ala vista de procesos cuando las interacciones entre objetos involucran m´s de un thread de control. a9 Confeccionando el ModeloNo toda arquitectura de software requiere las “4+1” vistas completas. Las vistas que no son utiles pueden ´omitirse de la descripci´n de arquitectura, tales como la vista f´ o ısica si hay un unico procesador, y la vista de ´procesos si existe un solo proceso o programa. Para sistemas muy peque˜os, es posible que las vistas l´gica n oy de desarrollo sean tan similares que no requieran descripciones independientes. Los escenarios son utiles en ´todas las circunstancias.9.1 Proceso IterativoWitt et al. indican 4 fases para el dise˜o de arquitectura: bosquejo, organizaci´n, especificaci´n y opti- n o omizaci´n, subdivididos en 12 pasos [11]. Indican que puede ser necesario alg´n tipo de backtrack. Creemos o uque este enfoque es muy “lineal” para proyectos ambiciosos y novedosos. Al final de las cuatro fases se tienemuy poco conocimiento para validar la arquitectura. Abogamos por un desarrollo m´s iterativo, donde la aarquitectura se prototipa, se prueba, se mide, se analiza y se refina en sucesivas iteraciones. Adem´s de apermitir mitigar los riesgos asociados a la arquitectura, este desarrollo tiene otros beneficios asociados parael proyecto: construcci´n en equipo, entrenamiento, familiarizaci´n con la arquitectura, adquisici´nn de her- o o oramientas, ejecuci´n de procedimientos y herramientas, etc. (Hablamos de un prototipo evolutivo, que crece olentamente hasta convertirse en el sistema, y no de un prototipo desechable, exploratorio.) Este enfoqueiterativo tambi´n permite refinar los requisitos, madurarlos y comprenderlos m´s profundamente. e aUn enfoque dirigido por escenarios La funcionalidad m´s cr´ a ıtica del sistema se captura en forma deescenarios (o casos de uso). Cr´ ıticos se refiere a: funciones que son las m´s importantes, la raz´n de existir del a osistema, o que tienen la mayor frecuencia de uso, o que presentan cierto riesgo t´cnico que debe ser mitigado. eComienzo: • Se elige un peque˜o n´mero de escenarios para cierta iteraci´n basado en el riesgo y la criticidad. Los n u o escenarios pueden sintetizarse para abstraer una serie de requisitos de usuario. • Se bosqueja una arquitectura. Los escenarios se describen para identificar las abstracciones mayores (clases, mecanismos, procesos, subsistemas) como lo indican Rubin y Goldberg [10] –descomponi´ndolos e en secuencias de pares (objeto, operaci´n). o 13
  • 14. • Los elementos de la arquitectura descubieros se ponen en las 4 vistas de arquitectura: l´gica, de procesos, o de desarrollo y f´ ısica. • Se implementa la arquitectura, se prueba, se mide, y se analiza para detectar errores o potenciales mejoras. • Se recogen las lecciones aprendidas.Loop: La siguiente iteraci´n puede entonces comenzar mediante: o • reestudiando los riesgos, • extendiendo la paleta de escenarios a considerar, • seleccionando una serie de escenarios que permitir´n mitigar el riesgo o cubrir una mayor parte de la a arquitectura. Entonces: • Intentar describir los escenarios de la arquitectura preliminar, • descubrir elementos de arquitectura adicionales, o algunos cambios que es necesario aplicar a la arqui- tectura para dar cabida a estos escenarios, • actualizar las 4 vistas de arquitectura, • revisar los escenarios existentes bas´ndose en los cambios, a • actualizar la implementaci´n (el prototipo de la arquitectura) para dar apoyo al nuevo conjunto exten- o dido de escenarios, • probar y medir bajo sobrecarga en lo posible en el ambiente de ejecuci´n objetivo, o • las 5 vistas se revisan para detectar potenciales simplificaciones, reutilizaci´n, y comonalidades, o • actualizar las gu´ de dise˜o y justificaci´n del mismo, ıas n o • recoger las lecciones aprendidas.End loop El prototipo inicial de la arquitectura evoluciona hasta convertirse en el sistema real. Con suerte, luegode 2 o 3 iteraciones, la arquitectura se vuelve estable: no se encuentran nuevas abstracciones mayores, nisubsistemas, ni procesos, ni interfaces. El resto de la historia est´ dentro de la t´nica del dise˜o, donde de a o nhecho, el desarrollo puede continuar usando m´todos y procesos muy similares. e La duraci´n de estas iteraciones var´ considerablemente: con el tama˜o del proyecto, con el n´mero de o ıa n upersonas involucradas y su familiaridad con el dominio y el m´todo, y con el grado de novedad del sistema con erespecto a la organizaci´n de desarrollo. Por lo tanto la duraci´n de una iteraci´n puede ser de 2 a 3 semanas o o opara un peque˜o proyecto (e.g. 10KSLOC), o entre 6 y 9 meses para un gran sistema de comando y control n(e.g. 700KSLOC).10 Documentaci´n de la Arquitectura oLa documentaci´n producida durante el dise˜o de la arquitectura se captura en dos documentos: o n • un Documento de Arquitectura del Software, cuya organizaci´n sigue las “4+1” vistas (ver la figura 14 o por un punteo t´ ıpico) • un documento de Gu´ del Dise˜o del Software, que captura (entre otras cosas) las decisiones de dise˜o ıas n n m´s importantes que deben respetarse para mantener la integridad de la arquitectura del sistema. a 14
  • 15. Pagina de titulo Historia de cambios Tabla de contenidos Lista de figuras 1. Alcance 2. Referencias 3. Arquitectura del software 4. Objetivos y restricciones de la arquitectura 5. Arquitectura logica 6. Arquitectura de procesos 7. Arquitectura de desarrollo 8. Arquitectura fisica 9. Escenarios 10. Tama˜ o y performance n 11. Cualidades Apendices A. Siglas y abreviaturas B. Definiciones C. Principios de dise˜ o n Figure 14: Punteo de un documento de Arquitectura de Software11 Conclusi´n oEl modelo de “4+1” vistas ha sido usado con´xito en varios proyectos grandes con o sin ajustes locales en esu terminolog´ [3]. Realmente permiti´ a los distintos stakeholders encontrar lo que quer´ acerca de la ıa o ıanarquitectura del software. Los ingenieros de sistemas se enfocaron en la vista f´ ısica, y luego en la vista deprocesos. Los usuarios finales, los clientes, y los especialistas en datos en la vista l´gica. Los administradores ode proyectos, las personas de configuraci´n del software en la vista de desarrollo. o Se han propuesto y discutido otra serie de vistas, tanto dentro de Rational como en otras partes, como porejemplo Meszaros (BNR), Hofmeister, Nord y Soni (Siemens), Emery y Hilliard (Mitre) [6], pero en generalhemos visto que estas otras vistas propuestas pueden reducirse a una de las cuatro vistas aqu´ propuestas. ıPor ejemplo una vista de costo&planificaci´n puede verse como una vista de desarrollo, una vista de datos opuede verse como una vista l´gica, una vista de ejecuci´n puede ser una combinaci´n de las vistas f´ o o o ısica y deprocesos. Vista L´gica o Proceso Desarrollo F´ısica Escenarios Componentes Clase Tarea M´dulo, subsistema o Nodo Paso, script Conectores asociaci´n, o rendez-vous, dependencia de medio de herencia, mensaje, broadcast, compilaci´n, sentencia o comunicaci´n, o contenci´n o RPC, etc. “with”, “include” LAN, WAN, bus Contenedores Categor´ de clase ıa Proceso Subsistema Subsistema Web (biblioteca) f´ ısico Stakeholders Usuario Dise˜ ador, n Desarrollador, Dise˜ ador n Usuario, final integrador administrador de sistema desarrollador Intereses Funcionalidad Performance, Organizaci´n, o Escalabilidad, Comprensibilidad disponibilidad, reuso, portabilidad, performance, tolerancia a fallas, l´ ıneas de productos disponibilidad integridad Herramientas Rose UNAS/SALE DADS Apex, SoDA UNAS, Rose Openview, DADS Table 1: Resumen del modelo de “4+1” vistasAgradecimientosEl modelo de “4+1” vistas debe su existencia a varios colegas de Rational, de Hughes Aircraft de Canad´, de aAlcatel, y de otras partes. En particular quisiera agradecer por sus contribuciones a Ch. Thompson, A. Bell,M. Devlin, G. Booch, W. Royce, J. Marasco, R. Reitman, V. Ohnjec, y E. Schonberg. 15
  • 16. References [1] Gregory D. Abowd, Robert Allen, and David Garlan. Using Style to Understand Descriptions of Software Archi- tecture. In Proceedings of the First ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 9–20, Los Angeles, California, USA, 1993. [2] Kenneth P. Birman and Robbert Van Renesse. Reliable Distributed Computing with the Isis Toolkit. Wiley-IEEE Computer Society Press, April 1994. [3] Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin-Cummings Pub. Co., Redwood City, California, 2nd edition, 1993. [4] Paul Clements. From Domain Model to Architectures. In A. Abd-Allah et al., editor, Focused Workshop on Software Architecture, pages 404–420, 1994. [5] A. R. Filarey, W. E. Royce, R. Rao, P. Schmutz, and L. Doan-Minh. Software First: Applying Ada Megapro- gramming Technology to Target Platform Selection Trades. In TRI-Ada, pages 90–101, 1993. [6] David Garlan. Proceedings of the first internal workshop on architectures for software systems. Technical Report CMU-CS-TR-95-151, Carnegie Mellon University, Pittsburgh, 1995. [7] David Garlan and Mary Shaw. An Introduction to Software Architecture. Advances in Software Engineering and Knowledge Engineering, 1, 1993. World Scientific Publishing Co. [8] Phillipe Kruchten and Ch. Thompson. An object-oriented, distributed architecture for large scale ada systems. In Proceedings of the TRI-Ada’94 Conference, pages 262–271, Baltimore, November 1994. ACM. [9] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture. SIGSOFT Software Engineering Notes, 17(4):40–52, 1992. ACM Press.[10] Kenneth S. Rubin and Adele Goldberg. Object behavior analysis. Communications of the ACM, 35(9):48–62, 1992.[11] Bernard I. Witt, Terry Baker, and Everett W. Merrit. Software Architecture and Design–Principles, Models, and Methods. Van Nostrand Reinhold, New York, 1994. 16