BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

AULA 5
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

1º TRIMESTRE 2009
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

SUMÁRIO
1. POLINÔMIOS
1.1 Definição
1.2 Raízes de um Polinômio
1.2.1 Método Anal...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

1. POLINÔMIOS
1.1 Definição
Definamos um polinômio como uma expressão matemática...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

1.2 Raízes de um Polinômio
As raízes de um polinômio como o dado em (1) são obti...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

1.2.2 Método Gráfico
O método gráfico permite encontrar o lugar das raízes de po...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

Essa função, uma tangente hiperbólica do seno da exponencial de x não tem soluçã...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

1.2.3 Outras Raízes: Raízes Degeneradas e Complexas
Como já mencionado anteriorm...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

Nesse caso, utiliza-se a solução analítica:

x = ± − 4 = ± − 1 × 4 = ± − 1 × 4 =...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

Graficamente, um número complexo pode ser representado como:

sendo r o módulo d...
BC-0005

2.

BASES COMPUTACIONAIS DA CIÊNCIA

APROXIMAÇÃO POR POLINÔMIOS

2.1 Série de Taylor
2.1.1 Definição
Série de Tay...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

As séries de Taylor/MacLaurin têm inúmeras aplicações nos mais variados campos d...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

2.1.2.2 Série da Função Exponencial
Para finalizar, vejamos a forma da função ex...
BC-0005

BASES COMPUTACIONAIS DA CIÊNCIA

Note que, para a aproximação mais pobre (com 2 termos), à medida que o valor de ...
Upcoming SlideShare
Loading in …5
×

Bc0005 aula 05_s_material_do_aluno_2009-1b - bases computacionais da ciencia - ufabc

296 views
171 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
296
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Bc0005 aula 05_s_material_do_aluno_2009-1b - bases computacionais da ciencia - ufabc

  1. 1. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA AULA 5 BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 1º TRIMESTRE 2009
  2. 2. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA SUMÁRIO 1. POLINÔMIOS 1.1 Definição 1.2 Raízes de um Polinômio 1.2.1 Método Analítico 1.2.2 Método Gráfico 1.2.3 Outras Raízes: Raízes Degeneradas e Raízes Complexas 1.3 Polinômios Especiais: O Polinômio de Chebyshev 2. APROXIMAÇÃO POR POLINÔMIOS 2.1 Série de Taylor 2.1.1 Definição 2.1.2 Exemplos 2.1.2.1 Série da Função Seno 2.1.2.2 Série da Função Exponencial
  3. 3. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 1. POLINÔMIOS 1.1 Definição Definamos um polinômio como uma expressão matemática formada por uma soma de potências de uma ou mais variáveis multiplicada por um coeficiente, como a seguir: a n x n + a n−1 x n −1 + ... + a 2 x 2 + a1 x + a 0 (1) No polinômio (1), x é a variável, os parâmetros a n , a n−1 ,..., a 2 , a1 e a0 são os coeficientes do polinômio. A maior potência do polinômio é chamada ordem ou grau do polinômio, no caso, n se a n ≠ 0 . Por exemplo, na expressão x 4 − 43 x 3 + 12 , temos um polinômio de grau 4. De acordo com o grau ou a ordem do polinômio, podemos ter: n Polinômio Nome 0 a0 Constante 1 a1 x + a0 Linear 2 a2 x 2 + a1 x + a0 Quadrático 3 a 3 x 3 + a 2 x 2 + a1 x + a 0 Cúbico ... ... ... n an x n + an −1 x n−1 + ... + a2 x 2 + a1 x + a0 Polinômio de grau n Uma função polinomial ou função polinômio f(x) é uma função constituída por um polinômio. f ( x) = a n x n + a n −1 x n −1 + ... + a 2 x 2 + a1 x + a 0 (2) A função mostrada em (2) é um exemplo típico de uma função polinomial de grau ou ordem n.
  4. 4. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 1.2 Raízes de um Polinômio As raízes de um polinômio como o dado em (1) são obtidas resolvendo a equação: a n x n + a n −1 x n −1 + ... + a 2 x 2 + a1 x + a 0 = 0 (3) O número de raízes da equação polinomial (3) é igual à ordem ou grau do polinômio n. Portanto, a equação (3) tem n raízes. Podem-se resolver as raízes de uma equação polinomial pelo método analítico, pelo método numérico (aproximações baseadas em métodos iterativos baseados em rotinas computacionais) ou pelo método gráfico. 1.2.1 Método Analítico O método analítico fornece uma solução fechada para encontrar as raízes de uma equação polinomial. Infelizmente, apenas polinômios de até ordem 3 possuem soluções analíticas (fórmulas prontas) e alguns casos especiais de polinômios de quarta ordem. n Polinômio Solução 1 a1 x + a0 x1 = −a 0 / a1 x1 = − b + a 2 − 4ac 2a x2 = − b − a 2 − 4ac 2a a2 x 2 + a1 x + a0 2 x1 , x 2 e x3 obtidos 3 3 2 a 3 x + a 2 x + a1 x + a 0 pelo método de Tartaglia-Cardano O método analítico que fornece a solução das raízes do polinômio quadrático ou de segundo grau é conhecido como fórmula de Bhaskara, equação (4) x1, 2 − b ± a 2 − 4ac = 2a (4) O método de Tartaglia-Cardano é muito extenso e não será apresentado nesta nota, mas é uma ferramenta capaz de fornecer as 3 raízes do polinômio cúbico ou de terceiro grau.
  5. 5. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 1.2.2 Método Gráfico O método gráfico permite encontrar o lugar das raízes de polinômios, assim como de qualquer outra função cuja solução analítica seja inexistente ou de difícil solução. Vamos tomar como exemplo a equação de segundo grau ou quadrática, x2 + x − 2 = 0 (5) Sua solução analítica é x1 = 1 e x2 = -2. Também pode ser determinada pelo método gráfico, conforme mostrado na figura abaixo. As raízes da equação (5) são facilmente obtidas analiticamente e não haveria a necessidade de se recorrer à solução gráfica. Entretanto, o mesmo não ocorre para todas as classes de funções. Considere, por exemplo, a função abaixo. f ( x) = tanh( sen(e x )) (6)
  6. 6. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA Essa função, uma tangente hiperbólica do seno da exponencial de x não tem solução analítica. Nesse caso, para investigar a posição das raízes, o método gráfico mostra-se muito simples e eficaz, como é mostrado na figura abaixo. Note que, apesar de a equação (6) não apresentar solução analítica, suas raízes, num determinado domínio, são facilmente determinadas pelo método gráfico. No caso, no domínio -6 < x < 6, as raízes são: x1 ≅ 1.15 x2 ≅ 1.95 x3 ≅ 3.18 x4 ≅ 3.62 x5 ≅ 4.02
  7. 7. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 1.2.3 Outras Raízes: Raízes Degeneradas e Complexas Como já mencionado anteriormente, um polinômio de ordem n tem n raízes. Entretanto, podem ocorrer casos em que duas ou mais raízes sejam iguais. Nesse caso temos as chamadas raízes degeneradas. Por exemplo, considere a equação de segundo grau abaixo: x 2 + 2x + 1 = 0 (7) A equação (7) é facilmente resolvida utilizando a fórmula de Bhaskara. Suas duas raízes são: x1 = -1 e x2 = -1. Ambas as raízes são iguais, ou seja, são degeneradas. Em outros casos, pode ocorrer que um polinômio não apresente todas suas raízes reais. É o que acontece, por exemplo, com a equação abaixo: x2 + 4 = 0 (8) Ao tentar resolver graficamente, vemos que a curva não intercepta o eixo das abscissas, ou seja, não possui raízes reais.
  8. 8. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA Nesse caso, utiliza-se a solução analítica: x = ± − 4 = ± − 1 × 4 = ± − 1 × 4 = ±2 − 1 (9) A raiz par de um número negativo não existe no conjunto dos números reais. Define-se − 1 como sendo a unidade do número imaginário i. Apesar de a raiz de um número negativo parecer algo puramente matemático, o ramo dos números imaginários tem grande aplicação prática, como, por exemplo, para descrever fenômenos que ocorrem em momentos diferentes do tempo ou características oscilatórias. Assim, as raízes da equação (8), dadas em (9), podem ser reescritas como: x = ±2i (10) x1 = −2i (10a) x 2 = 2i (10b) Ou seja: As raízes da equação (8) são números imaginários. Números imaginários juntamente com os números reais, formam os chamados números complexos. Assim, um número complexo z, pode ser escrito como: z = a + bi (11) sendo a a parte real do número complexo e b, a parte imaginária. Em notação matemática, podemos escrever: a = Re(z ) (12a) b = Im(z ) (12b) Atenção: a e b são números reais, mas bi é um número imaginário.
  9. 9. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA Graficamente, um número complexo pode ser representado como: sendo r o módulo do número complexo z e θ, o argumento. r = z = a2 + b2 (13a) θ = arctan(b / a ) (13b) 1.3 Polinômios Especiais: O Polinômio de Chebyshev Os polinômios de Chebyshev formam uma classe de polinômios especiais que têm aplicações em várias áreas, como na Engenharia Elétrica, em projetos de filtros, e, na Engenharia Aeroespacial, em otimização de trajetórias. Aparecem como solução da equação diferencial de Chebyshev. Podem ser definidos como To ( x) = 1 T1 ( x) = x ... (14) Tn+1 ( x) = 2 xTn ( x) − Tn −1 ( x) Usando a lei de formação dos polinômios dada em (14), na ilustração abaixo são mostrados graficamente os polinômios de Chebyshev T1(x) até T8(x), para -1 < x < 1.
  10. 10. BC-0005 2. BASES COMPUTACIONAIS DA CIÊNCIA APROXIMAÇÃO POR POLINÔMIOS 2.1 Série de Taylor 2.1.1 Definição Série de Taylor é a expansão de uma função em uma soma infinita de termos calculados a partir de suas derivadas num dado ponto. A série de Taylor de uma função f(x) que tem derivadas em todas as ordens na vizinhança do ponto x = a, pode ser escrita como: (k ) ′ ′ f ′(a ) (a) 2 f ′ (a) 3 f ′′ ( a ) k f f ( x) = f (a) + ( x − a ) + ( x − a) + ( x − a) + ... + ( x − a ) + ... 1! 2! 3! k! (15a) Em uma notação mais compacta, a equação acima pode ser escrita como: ∞ f ( x) = ∑ ( x − a) n n=0 f ( n ) (a) n! (15b) Se o ponto a for igual a zero, a série de Taylor recebe o nome de série de MacLaurin, e, nesse caso as equações (15) podem ser reescritas na seguinte forma: f ( x ) = f ( 0) + x ∞ f ( x) = ∑ x n n =0 f f ′(0) f ′′(0) f ′′′(0) f ( k ) ( 0) + x2 + x3 + ... + x k + ... 1! 2! 3! k! (16a) (n) (0) n! (16b)
  11. 11. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA As séries de Taylor/MacLaurin têm inúmeras aplicações nos mais variados campos da ciência e tecnologia. Por exemplo, uma calculadora eletrônica ao calcular as funções trigonométricas seno, cosseno, tangente etc., utiliza a expansão dessas funções em série. 2.1.2 Exemplos 2.1.2.1 Série da Função Seno Vejamos a forma da função seno em série de Taylor. Então: f ( x) = sin x (17) Onde: f ′( x) = cos x portanto f ′(0) = +1 f ′′( x) = − sin x portanto f ′′(0) = 0 f ′′′( x) = − cos x portanto f ′′′(0) = −1 f iv ( x) = sin x portanto f iv (0) = 0 f v ( x) = cos x portanto f v ( 0) = 1 E assim sucessivamente. Portanto: sin x = x − x3 x5 x 2 n −1 + − ...(−1) n −1 ... 3! 5! (2n − 1)! (18) E daí é que vem a aproximação sin x ≅ x para valores pequenos de x. Importante: os valores de x quando utilizados como ângulos devem ser utilizados em radianos, nunca em graus. Vejamos agora para que valores de x a série converge. Consideremos que un seja a nésima parcela da sequência (18). Então, vamos avaliar a razão entre un e a parcela seguinte un+1. un (2n + 1)! − x 2 n −1 2n(2n + 1) = = → ∞ para n → ∞ 2 u n +1 (2n − 1)! x 2 n −1 x Portanto, a série converge para todos os valores de x.
  12. 12. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA 2.1.2.2 Série da Função Exponencial Para finalizar, vejamos a forma da função exponencial em série de Taylor. Então: f ( x) = e x (19) sendo: f ′( x) = e x portanto f ′(0) = +1 f ′′( x) = e x portanto f ′′(0) = +1 f ′′′( x) = e x portanto f ′′′(0) = +1 f iv ( x) = e x portanto f iv (0) = +1 Usando a equação (16a), temos: ex = 1+ x + x2 x3 xn + + ... + + ... 2! 3! n! (20) O gráfico abaixo mostra o plot de e x além da expansão em série de Taylor com até 2 termos ( 1 + x ); com até 3 termos ( 1 + x + x2 x3 x4 até 5 termos ( 1 + x + + + ). 2! 3! 4! x2 x 2 x3 ); com até 4 termos ( 1 + x + + ) e com 2! 2! 3!
  13. 13. BC-0005 BASES COMPUTACIONAIS DA CIÊNCIA Note que, para a aproximação mais pobre (com 2 termos), à medida que o valor de x aumenta, a curva se afasta da função original. À medida que vamos adicionando mais termos, a curva se aproxima cada vez mais da função original. No limite, onde temos infinitos termos, a curva tende para a função original.

×