UNIVERSIDAD NACIONAL DEL SUR
DEPARTAMENTO DE INGENIER´IA EL´ECTRICA Y COMPUTADORAS
PROYECTO FINAL DE CARRERA
Modelado y co...
Agradecimientos
Quiero dejar constancia de mi expreso agradecimiento a todas las personas que me han
acompa˜nado, guiado y...
“The answer is blowing in the wind”
Bob Dylan, 27 de mayo de 1963
2
´Indice general
1. Sistemas de conversi´on de energ´ıa e´olica (SCEE) 11
1.1. Introducci´on . . . . . . . . . . . . . . . ...
5.4. Convertidor del lado rotor (RSC) . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5. Bus de continua . . . . . . ...
C. Sistema por unidad Lad rec´ıproco [6] 113
C.1. Ecuaciones de tensi´on del estator en por unidad . . . . . . . . . . . ....
´Indice de figuras
1.1. Turbina de Charles F. Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2. Evoluci´o...
6.6. Lazo externo de control - Potencia activa - (RSC) . . . . . . . . . . . . . . . 51
6.7. Lazo externo de control - Tor...
7.34. Potencia el´ectrica total de salida . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.35. Potencia mec´anica . ...
D.4. Sistema simplificado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.5. Representaci´on del DFIG e...
´Indice de cuadros
2.1. Constantes Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1. Coefici...
Cap´ıtulo 1
Sistemas de conversi´on de energ´ıa
e´olica (SCEE)
1.1. Introducci´on
La primera turbina e´olica para generaci...
Figura 1.2: Evoluci´on de las dimensiones de las turbinas
En la figura 1.2 se puede apreciar la evoluci´on del tama˜no de l...
ments for a Wind Generating Plant”, Appendix G to the LGIA.Germany ? E.ON
Netz GmbH: “Grid Code - High and extra high volt...
Figura 1.3: Huecos seg´un distintas normas [12]
de ciertos l´ımites; esto se denomina en la literatura como “voltage dip/s...
Figura 1.4: Configuraciones t´ıpicas de los SCEE [10]
energ´ıa pulsante capturada debido a las turbulencias de viento en fo...
Figura 1.5: Componentes de una turbina e´olica
el eje de transmisi´on, cuando se hable de rotor a lo largo del proyecto se...
Figura 1.6: Turbina e´olica de eje vertical de tipo Darrieus
Freno: El freno es utilizado para proteger el aerogenerador e...
Figura 1.7: Clasificaci´on seg´un su posici´on frente al viento
1.4. Sistema a estudiar
En el presente proyecto se estudiar...
Figura 1.9: Esquema de control [10]
los huecos como se explicar´a en la siguiente secci´on). Los bloques “Aerodynamic syst...
Cap´ıtulo 2
Principios de conversi´on de energ´ıa
e´olica
2.1. Introducci´on
En este cap´ıtulo se estudia al viento como f...
Figura 2.1: Distribuci´on de Weibull para la velocidad de viento media [1]
Figura 2.2: Flujo de aire
Se har´a un an´alisis...
Figura 2.3: Distribuci´on de presiones y velocidad del aire
El momento H = m(vu − vw) transmitido al disco por la masa de ...
Figura 2.4: Tip speed ratio
con a = 1 − v0/vu.
Se define al coeficiente de potencia, que denota la eficiencia de la extracci´...
Figura 2.5: ´Angulo de paso
Constantes Cp
Constante Valor
a1 0.5176
a2 116
a3 0.4
a4 5
a5 21
a6 0.0068
Cuadro 2.1: Constan...
Figura 2.6: Coeficiente de potencia
para el sistema de control, como se ver´a m´as adelante.
Se puede observar tambi´en c´o...
0
2
4
6
8
10
12 0 2 4 6 8 10 12 14 16 18 20
0
0.1
0.2
0.3
0.4
0.5
Beta
Lambda
CP
Figura 2.7: Superficie del coeficiente de p...
Cap´ıtulo 3
Sistema mec´anico
3.1. Introducci´on
Existen diversos modelos para representar matem´aticamente el comportamie...
S´ımbolo Descripci´on Unidad
Tt Torque aplicado sobre la turbina Nm
Tg Torque aplicado sobre el generador Nm
Jg Inercia de...
H =
1
2
J(ω/ωbase)2
SB
(3.7)
Y teniendo en cuenta las ecuaciones 3.1, 3.2, 3.3 y 3.4 el sistema descripto por las
ecuacion...
Cap´ıtulo 4
Generador de inducci´on doblemente
alimentado (DFIG)
4.1. Introducci´on
A lo largo de la historia de las m´aqu...
Figura 4.1: Representaci´on de una m´aquina de inducci´on [6]
Se considera que la reluctancia del entrehierro es mucho may...
Figura 4.2: Diagrama esquem´atico de la m´aquina as´ıncrona [6]
Debe destacarse tambi´en que el sentido de corrientes posi...
laa = Lgs0 + Lls = Ls (4.3)
lbb = Ls (4.4)
lcc = Ls (4.5)
lAA = Lgr0 + Llr = Lr (4.6)
lBB = Lr (4.7)
lCC = Lr (4.8)
Lo mis...
Figura 4.3: Variaci´on de la inductancia mutua entre la fase A del rotor y la fase a del estator
[6]
lbC = lCb = Lsr cos(θ...
Mientras que θs representa la fase de la tensi´on de la barra a la cual el generador
est´a conectado, cuya frecuencia es ω...
vQ = −RriQ + (ωs − ωe)ϕD − ˙ϕQ (4.38)
ϕs0 = Ls0is0 (4.39)
ϕd = Ldqid +
3
2
LsriD (4.40)
ϕq = Ldqiq +
3
2
LsriQ (4.41)
ϕr0 ...
4.7. Sistema por unidad
Se busca representar el sistema de forma adimensional, a fin de poder tener noci´on sobre
los porce...
Ecuaciones de los flujos en por unidad
¯ϕd = ¯Ldq
¯id + ¯Ladq
¯iD (4.48)
¯ϕq = ¯Ldq
¯iq + ¯Ladq
¯iQ (4.49)
¯ϕD = ¯LDQ
¯iD +...
Cap´ıtulo 5
Convertidores fuentes de tensi´on
5.1. Introducci´on
El rotor del DFIG es alimentado por medio de un arreglo d...
Se modelar´a al convertidor mediante la siguiente ecuaci´on,
eabc
∆
= ηabcvdc (5.1)
donde ηabc representa el ciclo de trab...
Figura 5.3: Esquema GSC
1
ωb
¯Lf
d¯id gs
dt
= − ¯Rf
¯id gs − ¯Lf ¯ωs
¯iq gs − ηd gs¯vdc + ¯vd gs (5.5)
1
ωb
¯Lf
d¯iq gs
dt...
Figura 5.4: Diagrama esquem´atico de la m´aquina as´ıncrona [6]
5.5. Bus de continua
El bus de continua permite un flujo bi...
Cap´ıtulo 6
Control del SCEE
6.1. Introducci´on
El control del sistema se lleva a cabo dependiendo de la zona de trabajo e...
6.2.2. Velocidades de viento altas
Luego, a medida que el viento aumenta y se llega al punto en que el generador el´ectric...
Reemplazando 6.7 en la ecuaci´on de la potencia del estator,
¯Ps =
2
3p
2
(¯vd
¯id + ¯vq
¯iq) =
2
3p
2
¯vq
¯iq =


2
3p
...
6.3.1. Control de las corrientes del rotor
Partiendo de la ecuaci´on 6.9 y reemplaz´andola en la ecuaci´on del flujo ¯ϕD, s...
¯vQ = − ¯Rr
¯iQ + ¯ωslip ¯ϕD −
1
ωB
d ¯ϕQ
dt
(6.23)
¯vQ = − ¯Rr
¯iQ −
¯LDQσ
ωB
d¯iQ
dt
+ ¯ωslip ¯ϕD (6.24)
Reemplazando la...
Figura 6.1: Planta del sistema [10]
Ajustes del controlador
El controlador PI se ajustar´a para obtener un amplio ancho de...
Figura 6.2: Loop de control de corriente con cancelaci´on de acoplamiento [10]
Figura 6.3: Lazo interno - Corriente eje en...
−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
Magnitude(dB)
10
0
10
1
10
2
10
3
10
4
10
5
10
6
−90
−45
0
Phase(deg)
Bode Diagram
F...
Control de potencia activa del estator
Para ajustar los controladores PI del lazo externo de control, se deben analizar la...
Figura 6.7: Lazo externo de control - Torque - (RSC)
¯Qs = −


2
3p
2 ¯Ladq
¯Ldq
¯vq

¯iD +
2
3p
2
1
¯Ldq
¯vq ¯ϕd (6.3...
PI ext(s) = Kp ext +
Ki ext
s
(6.38)
Ajuste del controlador PI de lazo externo
Constante Proporcional del controlador ( Kp...
La expresi´on de la ecuaci´on 6.41 se trata de la potencia mec´anica de entrada. Si se
computan las p´erdidas mec´anicas, ...
Figura 6.9: Tri´angulo de potencias
6.3.6. Esquema del controlador - RSC
La figura 6.10 muestra el esquema de control del R...
corrientes positivas entrantes al convertidor, con el fin de facilitar la lectura, y despreciando
la p´erdida en el bus de ...
¯vdc
¯i os =
2
3p
2
¯vd gs
¯id gs (6.58)
¯i os = ηd gs
2
3p
2
¯id gs (6.59)
6.4.1. Esquema de control
El sistema de contro...
Figura 6.12: Lazo interno - Corriente eje directo (GSC)
Ajustes del controlador
El controlador PI se ajustar´a para obtene...
¯vdc(s)
¯id gs(s)
= ωbηd gs
2
3p
2
1
¯Cdcs
(6.64)
Figura 6.13: Lazo de control externo (GSC)
Ajustes del controlador
El co...
El controlador recibir´a las se˜nales de velocidad angular de la turbina, la potencia mec´ani-
ca de la misma, la potencia...
Cap´ıtulo 7
Simulaciones
7.1. Introducci´on
En este cap´ıtulo se realizar´an ensayos al sistema modelado para analizar el ...
7.2.1. Escal´on de viento ascendente
Partiendo del sistema en equilibrio con una velocidad de viento de 6 m/s, se aplicar´...
la curva de la potencia mec´anica para una velocidad de viento de 7 m/s. La curva de color
negro es la curva de potencia ´...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentad...
Upcoming SlideShare
Loading in …5
×

Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentado (DFIG)

2,503 views

Published on

Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentado (DFIG).

Proyecto final de carrera de la Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina

1 Comment
1 Like
Statistics
Notes
No Downloads
Views
Total views
2,503
On SlideShare
0
From Embeds
0
Number of Embeds
16
Actions
Shares
0
Downloads
106
Comments
1
Likes
1
Embeds 0
No embeds

No notes for slide

Modelado y control de un sistema de conversión de energía eólica (SCEE) con un generador de inducción doblemente alimentado (DFIG)

  1. 1. UNIVERSIDAD NACIONAL DEL SUR DEPARTAMENTO DE INGENIER´IA EL´ECTRICA Y COMPUTADORAS PROYECTO FINAL DE CARRERA Modelado y control de un sistema de conversi´on de energ´ıa e´olica con un generador de inducci´on doblemente alimentado Alumno: Juli´an Freytes Profesor Tutor: Dr. Diego Alonso
  2. 2. Agradecimientos Quiero dejar constancia de mi expreso agradecimiento a todas las personas que me han acompa˜nado, guiado y aconsejado a lo largo de la realizaci´on del presente trabajo para obtener el t´ıtulo de Ingeniero Electricista. En primer lugar destaco fervorosamente la paciencia, disponibilidad y la gran ayuda que me ha brindado el Dr. Diego Alonso, quien me ha dirigido de manera formidable, evacuado todas mis dudas y siempre ha sido claro y conciso en sus respuestas. Tambi´en agradezco la voluntad que ha tenido para recibirme en su oficina a distintos horarios y responderme sin ning´un retardo en todas las ocasiones que lo he necesitado. En segundo lugar, agradezco al Dr. Abdelouahab Aitouche por haber sido quien me ha propuesto el tema de estudio, el cual me ha despertado un gran inter´es por los sistemas de conversi´on de energ´ıa e´olica. Agradezco tambi´en al Ing. Luciano Garzoni y al Ing. Fabricio Perotti por haberme ayu- dado en el principio de mi investigaci´on como as´ı tambi´en en los debates que hemos tenido; al Dr. Guillermo Calandrini por recibirme cuando tuve dudas respecto al sistema mec´anico y alentado en todo momento; al Ing. Santiago Amodeo por responderme a preguntas que le hecho; al Dr. Jes´us L´opez quien me ha enviado muy amablemente su tesis doctoral y me ha recomendado un libro que me ha sido de gran ayuda. Finalmente, y no menos importante, quiero agradecer a mi familia y mis relaciones afectivas por el apoyo incondicional que me han brindado a lo largo de mi carrera, como as´ı tambi´en su paciencia cuando he estado ausente debido al tiempo que le he dedicado al proyecto. Juli´an Freytes
  3. 3. “The answer is blowing in the wind” Bob Dylan, 27 de mayo de 1963 2
  4. 4. ´Indice general 1. Sistemas de conversi´on de energ´ıa e´olica (SCEE) 11 1.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2. Configuraciones t´ıpicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3. Turbinas e´olicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1. Componentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4. Sistema a estudiar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. Principios de conversi´on de energ´ıa e´olica 20 2.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Disponibilidad de energ´ıa e´olica . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3. Aerodin´amica de las turbinas e´olicas . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1. Comportamiento global de la turbina . . . . . . . . . . . . . . . . . . 21 2.4. Potencia ´optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. Sistema mec´anico 27 3.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2. Modelo del sistema mec´anico . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1. Sistema de ecuaciones mec´anicas en valor absoluto . . . . . . . . . . . 28 3.2.2. Sistema de ecuaciones en por unidad . . . . . . . . . . . . . . . . . . 28 4. Generador de inducci´on doblemente alimentado (DFIG) 30 4.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2. Consideraciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3. Representaci´on esquem´atica . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4. Din´amica el´ectrica en coordenadas abc . . . . . . . . . . . . . . . . . . . . . 31 4.5. Din´amica el´ectrica en coordenadas 0dq . . . . . . . . . . . . . . . . . . . . . 34 4.6. Torque electromagn´etico y potencia el´ectrica . . . . . . . . . . . . . . . . . . 36 4.7. Sistema por unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7.1. Din´amica el´ectrica en por unidad (0dq) . . . . . . . . . . . . . . . . . 37 5. Convertidores fuentes de tensi´on 39 5.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2. Modelo matem´atico promediado . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3. Convertidor del lado red (GSC) . . . . . . . . . . . . . . . . . . . . . . . . . 40 3
  5. 5. 5.4. Convertidor del lado rotor (RSC) . . . . . . . . . . . . . . . . . . . . . . . . 41 5.5. Bus de continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6. Control del SCEE 43 6.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2. Zonas de operaci´on y sus estrategias de control . . . . . . . . . . . . . . . . . 43 6.2.1. Velocidades de viento bajas y medias . . . . . . . . . . . . . . . . . . 43 6.2.2. Velocidades de viento altas . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3. Control del convertidor del lado rotor (RSC) . . . . . . . . . . . . . . . . . . 44 6.3.1. Control de las corrientes del rotor . . . . . . . . . . . . . . . . . . . . 46 6.3.2. Lazos de control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3.3. Lazo interno de control . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3.4. Lazo externo de control . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.5. C´alculo de las referencias de los controladores . . . . . . . . . . . . . 53 6.3.6. Esquema del controlador - RSC . . . . . . . . . . . . . . . . . . . . . 55 6.4. Control del convertidor del lado red (GSC) . . . . . . . . . . . . . . . . . . . 55 6.4.1. Esquema de control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.5. Control del ´angulo de las palas . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7. Simulaciones 61 7.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2. Escal´on de viento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2.1. Escal´on de viento ascendente . . . . . . . . . . . . . . . . . . . . . . 62 7.2.2. Escal´on de viento descendente . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Simulaciones variando la referencia en el RSC . . . . . . . . . . . . . . . . . 81 7.3.1. Simulaci´on con errores de ±20 % en los par´ametros de rozamiento . . 83 7.4. Evaluaci´on del comportamiento en todo el rango de velocidades . . . . . . . 85 7.4.1. Resultados de la simulaci´on . . . . . . . . . . . . . . . . . . . . . . . 85 7.5. Hueco de tensi´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.5.1. Resultados para el hueco 1 . . . . . . . . . . . . . . . . . . . . . . . . 87 7.5.2. Resultados para el hueco 2 . . . . . . . . . . . . . . . . . . . . . . . . 89 7.5.3. Comentarios finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8. Conclusiones 104 A. Par´ametros del sistema 107 A.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 B. Transformaciones 109 B.1. Introducci´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 B.2. Transformaci´on 0dq (Park) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 B.3. Transformaci´on 0αβ (Clarke) . . . . . . . . . . . . . . . . . . . . . . . . . . 110 B.4. Repercusi´on de la constante p de las transformaciones . . . . . . . . . . . . . 111 B.5. Transformaci´on 0αβ - 0dq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4
  6. 6. C. Sistema por unidad Lad rec´ıproco [6] 113 C.1. Ecuaciones de tensi´on del estator en por unidad . . . . . . . . . . . . . . . . 113 C.2. Ecuaciones de tensi´on del rotor en por unidad . . . . . . . . . . . . . . . . . 113 C.3. Ecuaciones de flujos del estator en por unidad . . . . . . . . . . . . . . . . . 114 C.4. Ecuaciones de flujos del rotor en por unidad . . . . . . . . . . . . . . . . . . 114 C.5. Valores base del rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 C.6. Verificaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 C.7. Torque en por unidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 C.7.1. En funci´on de los flujos . . . . . . . . . . . . . . . . . . . . . . . . . . 116 C.7.2. En funci´on de las corrientes . . . . . . . . . . . . . . . . . . . . . . . 116 D. Implementaci´on del SCEE en Simulink 117 D.1. Sistema completo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 D.2. Turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 D.3. Sistema mec´anico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 D.4. Sistema simplificado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 D.5. DFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 D.6. Convertidores fuentes de tensi´on . . . . . . . . . . . . . . . . . . . . . . . . . 120 D.7. Bus de continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.8. Controladores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.8.1. Controlador del RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.8.2. Controlador del GSC . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.8.3. Controlador del ´angulo de las palas . . . . . . . . . . . . . . . . . . . 123 D.9. Modo de uso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 E. Verificaciones 125 E.1. Camino 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 E.2. Camino 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5
  7. 7. ´Indice de figuras 1.1. Turbina de Charles F. Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2. Evoluci´on de las dimensiones de las turbinas . . . . . . . . . . . . . . . . . . 12 1.3. Huecos seg´un distintas normas [12] . . . . . . . . . . . . . . . . . . . . . . . 14 1.4. Configuraciones t´ıpicas de los SCEE [10] . . . . . . . . . . . . . . . . . . . . 15 1.5. Componentes de una turbina e´olica . . . . . . . . . . . . . . . . . . . . . . . 16 1.6. Turbina e´olica de eje vertical de tipo Darrieus . . . . . . . . . . . . . . . . . 17 1.7. Clasificaci´on seg´un su posici´on frente al viento . . . . . . . . . . . . . . . . . 18 1.8. Esquema general (imagen obtenida de la galer´ıa SimPower Systems de Simu- link) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.9. Esquema de control [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1. Distribuci´on de Weibull para la velocidad de viento media [1] . . . . . . . . . 21 2.2. Flujo de aire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Distribuci´on de presiones y velocidad del aire . . . . . . . . . . . . . . . . . . 22 2.4. Tip speed ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5. ´Angulo de paso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6. Coeficiente de potencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7. Superficie del coeficiente de potencia . . . . . . . . . . . . . . . . . . . . . . 26 3.1. Representaci´on esquem´atica del modelo mec´anico [1] . . . . . . . . . . . . . 27 4.1. Representaci´on de una m´aquina de inducci´on [6] . . . . . . . . . . . . . . . . 31 4.2. Diagrama esquem´atico de la m´aquina as´ıncrona [6] . . . . . . . . . . . . . . 32 4.3. Variaci´on de la inductancia mutua entre la fase A del rotor y la fase a del estator [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1. Circuito el´ectrico de un convertidor trif´asico [6] . . . . . . . . . . . . . . . . 39 5.2. Circuito el´ectrico equivalente VSC [6] . . . . . . . . . . . . . . . . . . . . . . 40 5.3. Esquema GSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.4. Diagrama esquem´atico de la m´aquina as´ıncrona [6] . . . . . . . . . . . . . . 42 6.1. Planta del sistema [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2. Loop de control de corriente con cancelaci´on de acoplamiento [10] . . . . . . 49 6.3. Lazo interno - Corriente eje en cuadratura - (RSC) . . . . . . . . . . . . . . 49 6.4. Respuesta en frecuencia de lazo cerrado (lazo interno) - (RSC) . . . . . . . . 50 6.5. Respuesta en frecuencia frente a perturbaciones (lazo interno) - (RSC) . . . 50 6
  8. 8. 6.6. Lazo externo de control - Potencia activa - (RSC) . . . . . . . . . . . . . . . 51 6.7. Lazo externo de control - Torque - (RSC) . . . . . . . . . . . . . . . . . . . . 52 6.8. Lazo externo de control - Potencia reactiva (RSC) . . . . . . . . . . . . . . . 52 6.9. Tri´angulo de potencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.10. Esquema del controlador del RSC . . . . . . . . . . . . . . . . . . . . . . . . 55 6.11. Esquema de control GSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.12. Lazo interno - Corriente eje directo (GSC) . . . . . . . . . . . . . . . . . . . 58 6.13. Lazo de control externo (GSC) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.1. Trayectoria del punto de operaci´on A al punto C, pasando por B. . . . . . . 63 7.2. Escal´on de viento ascendente . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.3. Potencia mec´anica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.4. Torque de la turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.5. Velocidad de la turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.6. Torque electromagn´etico del generador . . . . . . . . . . . . . . . . . . . . . 67 7.7. Torque electromagn´etico del generador (Detalle) . . . . . . . . . . . . . . . . 67 7.8. Torque electromagn´etico del generador (Detalle) . . . . . . . . . . . . . . . . 68 7.9. Diferencia de posici´on angular entre los extremos del eje de transmisi´on . . . 68 7.10. Diferencia de posici´on angular entre los extremos del eje de transmisi´on (De- talle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.11. Corrientes del estator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.12. Tensiones y corrientes del rotor . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.13. Corrientes y tensi´on del bus de continua . . . . . . . . . . . . . . . . . . . . 71 7.14. Corrientes y tensi´on del bus de continua (Detalle) . . . . . . . . . . . . . . . 71 7.15. Potencias activas y reactivas en el PCC . . . . . . . . . . . . . . . . . . . . . 72 7.16. Deslizamiento DFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.17. Potencia reactiva total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.18. Potencia mec´anica y potencia el´ectrica en el PCC . . . . . . . . . . . . . . . 73 7.19. Flujo del estator d y q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.20. Trayectoria desde el punto de operaci´on A’ a C’ . . . . . . . . . . . . . . . . 76 7.21. Potencia mec´anica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.22. Coeficiente de potencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.23. Torque electromagn´etico del generador . . . . . . . . . . . . . . . . . . . . . 78 7.24. Torque electromagn´etico (Detalle) . . . . . . . . . . . . . . . . . . . . . . . . 78 7.25. Diferencia de posici´on angular entre los extremos del eje de transmisi´on . . . 79 7.26. Diferencia de posici´on angular entre los extremos del eje de transmisi´on (De- talle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.27. Potencia mec´anica y potencia el´ectrica en el PCC . . . . . . . . . . . . . . . 80 7.28. Deslizamiento y velocidad del generador . . . . . . . . . . . . . . . . . . . . 80 7.29. Tensiones y corrientes del rotor en coordenadas DQ . . . . . . . . . . . . . . 81 7.30. Tensiones del rotor en coordenadas abc . . . . . . . . . . . . . . . . . . . . . 81 7.31. Corrientes del rotor en coordenadas abc . . . . . . . . . . . . . . . . . . . . . 82 7.32. Corrientes y tensi´on del bus de continua . . . . . . . . . . . . . . . . . . . . 82 7.33. Flujo del estator en d y q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7
  9. 9. 7.34. Potencia el´ectrica total de salida . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.35. Potencia mec´anica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.36. Potencia en el PCC y velocidad de viento . . . . . . . . . . . . . . . . . . . . 85 7.37. Potencias y deslizamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.38. Flujos del estator - Hueco 1 - Velocidad de viento 6 m/s . . . . . . . . . . . 87 7.39. Flujos del estator - Hueco 1 - Velocidad de viento 8 m/s . . . . . . . . . . . 88 7.40. Flujos del estator - Hueco 1 - Velocidad de viento 10 m/s . . . . . . . . . . . 88 7.41. Tensiones y corrientes del rotor - Hueco 1 - Velocidad de viento 6 m/s . . . . 89 7.42. Tensiones y corrientes del rotor - Hueco 1 - Velocidad de viento 8 m/s . . . . 89 7.43. Tensiones y corrientes del rotor - Hueco 1 - Velocidad de viento 10 m/s . . . 90 7.44. Corrientes del estator - Hueco 1 - Velocidad de viento 6 m/s . . . . . . . . . 90 7.45. Corrientes del estator - Hueco 1 - Velocidad de viento 8 m/s . . . . . . . . . 91 7.46. Corrientes del estator - Hueco 1 - Velocidad de viento 10 m/s . . . . . . . . . 91 7.47. Potencia el´ectrica del rotor y estator - Hueco 1 - Velocidad de viento 6 m/s . 92 7.48. Potencia el´ectrica del rotor y estator - Hueco 1 - Velocidad de viento 8 m/s . 92 7.49. Potencia el´ectrica del rotor y estator - Hueco 1 - Velocidad de viento 10 m/s 93 7.50. Potencia PCC - Comparaci´on Hueco 1 - Velocidad de viento 6 m/s . . . . . 93 7.51. Potencia PCC - Comparaci´on Hueco 1 - Velocidad de viento 8 m/s . . . . . 94 7.52. Potencia PCC - Comparaci´on Hueco 1 - Velocidad de viento 10 m/s . . . . . 94 7.53. Flujo del estator - Hueco 2 - Velocidad de viento 6 m/s . . . . . . . . . . . . 95 7.54. Flujo del estator - Hueco 2 - Velocidad de viento 8 m/s . . . . . . . . . . . . 95 7.55. Flujo del estator - Hueco 2 - Velocidad de viento 10 m/s . . . . . . . . . . . 96 7.56. Tensiones y corrientes del rotor - Hueco 2 - Velocidad de viento 6 m/s . . . . 97 7.57. Tensiones y corrientes del rotor - Hueco 2 - Velocidad de viento 8 m/s . . . . 97 7.58. Tensiones y corrientes del rotor - Hueco 2 - Velocidad de viento 10 m/s . . . 98 7.59. Corrientes del estator - Hueco 2 - Velocidad de viento 6 m/s . . . . . . . . . 98 7.60. Corrientes del estator - Hueco 2 - Velocidad de viento 8 m/s . . . . . . . . . 99 7.61. Corrientes del estator - Hueco 2 - Velocidad de viento 10 m/s . . . . . . . . . 99 7.62. Potencia el´ectrica del rotor y estator - Hueco 2 - Velocidad de viento 6 m/s . 100 7.63. Potencia el´ectrica del rotor y estator - Hueco 2 - Velocidad de viento 8 m/s . 100 7.64. Potencia el´ectrica del rotor y estator - Hueco 2 - Velocidad de viento 10 m/s 101 7.65. Potencia PCC - Comparaci´on Hueco 2 - Velocidad de viento 6 m/s . . . . . 101 7.66. Potencia PCC - Comparaci´on Hueco 2 - Velocidad de viento 8 m/s . . . . . 102 7.67. Potencia PCC - Comparaci´on Hueco 2 - Velocidad de viento 10 m/s . . . . . 102 7.68. Potencia en el PCC para dos controladores diferentes - Hueco 1 . . . . . . . 103 7.69. Hueco 1 visto desde la orientaci´on con el flujo . . . . . . . . . . . . . . . . . 103 B.1. Transformaci´on abc a 0dq en forma gr´afica [6] . . . . . . . . . . . . . . . . . 110 B.2. Transformaci´on abc a 0αβ en forma gr´afica [6] . . . . . . . . . . . . . . . . . 110 B.3. Repercusi´on del valor de p de las transformaciones . . . . . . . . . . . . . . . 112 D.1. Sistema completo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 D.2. Implementaci´on de la turbina . . . . . . . . . . . . . . . . . . . . . . . . . . 118 D.3. Implementaci´on del sistema mec´anico en Simulink . . . . . . . . . . . . . . . 119 8
  10. 10. D.4. Sistema simplificado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 D.5. Representaci´on del DFIG en Simulink . . . . . . . . . . . . . . . . . . . . . . 120 D.6. Implementaci´on GSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 D.7. Implementaci´on del Bus-DC . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.8. Implementaci´on del controlador del RSC . . . . . . . . . . . . . . . . . . . . 122 D.9. Implementaci´on del controlador del GSC . . . . . . . . . . . . . . . . . . . . 122 D.10.Transformaci´on Vabc a Vdq gs . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 D.11.Transformaci´on de las corrientes dq gs a ABC . . . . . . . . . . . . . . . . . 123 D.12.Implementaci´on del controlador GSC . . . . . . . . . . . . . . . . . . . . . . 124 D.13.Control de pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 E.1. Controlador GSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9
  11. 11. ´Indice de cuadros 2.1. Constantes Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1. Coeficientes del sistema mec´anico . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1. Valores base del estator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2. Valores base del rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1. Ajustes del controlador PI del lazo interno - RSC . . . . . . . . . . . . . . . 48 6.2. Ajustes del controlador PI del lazo externo - RSC . . . . . . . . . . . . . . . 53 6.3. Ajustes del controlador PI del lazo interno - GSC . . . . . . . . . . . . . . . 58 6.4. Ajustes del controlador PI del lazo externo - GSC . . . . . . . . . . . . . . . 59 7.1. Valores de las variables el´ectricas (Estator y rotor) . . . . . . . . . . . . . . . 63 7.2. Valores de las variables el´ectricas (Bus DC) . . . . . . . . . . . . . . . . . . 64 7.3. Valores de las variables el´ectricas (Estator y rotor) . . . . . . . . . . . . . . . 76 7.4. Valores de las variables el´ectricas (Bus DC) . . . . . . . . . . . . . . . . . . 76 7.5. Caracter´ısticas del Hueco 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.6. Caracter´ısticas del hueco 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A.1. Valores base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2. Par´ametros mec´anicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.3. Par´ametros DFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.4. Par´ametros Bus y filtros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10
  12. 12. Cap´ıtulo 1 Sistemas de conversi´on de energ´ıa e´olica (SCEE) 1.1. Introducci´on La primera turbina e´olica para generaci´on el´ectrica operada de forma autom´atica data del a˜no 1887, construida por Charles F. Brusch (Figura 1.1). Se trataba de un gigantesco molino, el mayor del mundo, cuyo rotor ten´ıa 17 m de di´ametro y constaba de 144 palas de madera. La turbina funcion´o durante 20 a˜nos. A pesar de su tama˜no, la potencia generada alcanzaba apenas 12 kW debido a la baja velocidad de rotaci´on de las palas. A˜nos despu´es el dan´es Poul La Cour descubr´ıa que las turbinas compuestas de unas pocas palas con grandes velocidades de giro eran mucho m´as eficientes para la producci´on de electricidad [1]. Figura 1.1: Turbina de Charles F. Brush Debido a importantes avances tecnol´ogicos en la electr´onica de potencia y el aumento de las dimensiones de las turbinas, en la actualidad los sistemas de conversi´on de energ´ıa e´olica (de aqu´ı en m´as abreviado como SCEE, en la bibliograf´ıa en ingl´es se denota como WECS por “wind energy conversion system”) han demostrado una alta tasa de crecimiento [11]. De esta manera, las normativas que pautan las reglas para la correcta funcionalidad del sistema han ido aumentando su rigurosidad. 11
  13. 13. Figura 1.2: Evoluci´on de las dimensiones de las turbinas En la figura 1.2 se puede apreciar la evoluci´on del tama˜no de las turbinas como as´ı tam- bi´en su potencia nominal en los ´ultimos a˜nos. Los SCEE producen energ´ıa el´ectrica a partir de la potencia del viento la cual es trans- mitida al generador. El viento genera un torque sobre las aspas del molino el cual mueve un eje que est´a conectado con el eje del generador por medio de una caja de engranajes (en algunos generadores actuales esto no es necesario). Este ´ultimo elemento se encarga de au- mentar la velocidad del eje del generador, el cual utiliza campos magn´eticos para convertir la energ´ıa rotacional en el´ectrica. Como es posible imaginarse, la fuente de energ´ıa primaria de los SCEE no es constante ni, a priori, predecible. Y como existe una directa relaci´on entre los generadores, su velocidad de rotaci´on y la frecuencia de la red, se ha resuelto el problema de distintas maneras. En un principio las turbinas eran de velocidad fija y utili- zaban generadores de inducci´on. Luego, se han desarrollado m´aquinas de velocidad variable cuyos generadores pueden ser de inducci´on doblemente alimentadas, m´aquinas sincr´onicas con rotor bobinado o de imanes permanentes. La gran ventaja de permitirle operar al siste- ma a distintas velocidades (se ver´a luego c´omo se puede funcionar de esta forma e inyectar potencia a frecuencia de la red) radica en que puede ir adapt´andose para aprovechar la mayor energ´ıa posible del viento. Esto ser´a explicado en detalle en el cap´ıtulo 2. En el caso que el SCEE se encuentre conectado al sistema de potencia interconectado, se deber´an cumplir con ciertas normas de calidad de potencia y es por ello que existir´an situaciones en las que el sistema deber´a responder acorde a las normativas vigentes del pa´ıs donde se est´e operando. A medida que los sistemas de control fueron avanzando en su tecnolog´ıa, las normativas fueron acompa˜nando dichos progresos para exigirles colaboraci´on en distintos tipos de contingencias, adem´as de exigirles trabajar con un factor de potencia entre 0.9 en atraso hasta 0.95 en adelanto, donde la frecuencia permanecer´a entre 47.5 Hz y 52 Hz. Las normas m´as destacadas son [13]: USA FERC: “Interconnection for Wind Energy”18 CFR Part 35 (Docket No. RM05- 4-001; Order No. 661-A), Issued December 12, 2005 and “Interconnection Require- 12
  14. 14. ments for a Wind Generating Plant”, Appendix G to the LGIA.Germany ? E.ON Netz GmbH: “Grid Code - High and extra high voltage”, Status: 1.April 2006. China - CEPRI: “Technical Rule for Connecting Wind Farm to Power System”, December, 2005. Spain - REE - P.O. 12.3: Resoluci´on de 4 de octubre de 2006, de la Secretar´ıa Ge- neral de Energ´ıa por la que se aprueba el procedimiento de operaci´on 12.3 “Requisitos de respuesta frente a huecos de tensi´on de las instalaciones e´olicas”. Publicaci´on en BOE n´um. 254 de fecha 24 Octubre 2006. India - ISTS: “Indian Electricity Grid Code (IEGC)”, April, 2006 and “Draft Report on Indian Wind Grid Code”, July, 2009. France: “D´ecret no 2008-386 du 23 avril 2008 relatif aux prescriptions techniques g´en´erales de conception et de fonctionnement pour le raccordement d?installations de production aux r´eseaux publics d?´electricit´e”, April, 2008. Italy: “CEI 11-32; V1 Impianti di produzione eolica”, December, 2006. Great Britain - National Grid Electricity Transmission plc: “The Grid Code ”, Issue 4 Revision 3, 6th September 2010. Denmark - ELKRAFT SYSTEM and ELTRA: “Wind Turbines Connected to Grids with Voltages above 100 kV - Technical regulations for the properties and the re- gulation of wind turbines ”, Regulation TF 3.2.5, December 3, 2004. www.intechopen.com Wind Farms and Grid Codes 19 Portugal - REN: Portaria n.o 596/2010 de 30 de Julho Canada - AESO: “Wind Power Facility - Technical Requirements”, Revision 0, November, 15 2004. Australia - AEMC: “National Electricity Rules (NER)”, Version 39, 16 September 2010 Ireland - EIRGRID: “WFPS1- Controllable Wind Farm Power Station Grid Code Provisions”, EirGrid Grid Code, Version 3.4, October 16th 2009. En el caso de la Argentina, actualmente est´a regulada por el denominado Anexo 40 - “Generaci´on e´olica”de “Los procedimientos para la programaci´on de la operaci´on, el des- pacho de cargas y el c´alculo de precios”(El anexo 40, el cual surge a partir de la resoluci´on SE 712/2009, Anexo IV). Por ejemplo, un caso de falla muy usual en los sistemas de potencia son los huecos de tensi´on, el cual puede ser producido por varios motivos. El hueco de tensi´on es caracteriza- do por su profundidad, duraci´on y tensi´on residual. Las normas de cada pa´ıs pueden exigir que los SCEE permanezcan operando en caso de que el hueco que se produzca est´e dentro 13
  15. 15. Figura 1.3: Huecos seg´un distintas normas [12] de ciertos l´ımites; esto se denomina en la literatura como “voltage dip/sag ride-through”. De esta manera, los sistemas de control se deber´an dise˜nar para poder cumplir con estas normativas. La figura 1.3 muestra los distintos huecos que denotan los l´ımites en los cuales el SCEE debe seguir operando seg´un diferentes normas, donde puede observar que los re- querimientos no son diferentes en cada una de ellas. Estos depender´an de las caracter´ısticas espec´ıficas de cada sistema de interconexi´on de los distintos pa´ıses. Se continuar´a con las configuraciones t´ıpicas actuales de los SCEE, seguido de una descripci´on general de los elementos constituyentes del mismo y finalmente se describe el sistema que se modelar´a y se presentar´a la estrategia de control t´ıpica utilizada. 1.2. Configuraciones t´ıpicas Se presentar´an las configuraciones que m´as se utilizan en la actualidad. La figura 1.4 a) corresponde a una turbina de velocidad fija con un generador de inducci´on con jaula de ardilla (por sus siglas en ingl´es, se denominan “SCIG”por “Squirrel Cage Induction Gene- rator”). La figura 1.4 a) corresponde a una turbina de velocidad variable con un generador de inducci´on doblemente alimentado (DFIG por “Doubly Fed Induction Generator”) donde se puede observar el arreglo de conversores en el circuito del rotor. Con este esquema, la potencia que deber´an soportar los conversores, la cual viene dada por la potencia del rotor Pr ser´a un porcentaje respecto a la potencia del estator Ps (t´ıpicamente entre ±25 ∼ 30 %), el cual podr´a aproximarse sin gran error como Pr = −sPs. Por ´ultimo, la figura 1.4 c) es un SCEE de velocidad variable, donde se puede observar que los conversores deben soportar toda la potencia del generador. Para turbinas de velocidad fija, el generador es directamente conectado a la red. Debido a que la velocidad es impuesta por la frecuencia de la red, y de cierta forma no controlable (desde la posici´on del generador del SCEE frente a la red), no es posible almacenar la 14
  16. 16. Figura 1.4: Configuraciones t´ıpicas de los SCEE [10] energ´ıa pulsante capturada debido a las turbulencias de viento en forma de variaciones de energ´ıa cin´etica, por lo que las perturbaciones se ver´an reflejadas directamente en la calidad de potencia el´ectrica que transmite el generador. En el caso de generadores de inducci´on con rotor jaula de ardilla, consumen potencia reactiva de la red y no pueden actuar frente a huecos de tensi´on. En cambio, para las turbinas e´olicas de velocidad variable, las fluctuaciones en la energ´ıa del viento pueden ser absorbidas en cierta medida por el sistema mejorando la calidad de potencia entregada a la red. Tambi´en y no menos importante, este tipo de SCEE permite operar maximizando la potencia de captaci´on posible del viento en cada momento. 1.3. Turbinas e´olicas La turbina e´olica es el elemento principal del sistema. Es el encargado de recibir la energ´ıa y transmitirla al generador el´ectrico por medio de un torque producto del efecto aerodin´amico que se crea en las aspas cuando el viento las atraviesa. 1.3.1. Componentes Se presentan los principales elementos que constituyen la turbina [4], los cuales se mues- tran en la figura 1.5 Torre: En ella se sostiene el rotor, y la g´ondola. Suele tener varios metros de altura. Rotor: El rotor est´a compuesto por las aspas y el soporte de las mismas. Se denomina tambi´en rotor al circuito giratorio del generador, que si bien est´an conectados mediante 15
  17. 17. Figura 1.5: Componentes de una turbina e´olica el eje de transmisi´on, cuando se hable de rotor a lo largo del proyecto se debe notar que se est´a hablando del rotor del generador. Generador: Trasnsforma la energ´ıa mec´anica en el´ectrica. Controlador: Es el encargado de controlar el SCEE. G´ondola: En ´el se alojan el generador y el controlador. Mecanismo de control de paso (pitch): Se encarga de la rotaci´on de las aspas sobre su propio eje, esto tendr´a impactos en la cantidad de energ´ıa capturada del viento como se ver´a posteriormente. Eje de baja velocidad: Es el eje en el cual est´a conectado al rotor. Gira a velocidades bajas (entre 1,5 y 3 radianes por segundo). Eje de alta velocidad: Es el eje del generador, el cual operar´a a velocidades cercanas a 314 radianes por segundo (para un generador de 2 pares de polos). Caja de engranajes: Debido a que el eje del rotor y del generador operan a distintas velocidades angulares, se utiliza una caja de engranajes para poder acoplarlos. Anen´ometro y Veleta: Se utilizan para medir la velocidad y direcci´on del viento, respectivamente. Motor y mecanismo de orientaci´on: Es el encargado de alinear el eje del rotor en la direcci´on del viento logrando logrando una maximizaci´on de extracci´on de energ´ıa (en este proyecto se considerar´a que la turbina siempre estar´a alineada con el viento). 16
  18. 18. Figura 1.6: Turbina e´olica de eje vertical de tipo Darrieus Freno: El freno es utilizado para proteger el aerogenerador en exceso de velocidad de viento. Existen dos tipos principales de turbinas, las de eje vertical y las de eje horizontal. Sus caracter´ısticas principales se describen brevemente a continuaci´on. Turbinas e´olicas de eje vertical Este tipo de turbinas tienen su eje de rotaci´on perpendicular al plano del suelo. La principal caracter´ıstica de ellas es que no necesitan orientarse respecto a la direcci´on del viento. Otra ventaja es que sus componentes pesados, como el generador el´ectrico, pueden ser ubicados en el suelo. Una desventaja de las mismas surge de la proximidad de la turbina al suelo, ya que se ver´a afectada por la rugosidad del terreno (lo cual incide directamente en el viento que puede aprovechar la turbina) y tambi´en que la velocidad del viento es menor que si se encontrase a mayor altura. La figura 1.6 muestra una turbina de eje vertical de tipo Darrieus. Turbinas e´olicas de eje horizontal Este tipo de turbinas tienen su eje de rotaci´on en posici´on horizontal respecto al suelo, y tienen la posibilidad de ubicarse a varios metros de altura, con la ventaja de poder aprovechar mayores niveles de viento (ya que a mayor altura, la velocidad media resulta mayor que a nivel del suelo). Este tipo de turbinas tambi´en puede clasificarse seg´un su posici´on respecto del viento, de esta forma se tienen turbinas con direcci´on enfrentadas al viento, o de espaldas al mismo, como se muestra en la figura 1.7. 17
  19. 19. Figura 1.7: Clasificaci´on seg´un su posici´on frente al viento 1.4. Sistema a estudiar En el presente proyecto se estudiar´a un SCEE de velocidad variable con un generador de inducci´on doblemente alimentado propulsado por una turbina de eje horizontal. El esquema de la figura 1.8 muestra los elementos que constituyen a dicho sistema, los cuales ser´an presentados a lo largo del proyecto. Se puede destacar que el rotor del DFIG se conecta a la red el´ectrica mediante dos conversores AC/DC unidos entre s´ı por medio de un bus de continua (DC). Se ver´a en los pr´oximos cap´ıtulos que el control de seguimiento del punto ´optimo de extracci´on de potencia se realiza operando sobre estos conversores. La figura 1.9 muestra el esquema general de control donde se destacan los diferentes bloques que se analizar´an a lo largo del proyecto. Figura 1.8: Esquema general (imagen obtenida de la galer´ıa SimPower Systems de Simulink) El bloque “Wind Model”se considerar´a en el cap´ıtulo “Simulaciones”como una velocidad de viento constante y luego mediante una funci´on lineal para verificar el comportamiento global del sistema. El modelo de la red “Grid model”se considerar´a como una barra infinita con impedancia interna nula (se considerar´a una impedancia no nula para el estudio de 18
  20. 20. Figura 1.9: Esquema de control [10] los huecos como se explicar´a en la siguiente secci´on). Los bloques “Aerodynamic system”, “Mechanical system”, “Converters”se describir´an en los cap´ıtulos “Principios de conver- si´on de energ´ıa e´olica”, “Sistema mec´anico”y “Convertidores”respectivamente. Finalmente, el cap´ıtulo “Control del SCEE”describir´a los bloques “Torque & reactive power control”, “Wind turbine control strategy”y “Pitch control system”. Simulaciones realizar´an distintas pruebas para analizar el comportamiento del sistema de control que se propondr´a. Se comenzar´a con el an´alisis de la respuesta frente a dos escalones de viento en forma separada. Primero de forma ascendente, y luego de forma descendente. Luego se analiza el comportamiento del seguimiento del torque de referencia ante el desconocimiento de los par´ametros mec´anicos exactos del sistema. Hasta aqu´ı, se procurar´a que el sistema de control del ´angulo de las aspas no se encuentre activado a fin de evaluar el control del DFIG. Despu´es, se analizar´a el comportamiento global frente a una velocidad de viento variable a lo largo del tiempo. Finalmente, se har´an pruebas del sistema frente a peque˜nos huecos de tensi´on para concluir con el an´alisis de los resultados. 19
  21. 21. Cap´ıtulo 2 Principios de conversi´on de energ´ıa e´olica 2.1. Introducci´on En este cap´ıtulo se estudia al viento como fuente de energ´ıa para concluir con la repre- sentaci´on de la turbina y las expresiones de potencia y torque mec´anico que producir´a la misma. 2.2. Disponibilidad de energ´ıa e´olica El viento se puede caracterizar por su velocidad y direcci´on, los cuales est´an fuertemente relacionados con la ubicaci´on geogr´afica, el clima, altura y otros diversos factores [1]. El es- tudio de las caracter´ısticas del mismo es fundamental ante cualquier proyecto de generaci´on e´olica. Para ello se deben realizar estudios estad´ısticos que muestren las variaciones del vien- to en una zona espec´ıfica a lo largo de un cierto tiempo. Luego se caracteriza la variabilidad del viento por medio de distribuciones de probabilidad sobre un per´ıodo de tiempo anual. T´ıpicamente se utiliza la distribuci´on de Weibull, la cual se muestra en la figura 2.1, donde se puede observar que existe una mayor probabilidad de encontrarse con vientos moderados que fuertes. El an´alisis probabil´ıstico del viento excede los l´ımites del alcance del presente proyecto, pero el lector interesado puede obtener m´as informaci´on sobre ello en la referencia [2]. 2.3. Aerodin´amica de las turbinas e´olicas La turbina obtiene su potencia de entrada convirtiendo la fuerza del viento en un torque que act´ua sobre las aspas, que depender´a de la velocidad del viento, del ´area del barrido del rotor (el cual aumenta con el cuadrado del di´ametro del mismo), como as´ı tambi´en de la densidad del aire [3]. 20
  22. 22. Figura 2.1: Distribuci´on de Weibull para la velocidad de viento media [1] Figura 2.2: Flujo de aire Se har´a un an´alisis sobre la aerodin´amica de la turbina e´olica con eje de giro horizontal, considerando que la corriente de aire incidente es uniforme y paralela a dicho eje. Estas simplificaciones no contemplan casos de desalineaci´on del eje de giro y su inclinaci´on o las turbulencias. 2.3.1. Comportamiento global de la turbina El comportamiento de la turbina e´olica puede realizarse de manera gen´erica considerando un disco actuador rotante y una masa de aire pasando a trav´es de ´el, creando un tubo de corriente [2], el cual se muestra en la siguiente figura. La figura 2.3 muestra las diferencias de velocidad de viento y presi´on de un lado y de otro del disco actuador. Las condiciones (velocidad y presi´on) en frente del disco actuador se denotan con el sub´ındice u , aquellas sobre el disco con 0 y finalmente, las condiciones detr´as del disco con w. La potencia del viento sobre un ´area A es Pt = 1 2 ρAv3 (2.1) 21
  23. 23. Figura 2.3: Distribuci´on de presiones y velocidad del aire El momento H = m(vu − vw) transmitido al disco por la masa de aire m que pasa a trav´es del disco de secci´on A produce una fuerza que puede expresarse como: T = ∆H ∆t = ∆m(vu − vw) ∆t = ρAv0∆t(vu − vw) ∆t = ρAv0(vu − vw) (2.2) ´o T = A(p+ 0 − p− 0 ) (2.3) Usando la ecuaci´on de Bernoulli, la diferencia de presi´on se puede expresar como p+ 0 − p− 0 = 1 2 ρ(vu 2 − vw 2 ) (2.4) Se reemplaza 2.4 en 2.3, resultando T = 1 2 ρA(vu 2 − vw 2 ) (2.5) De la ecuaci´on 2.2 y 2.5 se obtiene v0 = 1 2 (vu + vw) → (vu − vw) = 2(vu − v0) (2.6) La potencia queda como sigue, P = Tv0 (2.7) Y reemplazando 2.5 y 2.6 en 2.7 resulta, P = 1 2 ρAv0(vu 2 − vw 2 ) (2.8) ´o P = 1 2 ρAv3 4a(1 − a2 ) (2.9) 22
  24. 24. Figura 2.4: Tip speed ratio con a = 1 − v0/vu. Se define al coeficiente de potencia, que denota la eficiencia de la extracci´on de potencia, como: Cp = P Pt = 0,5.ρAv3 ,4a(1 − a2 ) 0,5.ρAv3 (2.10) Cp = 4a(1 − a)2 (2.11) El m´aximo valor de Cp ocurre cuando a = 1/3, obteni´endose un valor de Cp m´ax = 0,59, conocido como el l´ımite de Betz, y representa la m´axima eficiencia posible de extracci´on de potencia de un aerogenerador (l´ımite te´orico). Par´ametros adimensionales que definen el comportamiento de la aeroturbina El rendimiento o coeficiente de potencia de la turbina normalmente se caracteriza en funci´on de dos par´ametros adimensionales: el tip speed ratio λ y el ´angulo de paso β. Se define al tip speed ratio como una variable que expresa la relaci´on entre la velocidad en la punta del aspa de la turbina y la velocidad del viento, comput´andose de la siguiente forma: λ = R.ωt vw (2.12) donde R es el radio de la turbina, expresado en metros, ωt es la velocidad de la misma en el eje de baja velocidad, expresada en radianes por segundo y vw es la velocidad del viento, en metros por segundo. Otra magnitud de importancia es el ´angulo de paso β (pitch angle, en ingl´es), el cual es el ´angulo que rotan las aspas respecto a su propio eje, como se muestra en la figura 2.5. En este proyecto se aproxima el coeficiente de potencia Cp en funci´on del tip speed ratio y del ´angulo de pitch, es decir, Cp = f (λ, β) [1][5] por medio de la ecuaci´on 2.13 y 2.14, donde las constantes utilizadas en este proyecto se muestran en la tabla 2.1. 23
  25. 25. Figura 2.5: ´Angulo de paso Constantes Cp Constante Valor a1 0.5176 a2 116 a3 0.4 a4 5 a5 21 a6 0.0068 Cuadro 2.1: Constantes Cp Cp (λ, β) = a1 a2 λi − a3β − a4 exp −a5 λi + a6λ (2.13) λi = 1 λ + 0,08β − 0,035 β3 + 1 −1 (2.14) De esta manera, se pueden obtener un conjunto de curvas parametrizadas en λ y β, las cuales depender´an de las caracter´ısticas f´ısicas de cada turbina. En el caso del presente proyecto, se obtienen las curvas mostradas en 2.6, donde se se˜nala el valor de λ que maximiza la captura de potencia del viento con ´angulo de paso nulo. En este caso, el coeficiente Cp m´ax ∼= 0,48 est´a representando que en el mejor de los casos s´olo el 48 % de la energ´ıa disponible en el viento podr´a ser capturada por la turbina e´olica. Esto ser´a muy importante como estrategia de control del generador, ya que el control estar´a dise˜nado para mantener al sistema operando en este punto de la curva. Cabe destacar que la velocidad del viento se encuentra embebida en la ecuaci´on de λ (2.12), y esto resulta de utilidad ya que si se conoce el valor de λ y la velocidad de la turbina, no ser´a necesaria la medici´on del viento 24
  26. 26. Figura 2.6: Coeficiente de potencia para el sistema de control, como se ver´a m´as adelante. Se puede observar tambi´en c´omo var´ıan las curvas a medida que el ´angulo de las aspas crece, haciendo disminuir el coeficiente de potencia. Esta caracter´ıstica ser´a tambi´en utili- zada como estrategia de control, para limitar la potencia de entrada al sistema cuando sea necesario. La figura 2.7 muestra la superficie que conforma el coeficiente de potencia en funci´on del tip speed ratio y del ´angulo de las palas. 2.4. Potencia ´optima Como conclusi´on del presente cap´ıtulo, se presenta la expresi´on de la potencia de la turbina e´olica como se muestra en la ecuaci´on 2.15. Pturbina = 1 2 .ρ.Area.v3 .Cp(λ, β) = 1 2 ρπR2 v3 Cp(λ, β) (2.15) Conociendo la velocidad angular de la turbina, podemos encontrar el torque que ejerce la turbina, mostrada en la ecuaci´on 2.16. Tt = Pt ωt = 1 ωt 1 2 ρπR2 v3 Cp(λ, β) (2.16) Como se ha mencionado anteriormente, existe un valor del tip speed ratio que maximiza el coeficiente de potencia logrando la mejor eficiencia en la conversi´on de energ´ıa e´olica, al 25
  27. 27. 0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16 18 20 0 0.1 0.2 0.3 0.4 0.5 Beta Lambda CP Figura 2.7: Superficie del coeficiente de potencia cual se lo denomina λopt (´optimo). Para el modelo matem´atico del coeficiente de potencia (Cp) que se ha presentado, el tip speed ratio ´optimo tiene un valor de 8.1 aproximadamente. La estrategia de control ser´a pues, mantener al tip speed ratio en dicho valor. La expresi´on de λopt corresponde con la ecuaci´on 2.17. λopt = ωoptR v ∼= 8,1001 (2.17) Donde R es el radio de la pala, v la velocidad del viento y ωopt es la velocidad de la turbina que maximiza el Cp. Despejando la velocidad del viento de la ecuaci´on 2.17, resulta, v = ωoptR λopt (2.18) La potencia mec´anica que transmitir´a la turbina e´olica al generador (sin contar a´un las p´erdidas existentes), en el punto ´optimo de operaci´on se obtiene reemplazando la ecuaci´on 2.18 en 2.19, obteni´endose, Popt = 1 2 ρπR2 Cp m´ax ωopt 3 R3 λopt 3 = 1 2 ρπR5 Cp m´ax λopt 3 ωopt 3 (2.19) Definiendo Kopt como, Kopt = 1 2 ρπR5 Cp m´ax λopt 3 (2.20) Se obtiene finalmente la expresi´on que ser´a de gran utilidad para el sistema de control del SCEE, Popt = Koptωopt 3 (2.21) 26
  28. 28. Cap´ıtulo 3 Sistema mec´anico 3.1. Introducci´on Existen diversos modelos para representar matem´aticamente el comportamiento f´ısico de la parte mec´anica del sistema. Una forma es representar al generador y a la turbina como una masa concentrada. Dicho modelo, si bien consta de una simpleza que facilita el an´alisis, no representa la realidad adecuadamente. Teniendo en cuenta que la torsi´on de un eje de un generador de las caracter´ısticas a estudiar no se puede despreciar, se ha optado por un sistema de dos masas acopladas mediante un eje flexible. Adem´as contar´a con una caja reductora de velocidad, donde el eje del generador ser´a el de alta velocidad, mientras que el de la turbina ser´a el de baja. 3.2. Modelo del sistema mec´anico El modelo a implementar ser´a como el mostrado en la figura 3.1. En la tabla 2.1 se muestran los coeficientes utilizados, su descripci´on y sus unidades [1]. Figura 3.1: Representaci´on esquem´atica del modelo mec´anico [1] 27
  29. 29. S´ımbolo Descripci´on Unidad Tt Torque aplicado sobre la turbina Nm Tg Torque aplicado sobre el generador Nm Jg Inercia del generador Kgm2 Jt Inercia de la turbina Kgm2 K Coeficiente de rigidez torsional Nm/rad Dg,Dtt, D Coeficientes de amortiguamiento Nms/rad a Relaci´on de la caja de transmisi´on - ωg Velocidad angular del generador rad/s ωt Velocidad angular de la turbina rad/s θg Posici´on angular del generador rad θt Posici´on angular de la turbina rad Cuadro 3.1: Coeficientes del sistema mec´anico 3.2.1. Sistema de ecuaciones mec´anicas en valor absoluto Debido a la caja reductora que acopla el eje de alta velocidad con el de baja, se expresaran las ecuaciones mec´anicas referidas al eje de la turbina mediante las siguientes relaciones, donde la constante a ser´a la relaci´on de velocidades de ambos ejes. El super´ındice (t) indica que el valor est´a representado del lado de la turbina, mientras que (g) ser´a del lado del generador. Tt = aT (g) t (3.1) Jt = a2 J (g) t (3.2) K(t) = a2 K(g) (3.3) D(t) = a2 D(g) (3.4) De esta manera, las ecuaciones que modelan el comportamiento mec´anico ser´an, Jt ˙ωt = Tt − K(t) (δt − δ(t) g ) − D(t) (ωt − ω(t) g ) − Dttωt (3.5) Jg ˙ωg = −Tg + K(t) (δ (g) t − δg) + D(g) (ω (g) t − ωg) − Dgωg (3.6) donde Tg es el torque producido por el generador. 3.2.2. Sistema de ecuaciones en por unidad Existe una gran ventaja si se trabajan las ecuaciones en el sistema adimensional, debido a que el sistema podr´a ser escalable. Para ello se debe definir la potencia base del sistema, torque base y velocidades base (baja y alta velocidad). Los valores adoptados se pueden ver en el ap´endice “Valores Base”. Defini´endose a las constantes de inercia Ht y Hg como el cociente entre la energ´ıa cin´etica a la velocidad nominal y la potencia nominal, resulta, [6] 28
  30. 30. H = 1 2 J(ω/ωbase)2 SB (3.7) Y teniendo en cuenta las ecuaciones 3.1, 3.2, 3.3 y 3.4 el sistema descripto por las ecuaciones 3.5 y 3.6 se puede representar mediante las siguientes ecuaciones: Ht ˙¯ωt = ¯Tt − ¯K(¯γ) − ¯D(¯ωt − ¯ωg) − ¯Dtt ¯ωt (3.8) Hg ˙¯ωg = − ¯Tg + ¯K(¯γ) + ¯D(¯ωt − ¯ωg) − ¯Dr ¯ωg (3.9) ˙¯γ = ¯ωBr(¯ωt − ¯ωg) (3.10) Donde las variables y constantes est´an representadas en valores por unidad. 29
  31. 31. Cap´ıtulo 4 Generador de inducci´on doblemente alimentado (DFIG) 4.1. Introducci´on A lo largo de la historia de las m´aquinas el´ectricas rotantes se han estudiado las ventajas y desventajas de cada una de ellas. En un principio las m´aquinas con posibilidad de operar a distintas velocidades de forma controlada fueron las de corriente continua. Luego, con el avance tecnol´ogico de la electr´onica de potencia, las m´aquinas de inducci´on han incorporado estas capacidades. El principio de funcionamiento de las m´aquinas de inducci´on (o as´ıncronas) se basa en el concepto de campo magn´etico giratorio y reciben el nombre de as´ıncronas debido a que la velocidad de giro del rotor no es necesariamente la de sincronismo impuesta por la red. Es muy frecuente encontrar este tipo de m´aquinas operando como motor, con su rotor con forma de jaula de ardilla, debido a su robustez y construcci´on simple. Con lo cual se las hace trabajar en las circunstancias m´as adversas con peque˜no mantenimiento. El objetivo de este apartado es describir el modelo matem´atico del generador de induc- ci´on doblemente alimentado (DFIG, por sus siglas en ingl´es) que ser´a el utilizado para las simulaciones. Para ello se expresar´a al generador en el sistema de referencia transformado dq [6]. 4.2. Consideraciones Se har´an las siguientes suposiciones, las cuales simplifican el an´alisis sin alejarse dema- siado de la realidad [6]: Los bobinados del estator est´an distribuidos sinusoidalmente en el entrehierro, de tal forma que los efectos mutuos con el rotor son concentrados. Las ranuras del estator se desprecian, asumiendo que no producen una variaci´on de las inductancias del rotor respecto a la posici´on del mismo. 30
  32. 32. Figura 4.1: Representaci´on de una m´aquina de inducci´on [6] Se considera que la reluctancia del entrehierro es mucho mayor que la del hierro, por lo que el circuito magn´etico no se saturar´a, caso contrario, el modelo se volver´ıa m´as complejo. Se desprecian las p´erdidas por efecto Foucault. 4.3. Representaci´on esquem´atica Se representa a la m´aquina mediante tres arrollamientos del estator (a, b, c) y tres arro- llamientos para el rotor (A, B, C) en la figura 4.4. 4.4. Din´amica el´ectrica en coordenadas abc La din´amica el´ectrica se obtendr´a a partir de las leyes de Kirchhoff y Faraday-Lenz. Se presenta en la figura 4.4 el circuito equivalente de los seis arrollamientos mostrados en la figura 4.4. Se pueden observar los seis arrollamientos con las correspondientes tensiones aplicadas, tanto del estator como del rotor, como as´ı tambi´en las ca´ıdas de tensi´on resistiva, aquellas debido a las inductancias propias de cada arrollamiento y por ´ultimo las debidas a las induc- tancias mutuas. Cabe aclarar que en la figura anterior no se encuentran expresadas todas inductancias mutuas por motivos de claridad en el dibujo. Los sub´ındices con min´usculas (abc) representan a las variables del estator, mientras que las may´usculas (ABC) al rotor. 31
  33. 33. Figura 4.2: Diagrama esquem´atico de la m´aquina as´ıncrona [6] Debe destacarse tambi´en que el sentido de corrientes positivos se ha adoptado como salien- te de la m´aquina, llam´andose “convenci´on de generador”. De esta forma, las potencias de signo positivo que se obtengan ser´an potencia entregada por la m´aquina, y las negativas, absorbida por la misma. Aplicando la ley de Kirchhoff a las mallas de la figura anterior se obtiene:           va vb vc vA vB vC           = −           Rs 0 0 0 0 0 0 Rs 0 0 0 0 0 0 Rs 0 0 0 0 0 0 Rr 0 0 0 0 0 0 Rr 0 0 0 0 0 0 Rr                     ia ib ic iA iB iC           −           ˙ϕa ˙ϕb ˙ϕc ˙ϕA ˙ϕB ˙ϕC           (4.1) Donde se ha considerado que todas las resistencias del estator son iguales, de valor Rs. Lo mismo se considera para las resistencias del rotor, que tendr´an un valor Rr. El flujo ϕ concatenado en los arrollamientos en cada instante est´a dado por,           ϕa ϕb ϕc ϕA ϕB ϕC           =           laa lab lac laA laB laC lba lbb lbc lbA lbB lbC lca lcb lcc lcA lcB lcC lAa lAb lAc lAA lAB lAC lBa lBb lBc lBA lBB lBC lCa lCb lCc lCA lCB lCC                     ia ib ic iA iB iC           (4.2) Las inductancias propias lii tanto del estator como del rotor ser´an constantes debido a la forma cil´ındrica del DFIG. Las mismas ser´an descriptas por la inductancia que representa al flujo concatenado sumado al flujo disperso, de esta manera podr´an ser escritas de la siguiente manera: 32
  34. 34. laa = Lgs0 + Lls = Ls (4.3) lbb = Ls (4.4) lcc = Ls (4.5) lAA = Lgr0 + Llr = Lr (4.6) lBB = Lr (4.7) lCC = Lr (4.8) Lo mismo puede plantearse para las inductancias mutuas tanto del estator como del rotor, ya que la posici´on relativa entre los arrollamientos (estator o rotor) permanecen fijas en el tiempo, lab = lba = Lls − 1 2 Lgs0 = −Ms (4.9) lbc = lcb = −Ms (4.10) lca = lac = −Ms (4.11) lAB = lBA = Llr − 1 2 Lgr0 = −Mr (4.12) lBC = lCB = −Mr (4.13) lCA = lAC = −Mr (4.14) Las inductancias mutuas presentan variaciones respecto a la posici´on del rotor y de esta manera, las mismas variar´an c´ıclicamente en funci´on del ´angulo de giro el´ectrico θe. Teniendo en cuenta las consideraciones realizadas al principio del cap´ıtulo, las variaciones de las inductancias ser´an debido al movimiento relativo entre los bobinados. En la figura 4.3 se muestra la variaci´on de la inductancia mutua laA, donde se puede apreciar que el m´aximo se presenta cuando los bobinados se encuentran alineados. Las inductancias mutuas entre los arrollamientos del estator y del rotor se pueden escribir de la siguiente manera, laA = lAa = Lsr cos(θe) (4.15) laB = lBa = Lsr cos(θe + 2π 3 ) (4.16) laC = lcA = Lsr cos(θe − 2π 3 ) (4.17) Las inductancias respecto a las fases b y c se calculan a partir de la fase a, restando 120◦ seg´un corresponda, lbA = lAb = Lsr cos(θe − 2π 3 ) (4.18) lbB = lBb = Lsr cos(θe) (4.19) 33
  35. 35. Figura 4.3: Variaci´on de la inductancia mutua entre la fase A del rotor y la fase a del estator [6] lbC = lCb = Lsr cos(θe + 2π 3 ) (4.20) lcA = lAc = Lsr cos(θe + 2π 3 ) (4.21) lcB = lBc = Lsr cos(θe − 2π 3 ) (4.22) lcC = lCc = Lsr cos(θe) (4.23) Se puede observar que los coeficientes son variantes en el tiempo, lo cual resulta en una complejidad considerable al momento de realizar los c´alculos. Las ecuaciones se simplifican si se expresan un marco de referencia giratorio 0dq, mediante la transformaci´on de Park (Ver Anexo “Transformaciones”). 4.5. Din´amica el´ectrica en coordenadas 0dq La m´aquina de inducci´on doblemente alimentada tendr´a un ´angulo de giro mec´anico θg, con lo cual ωg = dθg/dt. A trav´es de los pares de polos Pp, las variables mec´anicas se pueden relacionar con las variables el´ectricas de la siguiente manera [6]: θe = Ppθg (4.24) ωe = Ppωg (4.25) 34
  36. 36. Mientras que θs representa la fase de la tensi´on de la barra a la cual el generador est´a conectado, cuya frecuencia es ωs. La frecuencia asociada a las corrientes que se inducen en el rotor ser´a ωs − ωe, a las cuales se le asocia una fase γ dada por: γ = θs − θe (4.26) Debido a que la frecuencia de las corrientes del estator (ωs) no es la misma que en la del rotor (ωs − ωe), se necesitar´an dos transformaciones de Park diferentes. El lector puede verificar la orientaci´on de los ejes tanto dq como DQ en la figura del apartado de la representaci´on esquem´atica de la m´aquina de inducci´on. Esto resulta de gran importancia, ya que es posible encontrar en la bibliograf´ıa diferentes posiciones de los ejes directo y cuadratura, que si bien conceptualmente es lo mismo, las transformaciones no son iguales.    0 d q    = p    1√ 2 1√ 2 1√ 2 cos(θs) cos(θs − 2π 3 ) cos(θs + 2π 3 ) sin(θs) sin(θs − 2π 3 ) sin(θs + 2π 3 )       a b c    = Ps    a b c    (4.27)    0 D Q    = p    1√ 2 1√ 2 1√ 2 cos(γ) cos(γ − 2π 3 ) cos(γ + 2π 3 ) sin(γ) sin(γ − 2π 3 ) sin(γ + 2π 3 )       A B C    = Pr    A B C    (4.28) Por comodidad en la notaci´on se definen, Ls0 ∆ = Ls − 2Ms = (Lls + Lgs0) − 2 −Lls + 1 2 Lgs0 = 3Lls (4.29) Lr0 ∆ = Lr − 2Mr = (Llr + Lgr0) − 2 −Llr + 1 2 Lgr0 = 3Llr (4.30) Ldq ∆ = Ls + 2Ms (4.31) LDQ ∆ = Lr + 2Mr (4.32) Donde Ls0 y Lr0 representan la inductancia del estator y rotor del eje 0 respectivamen- te, Ldq y LDQ la inductancia propia del estator y rotor respectivamente y Lsr = Lrs las inductancias mutuas entre los arrollamientos del estator y rotor. Aplicando las transformaciones de Park correspondientes a las ecuaciones 4.1 y 4.2 se obtienen finalmente las ecuaciones que representan la din´amica el´ectrica del generador en coordenadas 0dq: vs0 = −Rsis0 − ˙ϕs0 (4.33) vd = −Rsid − ωsϕq − ˙ϕd (4.34) vq = −Rsiq + ωsϕd − ˙ϕq (4.35) vr0 = −Rrir0 − ˙ϕr0 (4.36) vD = −RriD − (ωs − ωe)ϕQ − ˙ϕD (4.37) 35
  37. 37. vQ = −RriQ + (ωs − ωe)ϕD − ˙ϕQ (4.38) ϕs0 = Ls0is0 (4.39) ϕd = Ldqid + 3 2 LsriD (4.40) ϕq = Ldqiq + 3 2 LsriQ (4.41) ϕr0 = Lr0ir0 (4.42) ϕD = LDQiD + 3 2 Lsrid (4.43) ϕQ = LDQiQ + 3 2 Lsriq (4.44) Considerando que la alimentaci´on del rotor y del estator ser´an sim´etricas, y debido a la topolog´ıa del DFIG, las corrientes ser´an balanceadas, las corrientes en el eje cero ser´an nulas y por lo tanto, las ecuaciones 4.33, 4.36, 4.39 y 4.44 no ser´an tenidas en cuenta. 4.6. Torque electromagn´etico y potencia el´ectrica El torque electromagn´etico puede ser obtenido en funci´on de las corrientes 0dq o de los flujos como se muestra a continuaci´on, recordando que p es la constante que se ha utilizado para la transformaci´on de Park [6]: Te = Pp p2 Lsr(iqiD − idiQ) = 2 3p2 Pp(ϕdiq − ϕqid) (4.45) La potencia activa y reactiva trif´asica instant´anea para sistemas trif´asicos equilibrados y sin distorsi´on arm´onica es: p(t) = vdid + vqiq (4.46) q(t) = vqid − vdiq (4.47) Cabe destacarse que estas ecuaciones se obtienen al elegir la constante p de Park como 2/3. Al elegirse esta constante, la transformaci´on de Park es invariante en potencia pero las variables de tensiones y corrientes en abc y dq se encuentran escaladas por un factor de 2/3 (Ver Anexo 2). 36
  38. 38. 4.7. Sistema por unidad Se busca representar el sistema de forma adimensional, a fin de poder tener noci´on sobre los porcentajes que las variables presentan con respecto a los valores base del sistema. Las elecciones de los valores base del rotor se detallan en el ap´endice “Sistema por Unidad Lad rec´ıproco”. Adem´as, se expresa anal´ıticamente el paso a valores en por unidad de las ecuaciones. Las tablas 4.1 y 4.2 muestran los valores base que se adoptan: Valores base del estator Par´ametro S´ımbolo Valor Unidad Potencia base SB Potencia nominal V A Tensi´on base vsB Tensi´on nominal pico de fase V Corriente base isB Corriente nominal pico de l´ınea A Frecuencia base fB Frecuencia nominal Hz Frecuencia angular base ωB 2πfB rad/s Impedancia base ZsB vsB/isB Ω Inductancia base LsB ZsB/ωB H Flujo base ϕsB LsBisB WB Torque base TB SB/(ωB/Pp) Nm Cuadro 4.1: Valores base del estator Valores base del rotor Par´ametro S´ımbolo Valor Unidad Tensi´on base vrB (vsBisB)/irB V Corriente base irB (2/3)(Ladq/Lsr)isB A Impedancia base ZrB vrB/irB Ω Inductancia base LrB (3/2)2 (Lsr 2 (LsBLadq 2 )) H Cuadro 4.2: Valores base del rotor 4.7.1. Din´amica el´ectrica en por unidad (0dq) Se plantean a continuaci´on las ecuaciones que ser´an luego implementadas, las cuales representan la din´amica del generador en el sistema de referencia dq en por unidad. Las ecuaciones del eje 0 no se tienen en cuenta por las presunciones que se han hecho anterior- mente. 37
  39. 39. Ecuaciones de los flujos en por unidad ¯ϕd = ¯Ldq ¯id + ¯Ladq ¯iD (4.48) ¯ϕq = ¯Ldq ¯iq + ¯Ladq ¯iQ (4.49) ¯ϕD = ¯LDQ ¯iD + ¯Ladq ¯id (4.50) ¯ϕQ = ¯LDQ ¯iQ + ¯Ladq ¯iq (4.51) Matricialmente, las ecuaciones 4.48 – 4.51 se pueden representar de la siguiente manera:      ¯ϕd ¯ϕq ¯ϕD ¯ϕQ      =      ¯Ldq 0 ¯Ladq 0 0 ¯Ldq 0 ¯Ladq ¯Ladq 0 ¯LDQ 0 0 ¯Ladq 0 ¯LDQ           ¯id ¯iq ¯iD ¯iQ      (4.52) N =      ¯Ldq 0 ¯Ladq 0 0 ¯Ldq 0 ¯Ladq ¯Ladq 0 ¯LDQ 0 0 ¯Ladq 0 ¯LDQ      (4.53) Por lo tanto,      ¯id ¯iq ¯iD ¯iQ      = M      ¯ϕd ¯ϕq ¯ϕD ¯ϕQ      (4.54) Para implementar las ecuaciones del DFIG en Simulink, es de utilidad definir: M ∆ = inv(N) (4.55) Ecuaciones de tensi´on en funci´on de los flujos en por unidad ¯vd = − ¯Rs ¯id − ¯ωs ¯ϕq − 1 ωB ˙¯ϕd (4.56) ¯vq = − ¯Rs ¯iq + ¯ωs ¯ϕd − 1 ωB ˙¯ϕq (4.57) ¯vD = − ¯Rr ¯iD − (¯ωs − ¯ωg) ¯ϕQ − 1 ωB ˙¯ϕD (4.58) ¯vQ = − ¯Rr ¯iQ + (¯ωs − ¯ωg) ¯ϕD − 1 ωB ˙¯ϕQ (4.59) Expresi´on del torque electromagn´etico en por unidad ¯Te = 2 3p 2 ¯Ladq(¯iq ¯iD −¯id ¯iQ) = 2 3p 2 ( ¯ϕd ¯iq − ¯ϕq ¯id) (4.60) 38
  40. 40. Cap´ıtulo 5 Convertidores fuentes de tensi´on 5.1. Introducci´on El rotor del DFIG es alimentado por medio de un arreglo de dos inversores de tensi´on conectados back-to-back permitiendo que el flujo de potencia por el mismo sea bidireccional. Se nombra al convertidor pr´oximo al rotor del DFIG como RSC por sus siglas en ingl´es “rotor side converter”y el convertidor que se conecta directamente a la red se denomina GSC, “grid side converter”. 5.2. Modelo matem´atico promediado La figura 5.1 muestra el circuito el´ectrico del convertidor trif´asico que se utilizar´a [6]. Se supondr´a que las llaves son ideales, y s´olo se considerar´an las p´erdidas en el bus de continua que se representa por la resistencia RL. Figura 5.1: Circuito el´ectrico de un convertidor trif´asico [6] 39
  41. 41. Se modelar´a al convertidor mediante la siguiente ecuaci´on, eabc ∆ = ηabcvdc (5.1) donde ηabc representa el ciclo de trabajo promediado del conversor, vdc es la tensi´on del bus de continua y eabc es la tensi´on en bornes del convertidor. De esta manera, el convertidor se puede representar mediante el circuito el´ectrico equivalente mostrado en la figura 5.4, donde Rf y L representan al filtro de acoplamiento. Figura 5.2: Circuito el´ectrico equivalente VSC [6] Como se ha mencionado anteriormente, el arreglo back to back consta de dos converti- dores como el mostrado, los cuales estar´an unidos mediante un bus de continua. Adem´as, se puede observar que se puede controlar el flujo de potencia sobre el conversor variando la tensi´on eabc. Las ecuaciones que modelan la din´amica del convertidor se expresan en por unidad y en el sistema transformado en dq, resultando, 1 ωb ¯Lf d¯id dt = − ¯Rf ¯id − ¯Lf ¯ωs ¯iq − ηd¯vdc + ¯vd (5.2) 1 ωb ¯Lf d¯iq dt = − ¯Rf ¯iq − ¯Lf ¯ωs ¯id − ηq¯vdc + ¯vq (5.3) 1 ωb ¯Cdc d¯vdc dt = 2 3p2 (ηd ¯id + ηq ¯iq) − ¯vdc ¯RL −¯iL (5.4) Cabe destacar que las ecuaciones 5.2 a 5.4 se pueden utilizar para modelar ambos con- vertidores debido a que tienen la misma estructura. Puede observarse de la ecuaci´on 5.4 que ¯iL representa la corriente que demanda el otro convertidor, por lo tanto se definir´an dos corrientes continuas que ser´an de utilidad para diferenciar la corriente de cada convertidor, ¯i os para el caso del GSC e ¯i or para el RSC. 5.3. Convertidor del lado red (GSC) La figura 5.3 muestra el modelo que se utilizar´a para modelar el GSC. El convertidor del lado red ser´a representado matem´aticamente mediante las ecuacio- nes 5.2 y 5.3, reescribi´endose aqu´ı para mostrar las notaciones que se utilizar´an luego (el sub´ındice gs proviene de “grid side”), 40
  42. 42. Figura 5.3: Esquema GSC 1 ωb ¯Lf d¯id gs dt = − ¯Rf ¯id gs − ¯Lf ¯ωs ¯iq gs − ηd gs¯vdc + ¯vd gs (5.5) 1 ωb ¯Lf d¯iq gs dt = − ¯Rf ¯iq gs − ¯Lf ¯ωs ¯id gs − ηq gs¯vdc + ¯vq gs (5.6) La corriente continua que vincular´a el GSC con el bus de continua se define como, ¯i os ∆ = 2 3p2 (ηd gs ¯id gs + ηq gs ¯iq gs) (5.7) 5.4. Convertidor del lado rotor (RSC) La figura 5.4 muestra el esquema que se utilizar´a para modelar el RSC. Se puede observar que el circuito del filtro de acoplamiento del conversor se encuentra en serie con el circuito del rotor. De esta forma, si la impedancia que se considera en el an´alisis es la impedancia equivalente serie del circuito del rotor y del conversor (es decir, ¯Rr = ¯Rrotor + ¯Rf y ¯LDQ = ¯LDQrotor + ¯L) se tiene que, ηD rs¯vdc = ¯vD rs (5.8) ηQ rs¯vdc = ¯vQ rs (5.9) La corriente continua que vincula el RSC con el bus de continua se define como, ¯i or ∆ = 2 3p2 (ηd rs ¯id rs + ηq rs ¯iq rs) (5.10) 41
  43. 43. Figura 5.4: Diagrama esquem´atico de la m´aquina as´ıncrona [6] 5.5. Bus de continua El bus de continua permite un flujo bidireccional de potencia entre el rotor del DFIG y el punto de conexi´on a la red. El sistema de control deber´a mantener la tensi´on continua del bus. Haciendo uso de las ecuaciones 5.7 y 5.10, la ecuaci´on 5.4 puede ser escrita como, 1 ωb ¯Cdc ∂¯vdc dt = ¯i os − ¯vdc ¯RL −¯i or (5.11) 42
  44. 44. Cap´ıtulo 6 Control del SCEE 6.1. Introducci´on El control del sistema se lleva a cabo dependiendo de la zona de trabajo en la que se encuentre, la cual estar´a definida por la velocidad de viento y la potencia el´ectrica entregada a la red. El objetivo principal es capturar la m´axima energ´ıa disponible del viento posible aunque existen limitaciones (por parte del generador, de los convertidores, de los esfuerzos mec´anicos de la turbina y sus componentes, etc.) que evitan que esto se pueda llevar a cabo en todos los rangos de operaci´on. En este proyecto se considera un esquema de funcionamiento simplificado para el cual se definen dos zonas de trabajo. La primera comprendida entre una velocidad m´ınima de funcionamiento y la velocidad de viento para la cual se provee potencia nominal. La segunda comienza en dicha velocidad y abarca hasta la velocidad de viento para la cual los esfuerzos mec´anicos comprometen a la turbina. Los ajustes de los controladores se har´an teniendo en cuenta los par´ametros del sistema mostrados en el Anexo 1. 6.2. Zonas de operaci´on y sus estrategias de control 6.2.1. Velocidades de viento bajas y medias En este rango, el objetivo del control es maximizar la potencia extra´ıda del viento, lo cual se logra manteniendo el emphtip speed ratio en su valor ´optimo, garantizando que el coeficiente de potencia Cp se encuentre en su m´aximo valor (aproximadamente 0.48 en este caso). Para esto, se regular´a el torque del DFIG a fin de que la velocidad de la turbina sea la ´optima. Como se ver´a m´as adelante, esto se llevar´a a cabo mediante el control de las corrientes del rotor por medio del convertidor del lado rotor. 43
  45. 45. 6.2.2. Velocidades de viento altas Luego, a medida que el viento aumenta y se llega al punto en que el generador el´ectrico se encuentra entregando su potencia el´ectrica nominal, el objetivo ser´a restringir la potencia capturada por la turbina variando el ´angulo de la pala (β). De esta manera, el tip speed ratio comenzar´a a disminuir por lo que la eficiencia de la extracci´on del viento disminuir´a. 6.3. Control del convertidor del lado rotor (RSC) El control del DFIG se realiza en un marco de referencia rotante dq que gira a la velocidad de sincronismo. Seg´un la mayor´ıa de los autores, se orienta el eje d respecto al flujo del estator del DFIG. De esta manera, la posici´on angular del flujo del estator (θϕs) estar´a dada por las siguientes ecuaciones [9], ¯ϕαs = (¯vαs − ¯Rs ¯iαs)dt (6.1) ¯ϕβs = (¯vβs − ¯Rs ¯iβs)dt (6.2) θϕs = tan−1 ¯ϕβs ¯ϕαs (6.3) Si se desprecian las resistencias del estator, se puede demostrar que en estado estacionario esto es equivalente a orientar el eje q con el vector espacial de la tensi´on del estator. De esta forma resultar´a que ¯vd = 0, y despreciando los transitorios de flujo del estator, al estar en estado estacionario, resulta: ¯vq = − ¯Rs ¯iq + ¯ωs ¯ϕd − 1 ωB ˙¯ϕq ¯vq ∼= +¯ωs ¯ϕd (6.4) ¯vd = − ¯Rs ¯id − ¯ωs ¯ϕq − 1 ωB ˙¯ϕd 0 ∼= −¯ωs ¯ϕq 0 ∼= ¯ϕq (6.5) Se puede demostrar que al utilizar este tipo de orientaci´on se mejora la estabilidad del sistema frente a perturbaciones al mismo, por ejemplo ante huecos de tensi´on donde ya no se podr´a afirmar que el flujo se encuentre alineado con el eje d [10]. Tomando estas conclusiones como punto de inicio para el siguiente desarrollo (es decir, ¯ϕq = 0, d ¯ϕd/dt = 0, d ¯ϕq/dt = 0, ¯ϕd = ¯vq/ωs), se tiene que, ¯ϕq = 0 = ¯Ldq ¯iq + ¯Ladq ¯iQ (6.6) ¯iq = − ¯Ladq ¯Ldq ¯iQ (6.7) 44
  46. 46. Reemplazando 6.7 en la ecuaci´on de la potencia del estator, ¯Ps = 2 3p 2 (¯vd ¯id + ¯vq ¯iq) = 2 3p 2 ¯vq ¯iq =   2 3p 2 − ¯Ladq ¯Ldq ¯vq  ¯iQ (6.8) Observando la ecuaci´on 6.8, se concluye que se puede controlar la potencia del DFIG mediante la corriente del rotor ¯iQ. Por otra parte, despejando la corriente ¯id de la ecuaci´on del flujo ¯ϕd, se tiene que, ¯ϕd = ¯Ldq ¯id + ¯Ladq ¯iD ¯id = ¯ϕd ¯Ldq − ¯Ladq ¯Ldq ¯iD (6.9) Reemplazando 6.9 en la expresi´on de la potencia reactiva del estator, se obtiene, ¯Qs = 2 3p 2 (¯vq ¯id − ¯vd ¯iq) = 2 3p 2 ¯vq ¯id = 2 3p 2 ¯vq ¯ϕd ¯Ldq − ¯Ladq ¯Ldq ¯iD ¯Qs = 2 3p 2 ¯vq ¯ϕd ¯Ldq − 2 3p 2 ¯Ladq ¯Ldq ¯vq ¯iD (6.10) Como el primer t´ermino de la ecuaci´on 6.10 es aproximadamente constante debido a las suposiciones realizadas, se puede ver que la potencia reactiva del estator puede ser controlada por la corriente ¯iD. Tambi´en se puede demostrar c´omo se puede controlar el torque electromagn´etico del generador por medio de la corriente en cuadratura del rotor. Teniendo en cuenta las mismas suposiciones, y partiendo de la ecuaci´on del torque en funci´on de los flujos, se tiene que, ¯Te = 2 3p 2 ( ¯ϕd ¯iq − ¯ϕq ¯id) ¯Te = 2 3p 2 ¯ϕd ¯iq ¯Te = 2 3p 2 − ¯Ladq ¯Ldq ¯iQ ¯ϕd (6.11) ¯Te =   2 3p 2 − ¯Ladq ¯Ldq ¯vq ωs  ¯iQ (6.12) Las corrientes ser´an controladas variando el ciclo de trabajo de los convertidores, es decir, controlando la tensi´on en bornes del rotor. 45
  47. 47. 6.3.1. Control de las corrientes del rotor Partiendo de la ecuaci´on 6.9 y reemplaz´andola en la ecuaci´on del flujo ¯ϕD, se tiene que, ¯ϕD = ¯LDQ ¯iD + ¯Ladq ¯ϕd ¯Ldq − ¯Ladq ¯Ldq ¯iD (6.13) ¯ϕD = ¯LDQ − ¯L2 adq ¯Ldq ¯iD + ¯Ladq ¯Ldq ¯ϕd = ¯LDQσ¯iD + ¯Ladq ¯Ldq ¯ϕd (6.14) Donde, σ = 1 − ¯L2 adq ¯Ldq ¯LDQ (6.15) Reemplazando 6.7 en la ecuaci´on del flujo ¯ϕQ, resulta, ¯ϕQ = ¯LDQ ¯iQ + ¯Ladq − ¯Ladq ¯Ldq ¯iQ = ¯LDQ − ¯Ladq ¯Ldq ¯iQ (6.16) Y utilizando 6.15, se obtiene, ¯ϕQ = ¯LDQσ¯iQ (6.17) Ahora, se utilizar´an los resultados obtenidos para ¯ϕD y ¯ϕQ, ecuaciones 6.14 y 6.17 respectivamente, para encontrar las expresiones de las tensiones del rotor ¯vD y ¯vQ. Llamando ¯ωslip = ¯ωs − ¯ωr, se tiene lo siguiente, ¯vD = − ¯Rr ¯iD − ¯ωslip ¯ϕQ − 1 ωB d ¯ϕD dt (6.18) ¯vD = − ¯Rr ¯iD − ¯ωslip ¯LDQσ¯iQ − 1 ωB (¯LDQσ d¯iD dt + ¯Ladq ¯Ldq d ¯ϕd dt ) (6.19) Recordando nuevamente que se desprecian los transitorios de flujo del estator, la ecuaci´on 6.19 resulta, ¯LDQσ ωB d¯iD dt = − ¯Rr ¯iD − ¯vD − ¯ωslip ¯LDQσ¯iQ (6.20) Definiendo, ¯v′ D = −¯vD − ¯ωslip ¯LDQσ¯iQ (6.21) Resulta, ¯LDQσ ωB d¯iD dt = − ¯Rr ¯iD + ¯v′ D (6.22) Por otro lado, para la tensi´on ¯vQ se tiene que, 46
  48. 48. ¯vQ = − ¯Rr ¯iQ + ¯ωslip ¯ϕD − 1 ωB d ¯ϕQ dt (6.23) ¯vQ = − ¯Rr ¯iQ − ¯LDQσ ωB d¯iQ dt + ¯ωslip ¯ϕD (6.24) Reemplazando la expresi´on de ¯ϕD en 6.24 y haciendo uso de 6.4, ¯vQ = − ¯Rr ¯iQ − ¯LDQσ ωB d¯iQ dt + ¯ωslip(¯LDQσ¯iD + ¯Ladq ¯Ldq ¯ϕd) (6.25) ¯LDQσ ωB d¯iQ dt = − ¯Rr ¯iQ − ¯vQ + ¯ωslip(¯LDQσ¯iD + ¯Ladq ¯Ldq ¯vq ¯ωs ) (6.26) Definiendo, ¯v′ Q = −¯vQ + ¯ωslip(¯LDQσ¯iD + ¯Ladq ¯Ldq ¯vq ¯ωs ) (6.27) Resulta, ¯LDQσ ωB d¯iQ dt = − ¯Rr ¯iQ + ¯v′ Q (6.28) Aplicando la transformaci´on de Laplace a 6.28, y teniendo en cuenta que i = D, Q se obtiene, ¯v′ i(s) = ¯Rr + ¯LDQσ ωB s ¯ii(s) (6.29) F(s) = ¯ii(s) ¯v′ i(s) = 1 ¯LDQσ ωB s + ¯Rr (6.30) En la figura 6.1 se muestra el esquema de las corrientes a controlar, la cual estar´a repre- sentada por las ecuaciones 6.20 y 6.26. Los t´erminos cruzados, y la perturbaci´on en el eje D son cancelados como muestra la figura 6.2. Adem´as se puede ver que las tensiones ¯vD y ¯vQ ser´an las que surgen de los convertidores y se aplican directamente en el rotor. En el anexo “Verificaciones”se arribar´a a las expresiones de ¯v′ D y ¯v′ Q por otros caminos, demostr´andose que la planta efectiva que ve el controlador es la que se ha considerado hasta aqu´ı. 6.3.2. Lazos de control El controlador contar´a con dos PI en cascada para cada coordenada (eje directo y cua- dratura) formando dos lazos, uno interno y otro externo. El lazo interno ser´a el encargado de controlar las corrientes del rotor, mientras que el externo las potencias o torques de referencia. 6.3.3. Lazo interno de control El lazo interno resulta, luego de las cancelaciones, como el mostrado en la figura 6.3. 47
  49. 49. Figura 6.1: Planta del sistema [10] Ajustes del controlador El controlador PI se ajustar´a para obtener un amplio ancho de banda y lograr as´ı una r´apida velocidad de respuesta. La funci´on transferencia del controlador ser´a de la forma: PI(s) = Kp 1 + Ki s (6.31) Adem´as de una r´apida velocidad de respuesta, se desea que el lazo sea capaz de rechazar perturbaciones que surjan a partir del no cumplimiento de las hip´otesis realizadas en el an´alisis. Al no considerarse los transitorios de flujo, o cuando el mantenimiento constante del flujo del estator en el eje d no se cumple, el controlador tendr´a perturbaciones a la frecuencia de la red (en el caso de este proyecto ser´an de 50Hz) las cuales se deber´an rechazar. Los par´ametros del mismo se muestran en la tabla 6.1. Ajuste del controlador PI de lazo interno Constante proporcional del controlador ( Kp) 10 Constante integral del controlador (Ki ) 5 Tiempo de trepada (segundos) 1.53e-4 Tiempo de establecimiento (Segundos) 2.76e-4 Sobrepico ( %) 0 Pico (por unidad) 1 Ancho de banda (Hertz) 2e3 Margen de fase (grados) 90 Cuadro 6.1: Ajustes del controlador PI del lazo interno - RSC 48
  50. 50. Figura 6.2: Loop de control de corriente con cancelaci´on de acoplamiento [10] Figura 6.3: Lazo interno - Corriente eje en cuadratura - (RSC) La figura 6.4 muestra la respuesta en frecuencia obtenida del sistema, mientras que en la figura 6.5 se muestra la respuesta en frecuencia frente al rechazo de las perturbaciones. Se podr´ıa implementar un controlador con un menor ancho de banda, pero aparecen problemas de inestabilidad del sistema. Adem´as hay que tener en cuenta que a mayor ancho de banda, el costo de implementaci´on del mismo ser´a m´as elevado, mientras que uno con un pobre ancho de banda no ser´a tan eficaz a la hora de rechazar perturbaciones. 6.3.4. Lazo externo de control El lazo externo de control ser´a quien otorgue las corrientes de referencia para los contro- ladores del lazo interno. Como se ha demostrado al inicio del presente cap´ıtulo, es posible controlar la potencia activa del estator con la corriente ¯iQ o tambi´en el torque electro- magn´etico. Se desarrollar´an ambas opciones, como as´ı tambi´en para el control de potencia reactiva. 49
  51. 51. −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 Magnitude(dB) 10 0 10 1 10 2 10 3 10 4 10 5 10 6 −90 −45 0 Phase(deg) Bode Diagram Frequency (rad/s) Figura 6.4: Respuesta en frecuencia de lazo cerrado (lazo interno) - (RSC) −60 −50 −40 −30 −20 −10 0 Magnitude(dB) 10 −1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 −90 −45 0 45 90 Phase(deg) Bode Diagram Frequency (rad/s) Figura 6.5: Respuesta en frecuencia frente a perturbaciones (lazo interno) - (RSC) 50
  52. 52. Control de potencia activa del estator Para ajustar los controladores PI del lazo externo de control, se deben analizar las expresiones de potencia activa y reactiva con las corrientes ¯iQ e ¯iD. Partiendo de la ecuaci´on 6.8, y considerando nuevamente que la tensi´on en bornes de la m´aquina permanece invariante en el tiempo, se define KP Q como, KP Q = 2 3p 2 ¯Ladq ¯Ldq ¯vq (6.32) Por lo tanto, la relaci´on entre la potencia activa y la corriente¯iQ se expresa de la siguiente manera, ¯Ps = −KP Q ¯iQ (6.33) De esta manera, la funci´on transferencia queda como muestra la figura 6.6, teniendo en cuenta que el lazo interno se encuentra ahora en serie con el controlador PI del lazo externo. Figura 6.6: Lazo externo de control - Potencia activa - (RSC) Control del torque electromagn´etico Para el caso que se quiera controlar el torque electromagn´etico, se parte de la ecuaci´on 6.12, y nombrando KTe = KP Q/¯ωs, se tiene que, ¯Te = −KTe ¯iQ (6.34) La figura 6.7 muestra el sistema resultante. De la misma forma que para la potencia activa, el controlador del lazo interno resultar´a en serie con el controlador de lazo externo. Control de potencia reactiva del estator En el caso de la potencia reactiva, se parte de la ecuaci´on 6.10, reordenando y teniendo en cuenta la ecuaci´on 6.32, se tiene que, ¯Qs = 2 3p 2 ¯vq 1 ¯Ldq ¯ϕd − ¯Ladq ¯Ldq ¯iD (6.35) 51
  53. 53. Figura 6.7: Lazo externo de control - Torque - (RSC) ¯Qs = −   2 3p 2 ¯Ladq ¯Ldq ¯vq  ¯iD + 2 3p 2 1 ¯Ldq ¯vq ¯ϕd (6.36) ¯Qs = −KP Q ¯iD + KP Q ¯ϕd ¯Ladq (6.37) El segundo t´ermino de la ecuaci´on 6.37 ser´a considerado como constante, debido a las su- posiciones que se han realizado al principio del an´alisis, y por lo tanto ser´a una perturbaci´on al sistema a controlar. El sistema se muestra a en la figura 6.8, Figura 6.8: Lazo externo de control - Potencia reactiva (RSC) Tanto para el control del torque como para la potencia reactiva, si se elige como fre- cuencia angular base la frecuencia del sistema (de esta forma ¯ωs = 1), se puede observar que la planta del sistema es la misma ya que K P Q = K Te , por lo que de esta manera los controladores PI del lazo externo ser´an iguales tanto para el control de ¯iD como para ¯iQ. Ajustes del controlador El lazo se ajustar´a para que el ancho de banda sea bastante menor que el del lazo interno. De esta manera se podr´a garantizar que ante el cambio de las corrientes de referencia, el lazo interno act´ue de forma r´apida, evitando interacciones no deseadas entre ambos lazos. Adem´as, se procur´o obtener una buena atenuaci´on en el rango de frecuencias de 50Hz, para contrarrestar el desconocimiento de la planta a controlar en ese rango de frecuencias. La funci´on transferencia para este controlador ser´a como muestra la ecuaci´on 6.38. Los par´ametros de ajuste se muestran en la tabla 6.2. 52
  54. 54. PI ext(s) = Kp ext + Ki ext s (6.38) Ajuste del controlador PI de lazo externo Constante Proporcional del controlador ( Kp ext ) -0.066 Constante Integral del controlador (Ki ext ) -76.16 Tiempo de trepada (segundos) 0.0364 Tiempo de establecimiento (segundos) 0.065 Sobrepico ( %) 0 Pico (por unidad) 1 Ancho de banda (rad/s) 60.3 Margen de fase (grados) 90 Cuadro 6.2: Ajustes del controlador PI del lazo externo - RSC Al tener tanto ancho de banda el lazo interno, en este lazo hay que bajar demasiado la ganancia y por eso es que resulta un valor de Kp cercano a cero. Se ha decidido dejar este controlador ya que se ha observado que el sistema resulta estable frente a huecos de tensi´on en simulaciones que ser´an mostradas en el pr´oximo cap´ıtulo. 6.3.5. C´alculo de las referencias de los controladores En este apartado se arribar´a a las expresiones matem´aticas de las consignas de los controladores del lazo externo. Potencia activa de referencia Como se introdujo en el cap´ıtulo “Principios de conversi´on de energ´ıa e´olica”, existe un tip speed ratio que maximiza el coeficiente de potencia. La expresi´on que se ha presentado se encuentra en valores absolutos, si se expresa la potencia en por unidad, como as´ı tambi´en la velocidad de la turbina, se tiene que, ¯Popt = ωBT 3 sB Kopt ¯ω3 opt (6.39) Por lo tanto se arriba a una expresi´on del Kopt en por unidad, de la siguiente manera, ¯Kopt = ωBT 3 sB Kopt (6.40) Resultando, ¯Popt = ¯Kopt ¯ω3 opt (6.41) 53
  55. 55. La expresi´on de la ecuaci´on 6.41 se trata de la potencia mec´anica de entrada. Si se computan las p´erdidas mec´anicas, y sumando las p´erdidas el´ectricas del estator, se puede obtener la potencia el´ectrica ´optima de salida del estator del generador. ¯Psref = ¯Popt − ¯Pperdidasmec. − ¯Pperdidaselec. − ¯Pr (6.42) Se puede observar que para el c´alculo de la potencia de referencia se deben conocer todas las p´erdidas del sistema. Teniendo en cuenta que las p´erdidas totales resultan dif´ıciles de calcular de forma exacta en los sistemas reales, se opta por controlar al sistema imponiendo el torque electromagn´etico deseado para cumplir con la condici´on de m´axima extracci´on de potencia posible del viento. De esta forma solamente se deber´an computar las p´erdidas mec´anicas, las cuales se suponen que ser´an influenciadas en menor medida por cambios en el entorno del sistema considerado, es decir se consideran que los par´ametros del sistema mec´anico no sufren variaciones apreciables respecto a cambios en la temperatura, etc. Torque electromagn´etico de referencia La potencia mec´anica resulta del producto del torque por la velocidad angular (P = Tω), por lo tanto se puede calcular el torque mec´anico de la turbina cuando ´esta se encuentra en el punto ´optimo. Partiendo de la ecuaci´on 6.41 se obtiene lo siguiente, ¯Topt = ¯Popt ¯ωopt (6.43) ¯Topt = ¯Kopt ¯ω2 opt (6.44) De esta manera, el torque de referencia que se le impondr´a al DFIG ser´a el torque ´optimo restadas las p´erdidas mec´anicas existentes. ¯Tref = ¯Topt − ¯Tperdidasmec. (6.45) Donde las p´erdidas ser´an, ¯Tperdidasmec. = ¯Dtt ¯ωt + ¯Dr ¯ωg + ¯D(¯ωt − ¯ωg) (6.46) Potencia reactiva de referencia Para el c´alculo de la potencia reactiva de referencia, se tendr´a en cuenta la relaci´on entre la potencia activa y reactiva del estator, la cual se muestra en la figura 6.9. Seg´un el factor de potencia deseado (FP), se calcula la potencia reactiva de referencia como, ¯Qsref = ¯Ps sin(cos−1 (FP)) (6.47) Aqu´ı se opt´o por hacer el control del factor de potencia, pero tambi´en podr´ıa usarse el mismo esquema para hacer control de tensi´on u otra estrategia ante fallas en la red (huecos profundos). 54
  56. 56. Figura 6.9: Tri´angulo de potencias 6.3.6. Esquema del controlador - RSC La figura 6.10 muestra el esquema de control del RSC en su totalidad. Figura 6.10: Esquema del controlador del RSC 6.4. Control del convertidor del lado red (GSC) El convertidor que conecta el bus de continua con la red (GSC) se controla independien- temente de la zona de trabajo en que se encuentre el sistema. En este proyecto se ha optado por realizar el control del mismo para mantener el nivel de tensi´on del bus de continua y entregar con factor de potencia unitario la potencia del rotor hacia la red o desde la red (lo cual depender´a del deslizamiento). Se comenzar´a el an´alisis a partir del modelo del convertidor presentado en el cap´ıtulo precedente, con algunas modificaciones para simplificar el desarrollo. Se repiten a continua- ci´on las ecuaciones presentadas en el cap´ıtulo anterior del GSC reordenadas y considerando 55
  57. 57. corrientes positivas entrantes al convertidor, con el fin de facilitar la lectura, y despreciando la p´erdida en el bus de continua [9]. ¯vd gs = ¯Rf ¯id gs + 1 ωb ¯Lf d¯id gs dt + ¯Lf ¯ωs ¯iq gs + ηd gs¯vdc (6.48) ¯vq gs = ¯Rf ¯iq gs + 1 ωb ¯Lf d¯iq gs dt − ¯Lf ¯ωs ¯id gs + ηq gs¯vdc (6.49) 1 ωb ¯Cdc d¯vdc dt = ¯i os −¯i or (6.50) Llamando ¯v′ d gs y ¯v′ q gs a, ¯v′ d gs = ¯Rf ¯id gs + 1 ωb ¯Lf ∂¯id gs dt (6.51) ¯v′ q gs = ¯Rf ¯iq gs + 1 ωb ¯Lf ∂¯iq gs dt (6.52) Las ecuaciones 6.48 y 6.49 se pueden escribir de la siguiente forma, ηd gs¯vdc = −¯v′ d gs + (−¯Lf ¯ωs ¯iq gs + ¯vd gs) (6.53) ηq gs¯vdc = −¯v′ q gs + (¯Lf ¯ωs ¯id gs + ¯vq gs) (6.54) La potencia que ser´a transmitida por el convertidor ser´a: ¯Pgsc = 2 3p 2 (¯vd gs ¯id gs + ¯vq gs ¯iq gs) (6.55) ¯Qgsc = 2 3p 2 (¯vq gs ¯id gs − ¯vd gs ¯iq gs) (6.56) Se alinear´a el eje directo con la tensi´on de la fuente y se considera que la tensi´on de la red es constante, por lo que de esta manera se cumplir´a que, ¯vq gs = 0 (6.57) El segundo t´ermino de la ecuaci´on 6.55 resulta ser cero, y por lo tanto se puede ver que la potencia activa puede ser controlada por la corriente en el eje directo y, de forma similar, la potencia reactiva mediante la corriente del eje en cuadratura. De forma similar al an´alisis del RSC, si se analizan las ecuaciones 6.53 y 6.54, se puede observar que sumando a las tensiones del convertidor el t´ermino que depende de la otra variable, el sistema resulta desacoplado, logrando controlar ambas corrientes independien- temente. Por lo tanto, despreciando los arm´onicos debidos a la conmutaci´on de los convertidores (como ya se hab´ıa hecho en el cap´ıtulo anterior), las p´erdidas en el capacitor y las p´erdidas en la resistencia del inductor y del convertidor mismo, resultan las siguientes ecuaciones [9], 56
  58. 58. ¯vdc ¯i os = 2 3p 2 ¯vd gs ¯id gs (6.58) ¯i os = ηd gs 2 3p 2 ¯id gs (6.59) 6.4.1. Esquema de control El sistema de control se realiza teniendo en cuenta las ecuaciones 6.53 y 6.54, controlando las corrientes para cumplir las especificaciones demandadas. El esquema que se utilizar´a se muestra en la figura 6.11, el cual posee dos lazos de control en cascada, donde el lazo interno es el encargado de controlar las corrientes mientras que el lazo externo determinar´a las referencias de corriente. Debe aclararse que, debido a que el factor de potencia ser´a unitario, la referencia de corriente en el eje cuadratura ser´a siempre cero. Los errores en las corrientes y tensi´on del bus de continua ser´an procesados por controladores proporcional integral, cuya funci´on transferencia se muestra a continuaci´on: PI(s) = Kp 1 + 1 Kis (6.60) Figura 6.11: Esquema de control GSC Lazo interno de control Expresando la funci´on transferencia para la planta del sistema, resulta F(s) = ¯id gs ¯v′ d gs = ¯iq gs ¯v′ q gs = 1 ¯L ωb s + ¯Rf (6.61) Por lo tanto, el sistema queda como se muestra en la figura 6.12. 57
  59. 59. Figura 6.12: Lazo interno - Corriente eje directo (GSC) Ajustes del controlador El controlador PI se ajustar´a para obtener un ancho de banda de 180Hz. Los par´ametros del controlador se muestran en la tabla 6.3. Ajuste del controlador PI de lazo externo Constante Proporcional del controlador ( Kp ext ) 0.2727 Constante Integral del controlador (Ki ext ) 0.125 Tiempo de trepada (segundos) 0.0423 Tiempo de establecimiento (segundos) 0.326 Sobrepico ( %) 12.8 Pico (por unidad) 1.13 Ancho de banda (rad/s) 35.7 Margen de fase (grados) 77 Cuadro 6.3: Ajustes del controlador PI del lazo interno - GSC Lazo externo de control El dise˜no del lazo externo de control se realiza teniendo en cuenta que la corriente demandada por el convertidor del lado rotor (RSC) es una perturbaci´on para el sistema a controlar. La funci´on transferencia que se considerar´a es la misma que en el lazo interno, dada por ecuaci´on 6.60. Partiendo de las ecuaciones 6.58, 6.59 y 6.50, se tiene que: ¯vdc(s)ηd gs 2 3p 2 ¯id gs(s) = 2 3p 2 ¯id gs(s) (6.62) ¯Cdc ωb s¯vdc(s) = ηd gs 2 3p 2 ¯id gs(s) (6.63) Por lo que la funci´on transferencia de la planta ser´a como se muestra a continuaci´on. El diagrama de bloques del sistema se muestra en la figura 6.13. 58
  60. 60. ¯vdc(s) ¯id gs(s) = ωbηd gs 2 3p 2 1 ¯Cdcs (6.64) Figura 6.13: Lazo de control externo (GSC) Ajustes del controlador El controlador PI se ajustar´a para obtener un ancho de banda de 68rad/s. Los par´ame- tros del controlador se muestran en la tabla 6.4. Ajuste del controlador PI de lazo externo Constante Proporcional del controlador ( Kp ext ) 0.0369 Constante Integral del controlador (Ki ext ) 0.047205 Tiempo de trepada (segundos) 0.0203 Tiempo de establecimiento (segundos) 0.14 Sobrepico ( %) 16.2 Pico (por unidad) 1.6 Ancho de banda (rad/s) 68.1 Margen de fase (grados) 72 Cuadro 6.4: Ajustes del controlador PI del lazo externo - GSC 6.5. Control del ´angulo de las palas Para las velocidades de viento altas, se desea controlar el ´angulo de las palas (β) a fin de limitar la potencia mec´anica de entrada. Para ello se pueden utilizar diversas t´ecnicas de control no lineal debido a que la turbina no responde linealmente ante cambios de β. En este proyecto se propone como primera aproximaci´on un controlador PI cuyos par´ametros ir´an cambiando de manera lineal conforme al punto de operaci´on en el que se encuentre, dicha t´ecnica se denomina “gain schedulling”. Se considerar´a que el ´angulo m´aximo posible es de 50 grados. 59
  61. 61. El controlador recibir´a las se˜nales de velocidad angular de la turbina, la potencia mec´ani- ca de la misma, la potencia el´ectrica de salida del DFIG y el valor de β actual. Con esas se˜nales, y mediante una l´ogica implementada para determinar si el DFIG se encuentra entregando su potencia nominal, se env´ıa una se˜nal de error al controlador PI. La din´amica del mecanismo de rotaci´on de las palas se modela con la siguiente funci´on transferencia, β βref = 5 s + 5 (6.65) Se ha realizado el ajuste del controlador de forma manual mediante las herramientas que brinda Simulink. Cuando el sistema alcanza el punto m´aximo de operaci´on, se limita la referencia del torque demandado al DFIG en su valor nominal, y para distintas velocidades de viento se calcula el valor de β necesario para que el torque de la turbina equipare al del sistema mec´anico y la velocidad se encuentre en la nominal. Una vez que se halla el punto de equilibrio, se linealiza el sistema y se calculan los par´ametros Kp y Ki del controlador a fin de encontrar la relaci´on entre las constantes del controlador y β. Una vez obtenidas las variaciones de los mismos, se aproxima una recta que pase por dichos puntos. Las expresiones del controlador son las siguientes, Kp= 0,1β + 50 (6.66) Ki= 1,5132β+25,157 (6.67) 60
  62. 62. Cap´ıtulo 7 Simulaciones 7.1. Introducci´on En este cap´ıtulo se realizar´an ensayos al sistema modelado para analizar el compor- tamiento global del mismo. En primer lugar se estudiar´a el comportamiento del sistema mediante cambios en la velocidad del viento. Luego se ver´a cu´al es el efecto de la incerti- dumbre en los par´ametros mec´anicos respecto al seguimiento del punto ´optimo de operaci´on. Seguido a esto, se estudia al sistema en un gran rango de velocidades de viento, cuyo cambio se considera continuo. Finalmente se har´an simulaciones frente a huecos de tensi´on en el punto com´un de conexi´on. La implementaci´on en Simulink de las distintas partes del sistema se encuentra detallada en el Anexo 4, mientras que en el Anexo 1 se pueden ver los par´ametros utilizados. 7.2. Escal´on de viento El primer ensayo se realizar´a cambiando la magnitud del viento mediante un escal´on. Si bien en la pr´actica no se dar´a una variaci´on de este tipo, se emplea por comodidad para poder verificar las sintonizaciones de los controladores y el funcionamiento del sistema. Se realizar´a el caso de un escal´on positivo y negativo, procurando que la potencia de salida nunca exceda la nominal, a fin de evaluar solamente el control de seguimiento del punto ´optimo. A su vez, se comparar´an los resultados con un sistema formado solamente por la parte mec´anica y la turbina, donde se reemplazar´a el torque del generador por el torque referencia del controlador del lado rotor (es decir, ¯Tg = ¯Topt − ¯Tperdidas). Cabe destacar que este ensayo se realizar´a en valores por unidad, ya que su fin es analizar el comportamiento din´amico. Adem´as, el ´angulo de pitch de las palas permanecer´a cons- tante e igual a cero, el factor de potencia de referencia ser´a 1 y las tensiones del estator permanecer´an en sus valores nominales considerando que el generador est´a conectado a una barra infinita. Esto ´ultimo se debe a que el objetivo de este estudio es comprender el funcionamiento del aerogenerador y sus controles y no el de la interacci´on con la red. 61
  63. 63. 7.2.1. Escal´on de viento ascendente Partiendo del sistema en equilibrio con una velocidad de viento de 6 m/s, se aplicar´a un escal´on de 1 m/s en el segundo 10, obteniendo un viento final de 7 m/s. En el instante inicial, el tip speed ratio se encuentra en su valor ´optimo, y por lo tanto lo mismo suceder´a para la velocidad mec´anica. Llamaremos “Punto A”al punto de partida, y se cumplir´a lo siguiente: Vwind A = 6 [m/s] (7.1) λ A = λopt = 8,1001 (7.2) Cp A = Cp m´ax = 0,48 (7.3) ¯ωt A = ¯ωopt A = 0,7876 (7.4) ¯ωt A = ¯ωopt A = 0,7876 (7.5) ¯Pmecanica A = 0,1931 (7.6) Cabe aclarar que la velocidad del generador, en por unidad, tendr´a el mismo valor que la velocidad de la turbina. En el mismo instante que se aplica el escal´on de viento al sistema (en el tiempo t = 10s), la velocidad permanecer´ıa constante, lo cual se traducir´ıa en un escal´on de potencia mec´anica. El sistema se desplazar´ıa al punto B, donde se deber´ıa cumplir que: Vwind B = 7 [m/s] (7.7) λ B = ¯ωoptωTBR Vwind = 0,7876 ∗ 1,4025 ∗ 44 7 = 6,9429 (7.8) Cp B = 0,4482 (7.9) ¯ωt B = ¯ωopt A = 0,7876 (7.10) ¯Pmecanica B = 0,2864 (7.11) Luego del transitorio, el sistema deber´ıa trasladarse hacia el punto ´optimo de operaci´on para la nueva velocidad de viento. A este ´ultimo punto llamaremos C, y se debe cumplir que, Vwind C = 7 [m/s] (7.12) λ C = λopt = 8,1001 (7.13) Cp C = Cp m´ax = 0,48 (7.14) ¯ωt C = ¯ωopt C = 0,9188 (7.15) ¯Pmecanica A = 0,3076 (7.16) La figura 7.1 muestra la trayectoria que deber´ıa seguir el sistema. Las curvas azules muestran la potencia mec´anica de la turbina en funci´on de la velocidad de la misma. El m´aximo de cada una de ellas ser´an los puntos de equilibrios deseados. El punto B es el punto que surge de la intersecci´on entre la abscisa que denota la velocidad ´optima del punto A y 62
  64. 64. la curva de la potencia mec´anica para una velocidad de viento de 7 m/s. La curva de color negro es la curva de potencia ´optima en funci´on de la velocidad que se arrib´o en el cap´ıtulo sobre el control del sistema. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.05 0.1 0.15 0.2 0.25 0.3 Velocidad de la turbina [pu] Potenciamecánica[pu] Trayectoria del punto de operacion A al punto C Punto A Punto C Punto B Figura 7.1: Trayectoria del punto de operaci´on A al punto C, pasando por B. Para las variables el´ectricas, se resuelve el sistema de ecuaciones del DFIG junto a las ecuaciones de los controladores. Los resultados de las mismas son los puntos de equilibrio para cada velocidad de viento y se muestran en las tablas 7.1 y 7.2. Variables del Estator y Rotor Variable (pu) Punto A Punto C Variable (pu) Punto A Punto C ¯vd 0 0 ¯vD 0 -0.94 ¯vq 1.2247 1.2247 ¯vQ 0.2914 0.1264 ¯id 0 0 ¯iD 0.3652 0.3655 ¯iq 0.2803 0.3850 ¯iQ -0.2889 -0.3966 ¯Ps 0.2289 0.3143 ¯Pr gs -0.0905 -0.0456 ¯Qs 0 0 ¯Qr gs 0 0 Cuadro 7.1: Valores de las variables el´ectricas (Estator y rotor) Se aclara que el valor base utilizado para la tensi´on del bus de continua es la misma que para el DFIG (563.38 V), por lo que una tensi´on de 2.13 en por unidad corresponde a 1200 V. Resultados sobre el sistema mec´anico En primer lugar se analizar´an los resultados de las variables mec´anicas del sistema com- parando las simulaciones realizadas tanto al sistema simplificado como al sistema completo 63

×