• Save
Excel regresión
Upcoming SlideShare
Loading in...5
×
 

Excel regresión

on

  • 18,653 views

 

Statistics

Views

Total Views
18,653
Slideshare-icon Views on SlideShare
18,464
Embed Views
189

Actions

Likes
8
Downloads
0
Comments
0

4 Embeds 189

http://bitcoach.wordpress.com 185
http://webcache.googleusercontent.com 2
http://www.slideshare.net 1
https://twitter.com 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Excel regresión Excel regresión Document Transcript

    • Materia: Excel Sección: Análisis de datos (Regresión). Nivel de Dificultad: Avanzado. Objetivo de la Práctica: Manejo y comprensión de las herramientas de análisis de datos "Regresión".Fichero de referencia: regresion01.xlsxEn esta práctica vamos a utilizar la herramienta de análisis de datos "Regresión" para dar solución deforma rápida al problema que se plantea.Una compañía de seguros considera que el número de vehículos (y) que circulan por unadeterminada autopista a más de 120 km/h, puede ponerse en función del número de accidentes (x)que ocurren en ella. Durante 5 días obtuvo los siguientes resultados: Accidentes xi 5 7 2 1 9 Número de vehículos yi 15 18 10 8 20 Calcula el coeficiente de correlación lineal de Pearson. Ecuación de la recta de regresión. Muestra un gráfico de dispersión donde se represente la distribución bidimensional anterior junto con la recta de regresión y su ecuación. RESULTADO Profesor: :Juan Bautista Cascallar Lorenzo.
    • Coeficiente de correlación lineal de Pearson Ordenada en el origen en la ecuación de la recta de regresiónPendiente en la ecuación de la rectade regresión Profesor: :Juan Bautista Cascallar Lorenzo.
    • PROCESO En el anexo teórico se explica el proceso para calcular de forma manual el problema de regresiónlineal planteado. Sin embargo Excel dispone de la herramienta de análisis de datos "Regresión" quenos permite realizar los cálculos de forma rápida y sin errores.Para ello en primer lugar pasamos los datos a Excel, y seleccionamos la herramienta de análisis dedatos "Regresión", (Ficha)Datos->(Grupo)Análisis->Análisis de datos->Regresión.Configuramos el cuadro de diálogo "Regresión" tal como muestra la figura, seleccionando el rango dedatos independientes (Rango X de entrada) y el rango de datos dependientes (Rango Y de entrada). Variable dependiente Variable independiente Profesor: :Juan Bautista Cascallar Lorenzo.
    • Con lo cual obtenemos en una nueva hoja los cálculos estadísticos correspondientes. Observamosque tenemos un tipo de gráfico "Columna" y lo que necesitamos es un gráfico de dispersión. Portanto tenemos que cambiar el tipo de gráfico.Para ello hacemos clic con el botón derecho del ratón en el gráfico y seleccionamos la opción"Cambiar tipo de gráfico" para seleccionar el tipo de gráfico XY(Dispersión)->Dispersión sólo conmarcadores. Profesor: :Juan Bautista Cascallar Lorenzo.
    • Con lo cual obtenemos el resultado mostrado en la figura. A continuación eliminamos la serie"Pronóstico para Y" que para el caso propuesto no la necesitamos. Para ello pinchamos en cualquierpunto de la serie->botón derecho del ratón->Eliminar.A continuación para representar la recta de regresión lineal, tenemos que agregar a la serie una líneade tendencia. Para ello hacemos clic en cualquier punto de la serie->bóton derecho del ratón->Agregar línea de tendencia. Profesor: :Juan Bautista Cascallar Lorenzo.
    • Seleccionamos el tipo de regresión lineal y marcamos la opción "Presentar ecuación en el gráfico".Con lo cual el resultado es… Profesor: :Juan Bautista Cascallar Lorenzo.
    • Identificamos en las tablas de cálculo los datos que necesitamos. Coeficiente de correlación lineal de Pearson Ordenada en el origen en la ecuación de la recta de regresión Pendiente en la ecuación de la recta de regresión Profesor: :Juan Bautista Cascallar Lorenzo.
    • ANEXO – Regresión linealUna compañía de seguros considera que el número de vehículos (y) que circulan por una determinada autopista a más de 120 km/h , puede ponerse en función del número deaccidentes (x) que ocurren en ella. Durante 5 días obtuvo los siguientes resultados:Accidentes xi 5 7 2 1 9Número de vehículos yi 15 18 10 8 20• Calcula el coeficiente de correlación lineal.• Si ayer se produjeron 6 accidentes, ¿cuántos vehículos podemos suponer que circulaban por la autopista a más de 120 km / h?• ¿Es buena la predicción? Profesor: :Juan Bautista Cascallar Lorenzo.
    • REGRESIÓN La herramienta de análisis Regresión efectúa el análisis de regresión lineal utilizando el método de "mínimos cuadrados" para ajustar una línea a un conjunto de observaciones. Puede utilizar esta herramienta para analizar la forma en que los valores de una o más variables independientes afectan a una variable dependiente. Por ejemplo, puede analizar de qué modo inciden en el rendimiento de un atleta varios factores: la edad, la estatura y el peso. Basándose en un conjunto de datos de rendimiento, la regresión determinará la incidencia de cada uno de los factores en la medición del rendimiento y podrán utilizarse estos resultados para predecir el rendimiento de un atleta nuevo no sometido a ninguna prueba. La herramienta Regresión utiliza la función ESTIMACION.LINEAL de la hoja de cálculo. Cuadro de diálogo Regresión Rango Y de entrada Especifique la referencia correspondiente al rango de datos dependientes. El rango debe constar de una única columna de datos. Rango X de entrada Especifique la referencia correspondiente al rango de datos independientes. Microsoft Office Excel ordenará las variables independientes de este rango en orden ascendente de izquierda a derecha. El número máximo de variables independientes es 16. Rótulos Active esta casilla si la primera fila o la primera columna del rango o de los rangos de entrada contienen rótulos. Desactívela si el rango de entrada carece de rótulos. Excel generará los rótulos de datos correspondientes para la tabla de resultados. Nivel de confianza Active esta casilla para incluir más niveles en la tabla de resumen de resultados. En el cuadro, especifique el nivel de confianza que desee que se aplique, además del nivel predeterminado del 95%. Constante igual a cero Active esta casilla para que la línea de regresión pase por el origen. Rango de salida Especifique la referencia correspondiente a la celda superior izquierda de la tabla de resultados. Deje por lo menos siete columnas disponibles para la tabla de resumen de resultados, que incluirá una tabla de análisis de datos, coeficientes, error típico del pronóstico Y, valores r2, número de observaciones y error típico de coeficientes. En una hoja nueva Haga clic en esta opción para insertar una hoja nueva en el libro actual y pegar los resultados comenzando por la celda A1 de la nueva hoja de cálculo. Para darle un nombre a la nueva hoja de cálculo, escríbalo en el cuadro. En un libro nuevo Haga clic en esta opción para crear un libro nuevo en el que los resultados se agregarán a una hoja nueva. Residuos Active esta casilla para incluir residuos en la tabla de resultados de residuos. Residuos estándares Active esta casilla para incluir residuos estándares en la tabla de resultados de residuos. Gráficos de residuos Active esta casilla para generar un gráfico por cada variable independiente frente al residuo. Curva de regresión ajustada Active esta casilla para generar un gráfico por cada variable independiente frente al residuo. Trazado de probabilidad normal Active esta casilla para generar un gráfico con el trazado de probabilidad normal. Profesor: :Juan Bautista Cascallar Lorenzo.