Introduction to Linked Data - WWW2010

2,563 views

Published on

These are the Introduction to Linked Data slides that we presented at the Consuming Linked Data tutorial at WWW2010 in Raleigh, NC on April 26, 2010

Published in: Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,563
On SlideShare
0
From Embeds
0
Number of Embeds
450
Actions
Shares
0
Downloads
46
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Introduction to Linked Data - WWW2010

  1. 1. Introduc)on  to  Linked  Data   Consuming  Linked  Data  Tutorial   World  Wide  Web  Conference  2010  
  2. 2. Do  you  SEARCH  or  do  you  FIND?  
  3. 3. Search  for   Football  Players  who  went  to  the   University  of  Texas  at  Aus)n,  played  for   the  Dallas  Cowboys  as  Cornerback  
  4. 4. Why  can’t  we  just  FIND  it…  
  5. 5. Guess  how  I  FOUND  out?  
  6. 6. I’ll  tell  you  how  I  did  NOT  find  it  
  7. 7. Current  Web  =  internet  +  links  +  docs  
  8. 8. So  what  is  the  problem?   •  The  Web  has  problems   –  People  aren’t  interested  in  documents   •  They  are  interested  in  things    (that  are  in  documents)   –  People  can  parse  documents  and  extract  meaning   •  Web  pages  are  wriXen  in  HTML   •  HTML  describes  visualiza)on  of  informa)on   •  Computers  can’t!  
  9. 9. What  do  we  need  to  do?   •  We  need  to  help  machines  to  understand  the   web  so  machines  can  help  us  understand   things   –  They  can  learn  what  we  are  interested  in   –  They  can  help  us  beXer  find  what  we  want  
  10. 10. How  can  we  do  that?   •  Besides  publishing  documents  on  the  web   –  which  computers  can’t  understand  easily   •  Let’s  publish  something  that  computers  can   understand  
  11. 11. RAW  DATA!  
  12. 12. But  wait…  don’t  we  do  that   already?  
  13. 13. Current  Data  on  the  Web   •  Rela)onal  Databases   •  APIs   •  XML   •  CSV   •  XLS   •  …   •  Can’t  computers  and  applica)ons  already   consume  that  data  on  the  web?  
  14. 14. True!  But  it  is  all  in  different   formats  and  data  models!  
  15. 15. This  makes  it  hard  to  integrate   data  
  16. 16. The  data  in  different     data  sources  aren’t  linked  
  17. 17. For  example,  how  do  I  know  that  the   Juan  Sequeda  in  Facebook  is  the   same  as  Juan  Sequeda  in  TwiXer  
  18. 18. Or  if  I  create  a  mashup  from   different  services,  I  have  to  learn   different  APIs  and  I  get  different   formats  of  data  back  
  19. 19. Wouldn’t  it  be  great  if  we  had  a   standard  way  of  publishing  data  on   the  Web?  
  20. 20. We  have  a  standardized  way  of   publishing  documents  on  the  web,   right?   HTML  
  21. 21. Then  why  can’t  we  have  a  standard   way  of  publishing  data  on  the  Web?  
  22. 22. Good  ques)on!  And  the  answer   is  YES.  There  is!  
  23. 23. Resource  Descrip)on  Framework   (RDF)   •  A  data  model     –  A  way  to  model  data   –  i.e.  Rela)onal  databases  use  rela)onal  data  model   •  RDF  is  a  triple  data  model   •  Labeled  Graph   •  Subject,  Predicate,  Object   •  <Juan>  <was  born  in>  <California>   •  <California>  <is  part  of>  <the  USA>   •  <Juan>  <likes>  <the  Seman)c  Web>  
  24. 24. RDF  can  be  serialized  in  different  ways   •  RDF/XML   •  RDFa  (RDF  in  HTML)   •  N3   •  Turtle   •  JSON  
  25. 25. So  does  that  mean  that  I  have  to   publish  my  data  in  RDF  now?  
  26. 26. You  don’t  have  to…  but  we  would   like  you  to    
  27. 27. An  example  
  28. 28. Document  on  the  Web  
  29. 29. Databases  back  up  documents   THINGS  have  PROPERTIES:   A  Book  as  a  Title,  an  author,  …   Isbn   Title   Author   PublisherID   ReleasedData   978-­‐0-­‐596-­‐153 Programming   Toby  Segaran   1   July  209   81-­‐6   the  Seman.c   Web   …   …   …   …   …   PublisherID   PublisherName   This  is  a  THING:   A  book  )tle  “Programming  the   1   O’Reilly  Media   Seman)c  Web”  by  Toby  Segaran,  …   …   …  
  30. 30. Lets  represent  the  data  in  RDF   Programming  the   )tle   Seman)c  Web   author   book   Toby  Segaran     isbn   978-­‐0-­‐596-­‐15381-­‐6   publisher   name   Publisher   O’Reilly  
  31. 31. Remember  that  we  are  on  the   web   Everything  on  the  web  is  iden)fied  by   a  URI  
  32. 32. And  now  let’s  link  the  data  to  other   data   Programming  the   )tle   Seman)c  Web   hXp://…/ author   Toby  Segaran     isbn978   isbn   978-­‐0-­‐596-­‐15381-­‐6   publisher   hXp://…/ name   publisher1   O’Reilly  
  33. 33. And  now  consider  the  data  from   Revyu.com   hXp://…/ hasReview   hXp://…/ review1   isbn978   descrip)on   reviewer   Awesome   Book   hXp://…/ name   reviewer   Juan   Sequeda  
  34. 34. Let’s  start  to  link  data   hXp://…/ hasReview   hXp://…/ review1   isbn978   Programming  the   descrip)on   )tle   Seman)c  Web   hasReviewer   sameAs   Awesome   author   hXp://…/ Book   Toby  Segaran     isbn978   hXp://…/ name   reviewer   isbn   978-­‐0-­‐596-­‐15381-­‐6   Juan   publisher   Sequeda   hXp://…/ name   publisher1   O’Reilly  
  35. 35. Juan  Sequeda  publishes  data  too   hXp:// livesIn   hXp://dbpedia.org/Aus)n   juansequeda. com/id   name   Juan  Sequeda  
  36. 36. Let’s  link  more  data   hXp://…/ hasReview   hXp://…/ review1   isbn978   descrip)on   hasReviewer   Awesome   Book   hXp://…/ name   reviewer   sameAs   Juan   Sequeda   hXp:// livesIn   hXp://dbpedia.org/Aus)n   juansequeda. com/id   name   Juan  Sequeda  
  37. 37. And  more   hXp://…/ hasReview   hXp://…/ review1   isbn978   Programming  the   descrip)on   )tle   Seman)c  Web   hasReviewer   sameAs   Awesome   author   hXp://…/ Book   Toby  Segaran     isbn978   hXp://…/ name   reviewer   isbn   978-­‐0-­‐596-­‐15381-­‐6   sameAs   Juan   publisher   hXp://…/ Sequeda   name   publisher1   O’Reilly   hXp:// livesIn   hXp://dbpedia.org/Aus)n   juansequeda. com/id   name   Juan  Sequeda  
  38. 38. Data  on  the  Web  that  is  in  RDF  and   is  linked  to  other  RDF  data  is  LINKED   DATA  
  39. 39. Linked  Data  Principles   1.  Use  URIs  as  names  for   things   2.  Use  HTTP  URIs  so  that   people  can  look  up   (dereference)  those   names.   3.  When  someone  looks  up   a  URI,  provide  useful   informa)on.   4.  Include  links  to  other   URIs  so  that  they  can   discover  more  things.  
  40. 40. Linked  Data  makes  the  web  appear  as     ONE     GIANT   HUGE     GLOBAL     DATABASE!  
  41. 41. I  can  query  a  database  with  SQL.  Is   there  a  way  to  query  Linked  Data   with  a  query  language?  
  42. 42. Yes!  There  is  actually  a   standardize  language  for  that   SPARQL  
  43. 43. FIND  all  the  reviews  on  the  book   “Programming  the  Seman)c  Web”   by  people  who  live  in  Aus)n  
  44. 44. hXp://…/ hasReview   hXp://…/ review1   isbn978   Programming  the   descrip)on   )tle   Seman)c  Web   hasReviewer   sameAs   Awesome   author   hXp://…/ Book   Toby  Segaran     isbn978   hXp://…/ name   reviewer   isbn   978-­‐0-­‐596-­‐15381-­‐6   sameAs   Juan   publisher   Sequeda   hXp://…/ name   publisher1   O’Reilly   hXp:// juansequeda. livesIn   hXp://dbpedia.org/Aus)n   com   name   Juan  Sequeda  
  45. 45. This  looks  cool,  but  let’s  be  realis)c.   What  is  the  incen)ve  to  publish   Linked  Data?  
  46. 46. What  was  your  incen)ve  to   publish  an  HTML  page  in  1990?  
  47. 47. 1)  Share  data  in  documents   2)  Because  you  neighbor  was  doing  it  
  48. 48. So  why  should  we  publish     Linked  Data  in  2010?  
  49. 49. 1)  Share  data  as  data   2)  Because  you  neighbor  is  doing  it  
  50. 50. And  guess  who  is  star)ng  to   publish  Linked  Data  now?  
  51. 51. Linked  Data  Publishers   •  UK  Government   •  US  Government   •  BBC   •  Open  Calais  –  Thomson  Reuters   •  Freebase   •  NY  Times   •  Best  Buy   •  CNET   •  Dbpedia   •  Are  you?  
  52. 52. How  can  I  publish  Linked  Data?  
  53. 53. Publishing  Linked  Data   •  Legacy  Data  in  Rela)onal  Databases   –  D2R  Server   –  Virtuoso   –  Triplify   –  Ultrawrap   •  CMS   –  Drupal  7   •  Na)ve  RDF  Stores   –  Databases  for  RDF  (Triple  Stores)   •  AllegroGraph,  Jena,  Sesame,  Virtuoso   –  Talis  Plauorm  (Linked  Data  in  the  Cloud)   •  In  HTML  with  RDFa  
  54. 54. Ques)ons?  

×