• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Alg II Unit 4-3 Modeling with Quadratic Functions

Alg II Unit 4-3 Modeling with Quadratic Functions






Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    Alg II Unit 4-3 Modeling with Quadratic Functions Alg II Unit 4-3 Modeling with Quadratic Functions Presentation Transcript

    • 4-3 MODELING WITH QUADRATICFUNCTIONSChapter 4 Quadratic Functions and Equations©Tentinger
    • ESSENTIAL UNDERSTANDING ANDOBJECTIVES Essential Understanding: Three noncollinear points, no two of which are in line vertically, are on the graph of exactly one quadratic function. Objectives: Students will be able to:  Write the equation of a parabola  Apply the quadratic functions to real life situations  Use the quadratic regression function
    • IOWA CORE CURRICULUM Functions F.IF.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. F.IF.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationships it describes
    • WRITING AN EQUATION OF PARABOLA A parabola contains the points (0, 0), (-1, -2), and (1, 6). What is the equation of this parabola in standard form? Step 1: Write a system of equations by substituting the coordinates in to the standard form equation Step 2: Solve the system of equations to find the variables Step 3: Substitute the solutions into the standard form equation A parabola contains the points (0, 0), (1, -2), and (- 1, 4). What is the equation of this parabola in standard form?
    • USING A QUADRATIC MODEL A player throws a basketball toward the hoop. The basketball follows a parabolic path through the points (2, 10), (4, 12), and (10, 12). The center to the hoop is at (12, 10). Will the ball pass through the hoop? What do the coordinates represent?
    • EXAMPLE The parabolic path of a thrown ball can be modeled by the table. The top of the wall is at (5, 6). Will the ball go over the wall on the way up or the way down? What is the domain and range of this graph? x y 1 3 2 5 3 6
    • QUADRATIC REGRESSION: When more than three points suggest a quadratic function, you use the quadric regression feature of a graphing calculator to find a quadratic model. The table shows a meteorologists predicted temp for an October day in Sacramento, CA. Step 1: enter the data into the list function on your calc. (how do you think you should represent time? Why?) Step 2: Use the QuadReg function under STAT Time Temp 8am 52 Step 3: Write the equation 10am 64 Step 4: Graph the data 12pm 72 2pm 78 Predict the high temperature for the day. 4pm 81 At what time does the nigh temp occur? 6pm 76
    • HOMEWORK Pg. 212 – 213 # 8 – 16 even, 17, 18, 22, 25, 26 10 problems