Your SlideShare is downloading. ×
Professor:  Dr. Bogdan Udrea Team Lead:  Robert Latta Team Members:  David Paiz     Brandon Walsh-Reed     Svilen Kozhuhar...
Overview <ul><li>Financial Excellence </li></ul><ul><ul><li>History </li></ul></ul><ul><ul><li>Immediate Funding </li></ul...
Financial Excellence History <ul><li>Historical precedents </li></ul><ul><ul><li>During the heydays of Earth exploration p...
Financial Excellence Immediate Funding <ul><li>Estimated mission cost: US$30million </li></ul><ul><li>Possible avenues of ...
Financial Excellence USD Budget $26.14 Million Total Project Cost $10 Mil Launch $1 Mil OBC $0.14 Mil Engineers $1 Mil Tel...
Financial Excellence Sustainable Funding <ul><li>Maintains the company presence in the space exploration industry: </li></...
Technical Excellence Trajectory Trade-Offs <ul><li>Δv vs. time </li></ul><ul><ul><li>A higher ∆v results in less time, how...
Technical Excellence Lunar Transfer   Trajectories Figure 7‑42: LEO to Moon at 180 o   Figure 7‑64:  LEO Arrival to Moon a...
Technical Excellence Lunar Transfer   Trajectories Figure 7-15:  Arrival at Moon and Landing Figure 7-13: Bi-Elliptic Tran...
Technical Excellence Lunar Transfer   Trajectories Figure 7‑182: Successful WSB Trajectory from LEO
Technical Excellence MATLAB Code 3.103 5.66 3.155 5.571 5.613 TOTAL Δv (km/s) 90 55 4.65 120 4.63 Time of Flight (days) 2....
Technical Excellence From the Earth to the Moon Earth Moon STAR 13B Stage 1 STAR 13B Stage 2 Craft Launcher Payload Fairing
Technical Excellence Stage 1 <ul><li>Purpose </li></ul><ul><ul><li>Boost craft from GTO to LTI </li></ul></ul><ul><li>Engi...
Technical Excellence Stage 2 <ul><li>Purpose </li></ul><ul><ul><li>Slow craft from LTI speed to close to 0 m/s </li></ul><...
Technical Excellence Stage 3 <ul><li>Purpose </li></ul><ul><ul><li>Provide soft landing for the craft. </li></ul></ul><ul>...
Technical Excellence To the Lunar Surface Lunar Surface – South Pole Ignite SRM 35 km, 2.48 km/s SRM Burnout 2 km, 0.11 km...
Technical Excellence Subsystems <ul><li>Instruments </li></ul><ul><ul><li>Altimeter </li></ul></ul><ul><ul><li>Camera </li...
Instruments Spectrometer <ul><li>Part of the payload on the Craft will be a miniature neutron spectrometer that uses light...
Instruments Altimeter <ul><li>The altitude measuring device is a laser altimeter that determines the Craft’s altitude by b...
Instruments Camera <ul><li>Specifications: </li></ul><ul><ul><li>30 fps </li></ul></ul><ul><ul><li>84 g </li></ul></ul><ul...
Instruments Inertia Measurement Device <ul><li>Low accuracy </li></ul><ul><li>Needed for:  </li></ul><ul><ul><li>De-tumbli...
Power Electrical - Batteries
Technical Excellence Craft
Technical Excellence Locomotive
Instruments Mass Budget 15 Dry weight 0.5 Science package 0.4 Payload 0.5 Thermal control system 0.5 Attitude control thru...
Technical Excellence Timeline
Technical Excellence Mooncasts <ul><li>NASA Lunar Reconnaissance Orbiter (LRO) Communication Relay </li></ul><ul><ul><li>S...
Technical Excellence Mooncasts <ul><li>Encryption algorithm analysis </li></ul><ul><ul><li>Requirements </li></ul></ul><ul...
Technical Excellence Mooncasts <ul><li>HD Images </li></ul><ul><ul><li>Generated by software stitching of low-resolution c...
Technical Excellence XPF Payload <ul><li>Stationary Mass:  250 g </li></ul><ul><li>Mobile Mass: 1% of mass = 150g </li></ul>
Technical Excellence Ethical and Legal Issues <ul><li>Ethical </li></ul><ul><ul><li>Custom laser logo projection seen from...
Summary <ul><li>Financial Excellence </li></ul><ul><ul><li>History </li></ul></ul><ul><ul><li>Immediate Funding </li></ul>...
Questions <ul><li>Questions and Feedback </li></ul>
Upcoming SlideShare
Loading in...5
×

Embry Riddle Final

369

Published on

Final presentation for Google Lunar X-Prize Student Competition at ISU in Strasbourg France 2008.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
369
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Embry Riddle Final"

  1. 1. Professor: Dr. Bogdan Udrea Team Lead: Robert Latta Team Members: David Paiz Brandon Walsh-Reed Svilen Kozhuharov Mathieu Naslin Johann Schrell
  2. 2. Overview <ul><li>Financial Excellence </li></ul><ul><ul><li>History </li></ul></ul><ul><ul><li>Immediate Funding </li></ul></ul><ul><ul><li>USD Budget </li></ul></ul><ul><ul><li>Sustainable Funding </li></ul></ul><ul><li>Technical Excellence </li></ul><ul><ul><li>Subsystems </li></ul></ul><ul><ul><li>Screenshots </li></ul></ul><ul><li>Relevant Legal and Ethical Issues </li></ul><ul><li>Coherence of the Mission Concept </li></ul><ul><li>Summary </li></ul>
  3. 3. Financial Excellence History <ul><li>Historical precedents </li></ul><ul><ul><li>During the heydays of Earth exploration prospectors were funded by wealthy sponsors to prospect for the commodities of the time: </li></ul></ul><ul><ul><ul><li>Spices, Gold, Other resources, Fame </li></ul></ul></ul><ul><ul><li>Besides discovering commodities the prospectors opened trade routes and avenues of colonization </li></ul></ul><ul><li>Nowadays: </li></ul><ul><ul><li>Solar system exploration is on the current NASA, ESA, and various national space agencies (Russia, India, China) agenda. </li></ul></ul><ul><ul><li>Readily available resources found only on Earth. </li></ul></ul><ul><ul><ul><li>Propellant and Facilities </li></ul></ul></ul><ul><ul><li>Solar system exploration could be accelerated by making resources available beyond Earth </li></ul></ul><ul><ul><ul><li>Earth-Moon system fuelling stations and star shipyards. </li></ul></ul></ul><ul><li>Near future avenues of expansion: </li></ul><ul><ul><li>Moon settlements </li></ul></ul><ul><ul><li>Human exploration of Mars and possible settlements </li></ul></ul><ul><ul><li>Asteroid mining </li></ul></ul><ul><ul><li>Outer solar system exploration and exploitation. </li></ul></ul>
  4. 4. Financial Excellence Immediate Funding <ul><li>Estimated mission cost: US$30million </li></ul><ul><li>Possible avenues of funding of the Aquila Aurealis prospector mission: </li></ul><ul><ul><li>Energy companies: Shell, Exxon, British Petroleum, General Electric </li></ul></ul><ul><ul><li>Independent wealth funds (possibly from the Middle East and Asia) </li></ul></ul><ul><ul><li>Private wealthy persons seeking fame or profit. </li></ul></ul><ul><ul><li>Fund raising (Embry-Riddle development office.) </li></ul></ul>
  5. 5. Financial Excellence USD Budget $26.14 Million Total Project Cost $10 Mil Launch $1 Mil OBC $0.14 Mil Engineers $1 Mil Telecom $1 Mil Structures $1 Mil Power $5 Mil Software development $2 Mil Cameras and lidar (procurement) $5 Mil Throttable rocket engines COST COMPONENT
  6. 6. Financial Excellence Sustainable Funding <ul><li>Maintains the company presence in the space exploration industry: </li></ul><ul><ul><li>If the presence of water ice is confirmed commence the water exploitation (get rich fast plan.) </li></ul></ul><ul><ul><li>If not, the Moon regolith will be exploited for oxygen, hydrogen, silicon* (get rich slow plan.) </li></ul></ul><ul><ul><li>* Paul Eckert, International and commercial strategist, Boeing Company </li></ul></ul><ul><ul><li>http://news.nationalgeographic.com/news/2006/07/060725-moon-money.html </li></ul></ul>
  7. 7. Technical Excellence Trajectory Trade-Offs <ul><li>Δv vs. time </li></ul><ul><ul><li>A higher ∆v results in less time, however the high ∆v will require more propellant. More propellant means more mass and more mass equals more money </li></ul></ul><ul><ul><li>A low ∆v results in a very large time of flight. Although mass is saved, the length of the mission may cost more in the long run. </li></ul></ul><ul><li>Time vs. Cost </li></ul><ul><ul><li>Payroll </li></ul></ul><ul><ul><li>If the time of the mission is extensive, then people are needed to observe/oversee the mission in its entirety. </li></ul></ul><ul><li>Time vs. Risk </li></ul><ul><ul><li>If the spacecraft is in space for an extended period of time, it would be exposed to numerous dangers. </li></ul></ul><ul><ul><ul><li>Radiation </li></ul></ul></ul><ul><ul><ul><li>Temperature extremes </li></ul></ul></ul><ul><ul><ul><li>Collisions with debris </li></ul></ul></ul>
  8. 8. Technical Excellence Lunar Transfer Trajectories Figure 7‑42: LEO to Moon at 180 o Figure 7‑64: LEO Arrival to Moon at 180 o
  9. 9. Technical Excellence Lunar Transfer Trajectories Figure 7-15: Arrival at Moon and Landing Figure 7-13: Bi-Elliptic Transfer Figure 7-14: Arrival to the Moon’s Sphere of Influence
  10. 10. Technical Excellence Lunar Transfer Trajectories Figure 7‑182: Successful WSB Trajectory from LEO
  11. 11. Technical Excellence MATLAB Code 3.103 5.66 3.155 5.571 5.613 TOTAL Δv (km/s) 90 55 4.65 120 4.63 Time of Flight (days) 2.374 First Maneuver 3.15 Second Maneuver 0.1355 GTO Bi-elliptic (Moon fly-by) 2.39 2.48 2.39 2.502 Landing Δv (km/s) .713 GTO WSB (Moon fly-by) 0.6745 GTO Direct 3.181 LEO WSB 3.111 LEO Direct TLI Δv (km/s) Trans-lunar Trajectory
  12. 12. Technical Excellence From the Earth to the Moon Earth Moon STAR 13B Stage 1 STAR 13B Stage 2 Craft Launcher Payload Fairing
  13. 13. Technical Excellence Stage 1 <ul><li>Purpose </li></ul><ul><ul><li>Boost craft from GTO to LTI </li></ul></ul><ul><li>Engine </li></ul><ul><ul><li>Thiokol STAR 13B solid rocket </li></ul></ul><ul><ul><li>Impulse = 1.16 E 5 N-s </li></ul></ul><ul><ul><li>Attains 100% required 0.675 km/s Δ v </li></ul></ul>
  14. 14. Technical Excellence Stage 2 <ul><li>Purpose </li></ul><ul><ul><li>Slow craft from LTI speed to close to 0 m/s </li></ul></ul><ul><li>Engine </li></ul><ul><ul><li>Thiokol STAR 13B solid rocket </li></ul></ul><ul><ul><li>Impulse = 1.16 E 5 N-s </li></ul></ul><ul><ul><li>Attains 95.58% of required 2.485 km/s Δ v </li></ul></ul><ul><ul><li>Remaining Δ v = 0.110 km/s </li></ul></ul>
  15. 15. Technical Excellence Stage 3 <ul><li>Purpose </li></ul><ul><ul><li>Provide soft landing for the craft. </li></ul></ul><ul><ul><li>Provide ability for wheeled locomotion. </li></ul></ul><ul><li>Engine </li></ul><ul><ul><li>Four Bi-Propellant Liquid Hypergolic Engines </li></ul></ul><ul><ul><li>UDMH Hydrazine + Nitrogen Tetroxide </li></ul></ul><ul><ul><li>Isp = 340 sec o/f = 3 </li></ul></ul><ul><ul><li>Thrust = 24 N each Burn Time = 12 sec </li></ul></ul><ul><ul><li>Total Impulse = 1114 N-s for all four. </li></ul></ul><ul><ul><li>Δ v = 0.110 km/s </li></ul></ul>
  16. 16. Technical Excellence To the Lunar Surface Lunar Surface – South Pole Ignite SRM 35 km, 2.48 km/s SRM Burnout 2 km, 0.11 km/s + Craft Separation Horizon acquisition and lateral motion cancellation Hazard avoidance Liquid engine cutoff, 1 m
  17. 17. Technical Excellence Subsystems <ul><li>Instruments </li></ul><ul><ul><li>Altimeter </li></ul></ul><ul><ul><li>Camera </li></ul></ul><ul><ul><li>Spectrometer </li></ul></ul><ul><ul><li>Inertia Measurement Device </li></ul></ul><ul><li>Power </li></ul><ul><ul><li>Electrical – Batteries </li></ul></ul><ul><ul><li>Chemical – Rocket Fuel </li></ul></ul><ul><li>Locomotive </li></ul><ul><li>Communication </li></ul><ul><li>Funding </li></ul><ul><ul><li>Etch-a-sketch </li></ul></ul><ul><li>Payload </li></ul>
  18. 18. Instruments Spectrometer <ul><li>Part of the payload on the Craft will be a miniature neutron spectrometer that uses light diffractions caused by negatively charged hydrogen ions to detect the presence of water. The same technology is being used in the LCROSS-LRO joint mission, headed by NASA Ames. </li></ul><ul><li>The spectrometer is custom </li></ul><ul><li>built and counts as part of the science payload. </li></ul><ul><li>Mass estimated to be 750g and is not expected to occupy a large volume. </li></ul>100mm 50mm 25mm
  19. 19. Instruments Altimeter <ul><li>The altitude measuring device is a laser altimeter that determines the Craft’s altitude by bouncing the laser light off the surface of the Moon and read back. </li></ul><ul><li>It is a proven technology with space heritage like the Mars Orbiter. </li></ul><ul><li>JPL provides these custom devices. </li></ul>Courtesy: JPL
  20. 20. Instruments Camera <ul><li>Specifications: </li></ul><ul><ul><li>30 fps </li></ul></ul><ul><ul><li>84 g </li></ul></ul><ul><ul><li>22 x 22 x 75 mm </li></ul></ul><ul><ul><li>2.5 watts </li></ul></ul><ul><ul><li>FOV (Full angle: H=107, V=80) </li></ul></ul>Courtesy: Rocketcam DVS
  21. 21. Instruments Inertia Measurement Device <ul><li>Low accuracy </li></ul><ul><li>Needed for: </li></ul><ul><ul><li>De-tumbling after craft separation from launcher </li></ul></ul><ul><ul><li>Fault detection isolation and recovery in case of star tracker failure </li></ul></ul><ul><ul><li>Event triggering during decent </li></ul></ul>
  22. 22. Power Electrical - Batteries
  23. 23. Technical Excellence Craft
  24. 24. Technical Excellence Locomotive
  25. 25. Instruments Mass Budget 15 Dry weight 0.5 Science package 0.4 Payload 0.5 Thermal control system 0.5 Attitude control thrusters 1 GNC package 0.65 Onboard computer 1.5 Tanks (pressurant + hydrazine) 1 Telecom 3 Structures 1.75 Power unit (batteries, wiring, solar panels) 0.2 Cameras + baffles 4 Throttable rocket engines + mounting TOTAL COMPONENT MASS (Kg) COMPONENT
  26. 26. Technical Excellence Timeline
  27. 27. Technical Excellence Mooncasts <ul><li>NASA Lunar Reconnaissance Orbiter (LRO) Communication Relay </li></ul><ul><ul><li>S-Band TX: 2.65 GHz, RX: 2.56 </li></ul></ul><ul><ul><li>Communication Rate (Max.): ~ 120 Mbps </li></ul></ul><ul><ul><li>Visibility time of LRO from Landing Site: 127s </li></ul></ul><ul><ul><li>Min. Data Rate per LRO-cycle: 117 MB/LRO-cycle </li></ul></ul><ul><ul><li>Est. Data Rate per LRO-Cycle: 1910 MB/LRO-cycle </li></ul></ul><ul><ul><li>HD data to transfer: 34837 MB </li></ul></ul><ul><ul><li>Days to transfer HD: ~ 36 hours </li></ul></ul>
  28. 28. Technical Excellence Mooncasts <ul><li>Encryption algorithm analysis </li></ul><ul><ul><li>Requirements </li></ul></ul><ul><ul><ul><li>Small CPU Footprint </li></ul></ul></ul><ul><ul><ul><li>Small Memory Footprint </li></ul></ul></ul><ul><ul><ul><li>Work in a multitasking environment </li></ul></ul></ul><ul><ul><ul><li>Fast! </li></ul></ul></ul><ul><ul><li>The Vector Stream Cipher (VSC) * Algorithm </li></ul></ul><ul><ul><ul><li>Encryption speed: 25.62 Gbps (AES: 4.8 Gbps) </li></ul></ul></ul><ul><ul><ul><li>Stream cipher (AES: Block Cipher) </li></ul></ul></ul><ul><li>* Communications Research Laboratory and ChaosWare, Inc. - Japan </li></ul>
  29. 29. Technical Excellence Mooncasts <ul><li>HD Images </li></ul><ul><ul><li>Generated by software stitching of low-resolution captured by twin cameras </li></ul></ul><ul><ul><li>Time-stamped </li></ul></ul><ul><li>Advantages </li></ul><ul><ul><li>Low-cost </li></ul></ul><ul><li>Disadvantages </li></ul><ul><ul><li>Software complexity on ground-station level </li></ul></ul>
  30. 30. Technical Excellence XPF Payload <ul><li>Stationary Mass: 250 g </li></ul><ul><li>Mobile Mass: 1% of mass = 150g </li></ul>
  31. 31. Technical Excellence Ethical and Legal Issues <ul><li>Ethical </li></ul><ul><ul><li>Custom laser logo projection seen from telescopes will not be distinguishable from earth with naked eye. </li></ul></ul><ul><li>Legal </li></ul><ul><ul><li>Extract hydrogen from the moon. The Moon Treaty is not signed by the USA. </li></ul></ul><ul><ul><li>LRO Communication has an allocation license. </li></ul></ul><ul><ul><li>FCC Frequency allocation of the S-Band during cruising. </li></ul></ul>
  32. 32. Summary <ul><li>Financial Excellence </li></ul><ul><ul><li>History </li></ul></ul><ul><ul><li>Immediate Funding </li></ul></ul><ul><ul><li>USD Budget </li></ul></ul><ul><ul><li>Sustainable Funding </li></ul></ul><ul><li>Technical Excellence </li></ul><ul><ul><li>Subsystems </li></ul></ul><ul><ul><li>Screenshots </li></ul></ul><ul><li>Relevant Legal and Ethical Issues </li></ul><ul><li>Coherence of the Mission Concept </li></ul>
  33. 33. Questions <ul><li>Questions and Feedback </li></ul>

×