Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this document? Why not share!

Like this? Share it with your network

Share

Motorola bipolar power transistor device data

on

  • 3,174 views

 

Statistics

Views

Total Views
3,174
Views on SlideShare
3,174
Embed Views
0

Actions

Likes
2
Downloads
85
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Motorola bipolar power transistor device data Document Transcript

  • 1. Index and 1 Cross Reference Selector Guide 2 Data Sheets 3 Surface Mount Package Information and 4Tape and Reel Specifications Outline Dimensions 5 and Leadform Options Applications Information 6
  • 2. Thermal Clad is a trademark of the Bergquist Company.Chipscretes, Designers’, Duowatt, EpiBase, PowerBase, PowerTap, SUPERBRIDGES, Surmetric, Switchmode, Thermopad,TMOS, Thermowatt, Unibloc, and Uniwatt are trademarks of Motorola Inc.Annular Semiconductors are patented by Motorola Inc. ii
  • 3. Bipolar Power Device Data This book presents technical data for Motorola’s broad line of silicon power transistors. Complete specifications are provided in the form of data sheets and accompanying selection guides which provide a quick comparison of characteris- tics to simplify the task of choosing the best device for a circuit. The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Please consult your nearest Motorola Semiconductor sales office for further assistance regarding any aspect of Motorola Bipolar Power Transistor products. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically dis- claims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its pat- ent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as compo- nents in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where person- al injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unau- thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees aris- ing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unautho- rized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.© Motorola, Inc. 1995Previous Edition © 1992“All Rights Reserved” Printed in U.S.A. iii
  • 4. Data Sheet Fax via Touch–Tone Phone Motorola’s MfaxSM system is as easy to use as dialing your touch–tone telephone. Your touch–tone phone becomes your linkto ordering over 30,000 documents available for faxing. A fax of complete, easy–to–use instructions can be obtained with afirst–time phone call into the system. 123 123 123 Letters are entered with 2– digit combinations. –./ ABC DEF EXAMPLE: 2 3 DBL is entered:The combination of lettersand numbers on thekeypad will deliver faxes to 1 31 22 53# D = 31 B = 22your machine. L = 53Number or letter strings 123 123 123entered for requests are The position of theended with the use of the GHI JKL MNO letters on the keys determines the numbers# sign.Use 2– digit combinationswhen numbers entered are 4 5 6 entered. For instance MNO would be: 61 62 63#part of a part number. M = 61 – key 6 position 1EXAMPLE: 1234 123 1234 N = 62 – key 6 position 2981 is entered: O = 63 – key 6 position 309 08 01# PRSQ TUV WXYZ9 = 09 EXAMPLE:8 = 081 = 01 7 8 9 A requested document, MC6530 is entered: 61 23 06 05 03 00#While keying 2– digit M = 61strings, the system will C = 23repeat back the entered 6 = 06letter or number. D 0 # 5 = 05 3 = 03 0 = 00 Motorola’s Mfax system repeats letter and number combinations as they are entered so changes for keys touched in error canbe corrected. Complete help is available throughout the instructions when you dial into the system at 602– 244 – 6609. APersonal Identification Number (PIN) is assigned to you to speed up ordering of faxes.Mfax is a servicemark of Motorola, Inc. iv
  • 5. MOTOROLAPOWER TRANSISTORSIN BRIEFWide Range of Transistor Specifications Motorola offers more than 700 standard (off–the–shelf) power transistors to cover the widest range ofapplications at the lowest cost. Current Range — 0.1 to 80 Amperes Voltage Range — 25 to 1800 Volts Power Dissipation Range — 5 to 250 Watts.Darlingtons Darlington transistors represent the integral high gain circuits of the power field. Consisting of two tran-sistors, two resistors, and (up to) two diodes, they achieve gain figures up to 20,000 in a single package.Widespread implementation of Motorola Darlingtons can be highly cost–effective in a fast growing num-ber of applications.Specials Implementation of six sigma quality, statistical process control, and overall customer satisfaction pro-grams at Motorola are producing tighter electrical distributions and specifications on all standard devices.Future standard device introductions will have tighter specifications and offer high volume economy,thereby reducing or eliminating the need for specifically selected devices. Specials will continue to be reviewed, but will require minimum order quantities and minimum yearlyrun rates. Check with your Motorola Sales Representative for more information on special devices.Portfolio Management Six Sigma Program implementation is also allowing the portfolio to be condensed by elimination of de-vices which are no longer actually produced because of the tighter parametric distributions. Low voltageand unpopular gain devices are now being deleted and others, categorized as non–preferred, mayeventually be eliminated as well. Preferred types are shown in the selector guide section in bold type.Replacements, most of them direct, for the eliminated and non–preferred types are indicated in the Alpha-numeric Index/Cross–reference included in this selector guide. v
  • 6. What’s DifferentAdditions:MJE15032 MJF18009 MJE18604D2 BUH100MJE15033 MJE18204 BUD43B BUH150MJE18002D2 MJF18204 BUD44D2 BUL43BMJE18004D2 MJE18206 BUH50 BUL44D2MJE18009 MJF18206 BUH51 BUL45D2Deletions:2N3054 2N6378 BU223Z MJ46472N3054A 2N6421 BU406D MJ63082N3441 2N6678 BU407D MJ65032N3447 2N6833 BU508A MJD1482N3584 2N6837 BU522 MJD44E32N3585 2SA1302 BU522A MJD57312N3719 2SA1306B BU807 MJD130032N3720 2SC3281 BUS51 MJE2402N3738 2SC3298B BUT13 MJE2412N3739 BD235 BUT50P MJE2502N3740 BD236 BUT51P MJE2512N3741 BD239A BUV24 MJE2522N3741A BD239B BUX39 MJE5420Z2N3766 BD239C BUX40 MJF100122N3767 BD240A BUX41N MJF160022N3867 BD240B D44C12 MJF16006A2N3868 BD240C D44E3 MJF16010A2N4233A BD241A MJ900 MJF162042N4240 BD242A MJ901 MJF162062N4347 BD243A MJ3041 MJF162102N4912 BD244A MJ10001 MJF162122N5428 BD779 MJ10004 MJH160022N5430 BD797 MJ10006 MJH160042N5683 BD798 MJ10008 MJH161062N5875 BD799 MJ10014 MJW162102N5876 BD800 MJ10024 MJW66782N6053 BD807 MJ10025 MPSU012N60542N6190 BD809 MJ11011 MPSU01A2N6191 BD897 MJ11019 MPSU022N6193 BD897A MJ11020 MPSU032N6211 BD898 MJ13014 MPSU042N6212 BD898A MJ13015 MPSU052N6213 BD899 MJ13335 MPSU062N6294 BD899A MJ14000 MPSU072N6295 BD900 MJ16002A MPSU102N6296 BD900A MJH16002A MPSU452N6297 BD901 MJ16006 MPSU512N6298 BD902 MJH16006 MPSU51A2N6299 BDW40 MJ16008 MPSU522N6300 BDW41 MJH16008 MPSU552N6301 BDW45 MJ16006A MPSU562N6303 BDX33A MJ16010A MPSU572N6317 BDX34A MJ16014 MPSU602N6318 BDX53A MJ16016 MPSU952N6377 BDX54A MJ4646 vi
  • 7. Index and Cross Reference The table on the subsequent pages contains an Alphanumeric index of Silicon power transistors currently manufactured and available to the industry. The column headed “Similar” lists units with characteristics that might represent suitable replacements. In cases where such a replacement is contemplated, the Motorola device data sheet should be carefully compared with one for the device being replaced to determine any variations that could affect circuit performance.Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–1
  • 8. INDEX AND CROSS REFERENCE The following table represents an index and cross–reference guide for all low–frequency power transistors which are eithermanufactured directly by Motorola or for which Motorola manufactures a suitable equivalent. Where the Motorola part numberdiffers from the industry part number, the Motorola device is a “form, fit and function” replacement for the industry type number— however, subtle differences in characteristics and/or specifications may exist. Where multiple replacement parts appear for agiven industry part number, the page number represents the first replacement device listed. Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number 40251 2N3055 3–2 2N3055H 2N3055A 3–5 40325 2N3055 3–2 2N3055SD 2N3055A 3–5 40363 2N5878 3–74 2N3055UB 2N3055A 3–5 40369 2N5878 3–74 2N3076 BUV23 3–388 40411 MJ802 3–421 2N3171 2N3792 3–25 40513 MJE3055T 3–628 2N3172 2N3792 3–25 40514 MJE3055T 3–628 2N3173 2N3792 3–25 40542 MJE3055T 3–628 2N3174 MJ15016 3–5 40543 MJE3055T 3–628 2N3183 2N3792 3–25 40613 TIP31B 3–873 2N3184 2N3792 3–25 40618 TIP31B 3–873 2N3185 2N3792 3–25 40621 TIP31B 3–873 2N3186 MJ15016 3–5 40622 TIP31B 3–873 2N3195 2N3792 3–25 40624 TIP41B 3–883 2N3196 2N3792 3–25 40627 TIP41B 3–883 2N3198 MJ15016 3–5 40629 TIP31B 3–873 2N3232 2N5878 3–74 40630 TIP31B 3–873 2N3233 2N5882 3–77 40631 TIP31B 3–873 2N3234 2N3442 3–9 40632 TIP41B 3–883 2N3235 2N3055 3–2 40636 2N5878 3–74 2N3236 2N5882 3–77 40853 2N6547 3–140 2N3237 2N5302 3–54 40854 2N6547 3–140 2N3238 2N5882 3–77 40871 TIP41C 3–883 2N3239 2N5882 3–77 40872 TIP42C 3–883 2N3240 2N5882 3–77 40873 TIP41B 3–883 2N3441 2N3442 3–9 40874 TIP41B 3–883 2N3442 2N3442 3–9 40875 TIP41C 3–883 2N3445 2N3716 3–12 40876 TIP41B 3–883 2N3446 2N3716 3–12 40887 MJE340 3–602 2N3447 2N3716 3–12 41012 2N5038 3–42 2N3448 2N3716 3–12 41013 2N6339 3–117 2N3667 2N5882 3–77 41500 TIP31B 3–873 2N3713 2N5882 3–77 41501 TIP32B 3–873 2N3714 2N3716 3–12 41504 TIP31B 3–873 2N3715 2N3716 3–12 43104 2N5631 3–59 2N3716 2N3716 3–12 1SI10A–100 MJ16018 3–520 2N3771 2N3771 3–17 2N1487 2N5878 3–74 2N3772 2N3772 3–17 2N1488 2N5878 3–74 2N3773 2N3773 3–21 2N1489 2N5878 3–74 2N3789 2N3792 3–25 2N1490 2N5878 3–74 2N3790 2N3792 3–25 2N1702 2N5878 3–74 2N3791 2N3792 3–25 2N3021 2N3792 3–25 2N3792 2N3792 3–25 2N3022 2N3792 3–25 2N3863 2N3716 3–12 2N3023 2N3792 3–25 2N3864 2N5882 3–77 2N3024 2N3792 3–25 2N3865 MJ15001 3–497 2N3025 2N3792 3–25 2N3902 BUX48A 3–401 2N3026 2N3792 3–25 2N4002 2N6274 3–108 2N3055 2N3055 3–2 2N4032 2N6274 3–108 2N3055A 2N3055A 3–5 2N4111 2N3716 3–12 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–2
  • 9. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2N4113 2N3716 3–12 2N5616 2N3716 3–122N4347 2N3055A 3–5 2N5618 2N3716 3–122N4348 2N5631 3–59 2N5629 2N5631 3–592N4398 2N4399 3–29 2N5630 2N5631 3–592N4399 2N4399 3–29 2N5631 2N5631 3–592N4901 MJ15016 3–5 2N5632 2N5882 3–772N4902 MJ15016 3–5 2N5633 MJ15001 3–4972N4903 MJ15016 3–5 2N5634 MJ15001 3–4972N4904 MJ15016 3–5 2N5655 2N5657 3–632N4905 MJ15016 3–5 2N5656 2N5657 3–632N4906 MJ15016 3–5 2N5657 2N5657 3–632N4907 2N3792 3–25 2N5659 2N5631 3–592N4908 2N3792 3–25 2N5683 2N5684 3–662N4909 2N3792 3–25 2N5684 2N5684 3–662N4918 2N4918 3–34 2N5685 2N5685 3–662N4919 2N4919 3–34 2N5686 2N5686 3–662N4920 2N4920 3–34 2N5733 2N6274 3–1082N4921 2N4921 3–38 2N5734 2N6338 3–1172N4922 2N4922 3–38 2N5737 2N5878 3–742N4923 2N4923 3–38 2N5738 2N5880 3–772N5034 2N3055 3–2 2N5739 2N5878 3–742N5035 2N3055 3–2 2N5740 2N5880 3–772N5036 2N3055 3–2 2N5741 2N5884 3–812N5037 2N3055 3–2 2N5742 2N6031 3–592N5038 2N5038 3–42 2N5743 2N5884 3–812N5039 2N5038 3–42 2N5744 MJ4502 3–4312N5157 BUX48A 3–401 2N5745 2N5745 3–292N5190 2N5191 3–44 2N5758 2N5758 3–702N5191 2N5191 3–44 2N5759 2N3055A 3–52N5192 2N5192 3–44 2N5760 2N3442 3–92N5193 2N5194 3–49 2N5867 2N3792 3–252N5194 2N5194 3–49 2N5868 2N3792 3–252N5195 2N5195 3–49 2N5869 2N3716 3–122N5240 BUX48A 3–401 2N5870 2N3716 3–122N5241 BUX48A 3–401 2N5871 2N3792 3–252N5264 BUV23 3–388 2N5872 2N3792 3–252N5293 TIP31B 3–873 2N5873 2N3716 3–122N5294 TIP31B 3–873 2N5874 2N3716 3–122N5295 TIP31B 3–873 2N5877 2N5878 3–742N5296 TIP31B 3–873 2N5878 2N5878 3–742N5297 TIP31B 3–873 2N5879 2N5880 3–772N5298 TIP31B 3–873 2N5880 2N5880 3–772N5301 2N5302 3–54 2N5881 2N5882 3–772N5302 2N5302 3–54 2N5882 2N5882 3–772N5303 2N5303 3–54 2N5883 2N5884 3–812N5386 2N5038 3–42 2N5884 2N5884 3–812N5387 2N6547 3–140 2N5885 2N5886 3–812N5388 2N6547 3–140 2N5886 2N5886 3–812N5389 2N6547 3–140 2N5929 2N6338 3–1172N5466 BUX48A 3–401 2N5930 2N6338 3–1172N5467 BUX48A 3–401 2N5931 2N6341 3–1172N5490 MJE3055T 3–628 2N5932 2N6338 3–1172N5491 MJE3055T 3–628 2N5933 2N6338 3–1172N5492 2N6292 3–101 2N5935 2N6341 3–1172N5493 2N6292 3–101 2N5936 2N6338 3–1172N5494 MJE3055T 3–628 2N5937 2N6341 3–1172N5495 MJE3055T 3–628 2N5970 2N5882 3–772N5496 2N6292 3–101 2N5971 2N5882 3–772N5497 2N6292 3–101 2N5972 MJ15003 3–5002N5559 MJ15001 3–497 2N5973 2N5886 3–812N5575 2N5685 3–66 2N5974 MJE2955T 3–6282N5578 2N5685 3–66 2N5975 MJE2955T 3–6282N5614 2N3716 3–12 2N5976 MJE2955T 3–628 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–3
  • 10. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2N5977 MJE3055T 3–628 2N6125 TIP32B 3–8732N5978 MJE3055T 3–628 2N6126 TIP32C 3–8732N5979 MJE3055T 3–628 2N6127 2N6437 3–1282N5980 MJE2955T 3–628 2N6128 2N6338 3–1172N5981 MJE2955T 3–628 2N6129 TIP41B 3–8832N5982 2N6490 3–132 2N6130 TIP41B 3–8832N5983 MJE3055T 3–628 2N6131 TIP41B 3–8832N5984 MJE3055T 3–628 2N6132 TIP42C 3–8832N5985 2N6488 3–132 2N6133 TIP42C 3–8832N5986 2N6490 3–132 2N6134 TIP42C 3–8832N5987 2N6490 3–132 2N6177 MJE340 3–6022N5988 2N6490 3–132 2N6226 MJ15016 3–52N5989 2N6486 — 2N6227 MJ15016 3–52N5990 2N6488 3–132 2N6228 MJ15016 3–52N5991 2N6488 3–132 2N6229 2N5880 3–772N6021 TIP32C 3–873 2N6230 MJ15002 3–4972N6022 TIP32C 3–873 2N6231 MJ15002 3–4972N6023 TIP32B 3–873 2N6246 2N5880 3–772N6024 TIP32B 3–873 2N6247 2N5880 3–772N6025 TIP32B 3–873 2N6248 MJ15016 3–52N6026 TIP32B 3–873 2N6249 BUV23 3–3882N6029 2N6031 3–59 2N6250 BUV23 3–3882N6030 2N6031 3–59 2N6253 2N5878 3–742N6031 2N6031 3–59 2N6254 2N5878 3–742N6032 2N6275 3–108 2N6257 2N5886 3–812N6033 2N6277 3–108 2N6258 2N5686 3–662N6034 2N6035 3–85 2N6259 2N5631 3–592N6035 2N6035 3–85 2N6262 2N3442 3–92N6036 2N6036 3–85 2N6270 2N6338 3–1172N6037 2N6038 3–85 2N6271 2N6338 3–1172N6038 2N6038 3–85 2N6272 2N6338 3–1172N6039 2N6039 3–85 2N6273 2N6338 3–1172N6040 2N6041 3–89 2N6274 2N6274 3–1082N6041 2N6041 3–89 2N6275 2N6275 3–1082N6042 2N6042 3–89 2N6276 2N6275 3–1082N6043 2N6044 3–89 2N6277 2N6277 3–1082N6044 2N6044 3–89 2N6278 2N6274 3–1082N6045 2N6045 3–89 2N6279 2N6275 3–1082N6049 2N6049 — 2N6280 2N6275 3–1082N6050 2N6052 3–93 2N6281 2N6277 3–1082N6051 2N6052 3–93 2N6282 2N6283 3–1122N6052 2N6052 3–93 2N6283 2N6283 3–1122N6055 2N6056 3–97 2N6284 2N6284 3–1122N6056 2N6056 3–97 2N6285 2N6286 3–1122N6057 2N6059 3–93 2N6286 2N6286 3–1122N6058 2N6059 3–93 2N6287 2N6287 3–1122N6059 2N6059 3–93 2N6288 2N6292 3–1012N6098 2N6487 3–132 2N6289 2N6292 3–1012N6099 2N6487 3–132 2N6290 2N6292 3–1012N6100 2N6487 3–132 2N6291 2N6292 3–1012N6101 2N6488 3–132 2N6292 2N6292 3–1012N6102 2N6488 3–132 2N6293 2N6292 3–1012N6103 2N6487 3–132 2N6302 2N5631 3–592N6106 2N6107 3–101 2N6322 MJ10015 3–4612N6107 2N6107 3–101 2N6323 MJ10015 3–4612N6108 2N6109 3–101 2N6324 MJ10015 3–4612N6109 2N6109 3–101 2N6325 MJ10015 3–4612N6110 2N6107 3–101 2N6326 2N6328 —2N6111 2N6107 3–101 2N6327 2N6328 —2N6121 TIP31B 3–873 2N6328 2N6328 —2N6122 TIP31B 3–873 2N6329 2N5884 3–812N6123 TIP31B 3–873 2N6330 2N5884 3–812N6124 TIP32B 3–873 2N6331 2N5884 3–81 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–4
  • 11. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2N6338 2N6338 3–117 2N6496 2N6339 3–1172N6339 2N6339 3–117 2N6497 2N6497 3–1362N6340 2N6341 3–117 2N6498 2N6497 3–1362N6341 2N6341 3–117 2N6499 MJE13005 3–6612N6354 2N6339 3–117 2N6512 BUX48A 3–4012N6355 2N6059 3–93 2N6513 BUX48A 3–4012N6356 2N6059 3–93 2N6514 BUX48A 3–4012N6357 2N6059 3–93 2N6530 TIP101 3–8912N6358 2N6059 3–93 2N6531 TIP102 3–8912N6359 2N5886 3–81 2N6532 TIP102 3–8912N6371 2N3055 3–2 2N6535 TIP102 3–8912N6372 2N6316 — 2N6536 TIP102 3–8912N6373 2N6315 — 2N6544 BUX48A 3–4012N6374 2N6315 — 2N6545 BUX48A 3–4012N6379 2N6379 3–120 2N6546 2N6547 3–1402N6382 2N6379 3–120 2N6547 2N6547 3–1402N6383 MJ3001 3–425 2N6548 MJE800 3–6122N6384 MJ3001 3–425 2N6549 MJE800 3–6122N6385 MJ3001 3–425 2N6551 2N4923 3–382N6386 TIP101 3–891 2N6552 2N4923 3–382N6387 2N6387 3–124 2N6553 2N4923 3–382N6388 2N6388 3–124 2N6554 2N4919 3–342N6406 MJE171 3–589 2N6555 2N4919 3–342N6407 MJE172 3–589 2N6556 2N4919 3–342N6408 MJE181 3–589 2N6557 MJE340 3–6022N6409 MJE182 3–589 2N6558 MJE340 3–6022N6410 MJE200 3–592 2N6559 MJE340 3–6022N6411 MJE210 3–592 2N6569 2N3055 3–22N6412 MJE181 3–589 2N6573 2N6547 3–1402N6413 MJE181 3–589 2N6574 2N6547 3–1402N6414 MJE171 3–589 2N6575 2N6547 3–1402N6415 MJE171 3–589 2N6576 2N6577 3–1442N6416 MJE243 3–596 2N6577 2N6577 3–1442N6417 MJE243 3–596 2N6578 2N6578 3–1442N6418 MJE253 3–596 2N6609 2N6609 3–212N6419 MJE253 3–596 2N6648 MJ2501 3–4252N6436 2N6437 3–128 2N6667 2N6667 3–1472N6437 2N6437 3–128 2N6668 2N6668 3–1472N6438 2N6438 3–128 2N6836 2N6836 MJ16012 3–1512N6465 MJE15030 3–684 2SA1001 2N6438 3–1282N6466 MJE15030 3–684 2SA1002 2N6438 3–1282N6467 MJE15031 3–684 2SA1003 2N6438 3–1282N6468 MJE15031 3–684 2SA1007 MJ15002 3–4972N6469 2N5880 3–77 2SA1008 TIP32C 3–8732N6470 2N5882 3–77 2SA1010 TIP42C 3–8832N6471 2N5882 3–77 2SA1011 MJE15031 3–6842N6472 2N5882 3–77 2SA1012 TIP42B 3–8832N6473 MJE15028 3–684 2SA1020 TIP32B 3–8732N6474 MJE15028 3–684 2SA1040 2N6438 3–1282N6475 MJE15029 3–684 2SA1041 2N6438 3–1282N6476 MJE15029 3–684 2SA1042 2N6437 3–1282N6477 MJE15028 3–684 2SA1043 2N6438 3–1282N6478 MJE15030 3–684 2SA1044 2N6437 3–1282N6486 2N6487 3–132 2SA1045 2N6052 3–932N6487 2N6487 3–132 2SA1046 2N6052 3–932N6488 2N6488 3–132 2SA1063 MJ15016 3–52N6489 2N6490 3–132 2SA1064 MJ15002 3–4972N6490 2N6490 3–132 2SA1065 MJ15002 3–4972N6491 2N6491 3–132 2SA1067 MJ15002 3–4972N6492 2N6056 3–97 2SA1068 MJ15002 3–4972N6493 2N6056 3–97 2SA1069 TIP42B 3–8832N6494 2N6056 3–97 2SA1110 MJE350 3–6062N6495 2N6316 — 2SA1111 MJE15031 3–684 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–5
  • 12. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SA1112 MJE15031 3–684 2SA775 TIP32C 3–8732SA1197L MJD117–1 3–558 2SA779 2N4918 3–342SA1197S MJD117 3–558 2SA780 2N4919 3–342SA1201 MJD32 3–542 2SA794 MJE253 3–5962SA1204 MJD32 3–542 2SA795 MJE253 3–5962SA1213 MJD32C 3–542 2SA807 2N3792 3–252SA1241 MJD45H11–1 3–550 2SA808 2N3792 3–252SA1242 MJD210–1 3–569 2SA814 TIP32C 3–8732SA1243 MJD210–1 3–569 2SA815 TIP32C 3–8732SA1244 MJD45H11–1 3–550 2SA816 TIP32B 3–8732SA1307 TIP42B 3–883 2SA818 MJE350 3–6062SA1314 MJD32 3–542 2SA835 MJE350 3–6062SA1328 2N6490 3–132 2SA837 MJ15016 3–52SA1329 2N6491 3–132 2SA839 TIP32C 3–8732SA1357 TIP42B 3–883 2SA843 MJE15031 3–6842SA1375 MJD350 3–577 2SA878 MJ15002 3–4972SA1385 MJD2955 3–580 2SA882 MJ15002 3–4972SA1552 MJD350–1 3–577 2SA887 2N4919 3–342SA1562 MJD210–1 3–569 2SA898 MJE350 3–6062SA1568 MJF2955 3–794 2SA899 MJE350 3–6062SA1592 MJD32C1 3–542 2SA900 MJE210 3–5922SA1593 MJD32C1 3–542 2SA907 MJ15016 3–52SA489 TIP32C 3–873 2SA908 MJ15002 3–4972SA490 TIP32B 3–873 2SA909 MJ15003 3–5002SA496 2N4918 3–34 2SA922 2N4918 3–342SA505 2N4919 3–34 2SA939 MJE350 3–6062SA623 2N4918 3–34 2SA940 MJE15031 3–6842SA624 2N4919 3–34 2SA949 MJE15031 3–6842SA626 MJ15016 3–5 2SA957 MJE15031 3–6842SA627 MJ15016 3–5 2SA958 MJE15031 3–6842SA633 2N4918 3–34 2SA963 MJE171 3–5892SA634 2N4919 3–34 2SA965 MJE15029 3–6842SA635 2N4919 3–34 2SA966 TIP32B 3–8732SA636 2N4919 3–34 2SA968 MJE15031 3–6842SA645 MJE182 3–589 2SA969 MJE15031 3–6842SA646 2N4919 3–34 2SA971 2N6609 3–212SA647 2N4919 3–34 2SA980 2N5880 3–772SA648 MJ15002 3–497 2SA981 MJ15002 3–4972SA656 MJ15016 3–5 2SA982 MJ15002 3–4972SA657 MJ15016 3–5 2SB1020 2N6042 3–892SA658 MJ15016 3–5 2SB1022 2N6041 3–892SA663 MJ15016 3–5 2SB1024 TIP127 3–9002SA670 TIP32B 3–873 2SB1047L MJD117–1 3–5582SA671 TIP32B 3–873 2SB1047S MJD117 3–5582SA679 MJ15016 3–5 2SB1072L MJD6036–1 3–5842SA680 2N5880 3–77 2SB1072S MJD6036 3–5842SA681 MJE253 3–596 2SB1179 MJD6036–1 3–5842SA682 MJE253 3–596 2SB1179A MJD6036–1 3–5842SA698 MJE350 3–606 2SB1180 MJD127–1 3–5632SA699 2N4918 3–34 2SB1180A MJD127–1 3–5632SA700 TIP32B 3–873 2SB1201 MJD45H11–1 3–5502SA703 2N4918 3–34 2SB1202 MJD45H11–1 3–5502SA714 MJ15016 3–5 2SB1203 MJD45H11–1 3–5502SA715 MJE171 3–589 2SB1204 MJD45H11–1 3–5502SA738 MJE171 3–589 2SB1205 MJD210–1 3–5692SA755 TIP32B 3–873 2SB1214 MJD6036–1 3–5842SA756 MJ15016 3–5 2SB1215 MJD45H11–1 3–5502SA757 MJ15016 3–5 2SB1216 MJD45H11–1 3–5502SA758 MJ15016 3–5 2SB506 MJ15016 3–52SA768 TIP32B 3–873 2SB507 TIP32B 3–8732SA769 TIP32C 3–873 2SB509 TIP32C 3–8732SA770 2N6109 3–101 2SB511 TIP32B 3–8732SA771 2N6107 3–101 2SB513 TIP32C 3–873 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–6
  • 13. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SB514 TIP32B 3–873 2SB632 2N4918 3–342SB515 TIP32B 3–873 2SB633 TIP42C 3–8832SB518 MJ15016 3–5 2SB648 MJE350 3–6062SB519 MJ15016 3–5 2SB649 MJE350 3–6062SB520 MJ15016 3–5 2SB653 MJ15016 3–52SB521 TIP42B 3–883 2SB654 MJ15016 3–52SB522 TIP42B 3–883 2SB655 MJ15002 3–4972SB523 2N5194 3–49 2SB656 MJ15002 3–4972SB524 2N5194 3–49 2SB668 TIP32B 3–8732SB526 2N4920 3–34 2SB669 TIP32B 3–8732SB527 2N4920 3–34 2SB673 2N6042 3–892SB528 2N4920 3–34 2SB674 2N6041 3–892SB529 2N5194 3–49 2SB675 2N6041 3–892SB530 MJ15002 3–497 2SB676 TIP127 3–9002SB531 MJ15016 3–5 2SB677 TIP125 3–9002SB532 MJ15016 3–5 2SB679 TIP117 3–8952SB536 TIP32C 3–873 2SB681 MJ15002 3–4972SB537 TIP32C 3–873 2SB686 TIP42C 3–8832SB539 MJ15002 3–497 2SB688 MJE15029 3–6842SB541 MJ15002 3–497 2SB689 TIP42C 3–8832SB546 MJE15031 3–684 2SB690 TIP42C 3–8832SB546 MJE15031 3–684 2SB691 MJE4352 3–6322SB547 MJE15031 3–684 2SB692 MJE4352 3–6322SB548 2N4920 3–34 2SB693 2N6287 3–1122SB549 2N4920 3–34 2SB694 MJ11015 3–4782SB552 MJ15025 3–509 2SB695 MJE4352 3–6322SB553 2N6107 3–101 2SB696 MJ15002 3–4972SB554 MJ15025 3–509 2SB697 MJ15002 3–4972SB555 MJ15012 3–502 2SB707 2N6107 3–1012SB556 MJ15012 3–502 2SB708 2N6107 3–1012SB557 MJ15002 3–497 2SB711 2N6041 3–892SB558 2N5880 3–77 2SB712 2N6042 3–892SB559 2N4918 3–34 2SB713 MJE4352 3–6322SB565 TIP32B 3–873 2SB717 MJE350 3–6062SB566 TIP32C 3–873 2SB718 MJE350 3–6062SB567 MJE15031 3–684 2SB719 MJE15031 3–6842SB568 MJE15031 3–684 2SB720 MJE15031 3–6842SB569 2N6035 3–85 2SB722 MJ15002 3–4972SB570 2N6035 3–85 2SB723 MJ15025 3–5092SB571 2N6036 3–85 2SB724 TIP32B 3–8732SB572 2N5194 3–49 2SB727 MJE15029 3–6842SB573 2N5194 3–49 2SB743 MJE171 3–5892SB574 2N5195 3–49 2SB744 MJE172 3–5892SB575 2N5194 3–49 2SB750 TIP116 3–8952SB576 2N5194 3–49 2SB751 TIP126 3–9002SB577 2N5195 3–49 2SB753 TIP42C 3–8832SB578 MJE2955T 3–628 2SB754 2N6109 3–1012SB579 MJE2955T 3–628 2SB772 MJE171 3–5892SB580 MJE2955T 3–628 2SB906 MJD32C1 3–5422SB581 MJE2955T 3–628 2SB907 MJD6036–1 3–5842SB582 2N6041 3–89 2SB908 MJD6036–1 3–5842SB583 2N6041 3–89 2SB962 MJD45H11–1 3–5502SB584 2N6041 3–89 2SB963 MJD117–1 3–5582SB587 2N6052 3–93 2SB967 MJD210 3–5692SB588 2N6052 3–93 2SB968 MJD210 3–5692SB589 2N6052 3–93 2SC1004 BU208A 3–2262SB595 TIP42C 3–883 2SC1004A BU208A 3–2262SB596 TIP32C 3–873 2SC1005 BU208A 3–2262SB600 MJ15012 3–502 2SC1013 MJE181 3–5892SB604 TIP32C 3–873 2SC1014 MJE181 3–5892SB628 MJE15031 3–684 2SC1025 2N6233 —2SB630 MJE15031 3–684 2SC1030 2N3442 3–92SB631 2N4920 3–34 2SC1034 BU208A 3–226 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–7
  • 14. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SC1036 BU208A 3–226 2SC1413 BU208A 3–2262SC1050 MJ423 3–419 2SC1418 TIP31B 3–8732SC1051 2N3442 3–9 2SC1419 TIP31B 3–8732SC1060 TIP31B 3–873 2SC1433 MJ423 3–4192SC1061 TIP31B 3–873 2SC1434 2N6547 3–1402SC1078 BU208A 3–226 2SC1436 BUV23 3–3882SC1079 MJ15001 3–497 2SC1440 MJ15001 3–4972SC1080 MJ15001 3–497 2SC1441 BUV23 3–3882SC1086 BU208A 3–226 2SC1447 TIP47 3–8872SC1088 MJE3439 3–630 2SC1448 TIP47 3–8872SC1089 MJE3439 3–630 2SC1449 MJE181 3–5892SC1096 MJE181 3–589 2SC1454 MJ423 3–4192SC1098 2N4923 3–38 2SC1468 MJ16010 3–5122SC1099 BU208A 3–226 2SC1469 MJ16010 3–5122SC1100 BU208A 3–226 2SC1477 MJ10007 3–4452SC1101 BU208A 3–226 2SC1501 MJE3439 3–6302SC1107 TIP31B 3–873 2SC1505 TIP48 3–8872SC1108 TIP31B 3–873 2SC1506 TIP48 3–8872SC1109 TIP31B 3–873 2SC1507 TIP48 3–8872SC1110 TIP31B 3–873 2SC1514 MJE3439 3–6302SC1111 MJ15001 3–497 2SC1516 2N6038 3–852SC1112 MJ15001 3–497 2SC1517 2N4922 3–382SC1113 MJE15030 3–684 2SC1519 MJE340 3–6022SC1115 MJ15001 3–497 2SC1520 MJE340 3–6022SC1116 MJ15011 3–502 2SC1521 MJE340 3–6022SC1132 BU208A 3–226 2SC1576 MJ16010 3–5122SC1140 2N6547 3–140 2SC1577 MJ16010 3–5122SC1141 2N6547 3–140 2SC1584 BUV23 3–3882SC1151 BU208A 3–226 2SC1585 BUV23 3–3882SC1153 BU208A 3–226 2SC1586 BUV23 3–3882SC1154 BU208A 3–226 2SC1609 2N6341 3–1172SC1155 MJE182 3–589 2SC1610 2N6341 3–1172SC1157 2N4923 3–38 2SC1617 MJ423 3–4192SC1162 MJE181 3–589 2SC1629 MJ1001 3–4232SC1167 BU208A 3–226 2SC1669 TIP47 3–8872SC1170 BU208A 3–226 2SC1672 2N6341 3–1172SC1170A BU208A 3–226 2SC1683 TIP47 3–8872SC1171 BU208A 3–226 2SC1722 TIP48 3–8872SC1172 BU208A 3–226 2SC1723 TIP48 3–8872SC1173 TIP31B 3–873 2SC1749 MJE340 3–6022SC1174 BU208A 3–226 2SC1755 MJE2360T 3–6262SC1184 BU208A 3–226 2SC1756 MJE2360T 3–6262SC1224 MJE341 3–604 2SC1757 MJE2360T 3–6262SC1226 MJE800 3–612 2SC1777 2N5882 3–772SC1227 MJ10007 3–445 2SC1782 MJ15001 3–4972SC1228 MJ16010 3–512 2SC1783 BUV23 3–3882SC1229 MJ10007 3–445 2SC1784 MJ15001 3–4972SC1237 TIP31B 3–873 2SC1785 BUV23 3–3882SC1243 MJE800 3–612 2SC1786 BUV23 3–3882SC1295 BU208A 3–226 2SC1818 2N6341 3–1172SC1309 BU208A 3–226 2SC1819 MJE2361T 3–6262SC1322 BUV23 3–388 2SC1826 TIP41B 3–8832SC1325 MJ16018 3–520 2SC1827 TIP41C 3–8832SC1343 MJ15011 3–502 2SC1830 2N6578 3–1442SC1348 BU208A 3–226 2SC1831 2N6056 3–972SC1358 BU208A 3–226 2SC1832 MJ10009 3–4512SC1367 BU208A 3–226 2SC1846 MJE181 3–5892SC1381 MJE182 3–589 2SC1847 MJE181 3–5892SC1382 MJE182 3–589 2SC1848 MJE182 3–5892SC1402 MJ15001 3–497 2SC1866 2N3442 3–92SC1403 MJ15001 3–497 2SC1868 MJ16010 3–5122SC1409 TIP47 3–887 2SC1869 MJ15001 3–4972SC1410 TIP47 3–887 2SC1870 2N6547 3–140 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–8
  • 15. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SC1875 BU208A 3–226 2SC2256 BUV23 3–3882SC1880 TIP112 3–895 2SC2260 BUV23 3–3882SC1881 TIP111 3–895 2SC2261 BUV23 3–3882SC1883 TIP122 3–900 2SC2262 BUV23 3–3882SC1891 BU208A 3–226 2SC2270 2N5194 3–492SC1892 BU208A 3–226 2SC2278 MJE3439 3–6302SC1893 BU208A 3–226 2SC2292 MJ16010 3–5122SC1894 BU208A 3–226 2SC2293 MJ16010 3–5122SC1895 MJ16018 3–520 2SC2298 MJE270 3–6002SC1896 MJ16018 3–520 2SC2311 2N4922 3–382SC1903 MJE341 3–604 2SC2321 MJ15001 3–4972SC1904 MJE341 3–604 2SC2322 MJ15015 3–52SC1905 MJE2361T 3–626 2SC2323 MJ15001 3–4972SC1922 BU208A 3–226 2SC2324 2N6038 3–852SC1929 TIP48 3–887 2SC2331 MJE13005 3–6612SC1942 BU208A 3–226 2SC2333 MJE13005 3–6612SC1943 TIP111 3–895 2SC2334 MJE15030 3–6842SC1944 TIP112 3–895 2SC2335 MJE13007 3–6672SC1945 TIP41B 3–883 2SC2337 MJ15001 3–4972SC1948 TIP41C 3–883 2SC2344 TIP47 3–8872SC1983 TIP111 3–895 2SC2356 2N6547 3–1402SC1984 TIP112 3–895 2SC2366 MJ10016 3–4612SC1985 TIP41B 3–883 2SC2371 MJE3439 3–6302SC1986 TIP41C 3–883 2SC2373 MJE13007 3–6672SC2024 2N4923 3–38 2SC2397 MJE3055T 3–6282SC2027 MJ16018 3–520 2SC240 2N3055A 3–52SC2068 MJE340 3–602 2SC2402 2N6547 3–1402SC2071 MJE3439 3–630 2SC2403 MJ10015 3–4612SC2073 TIP47 3–887 2SC242 2N3055A 3–52SC2080 MJE181 3–589 2SC2428 BUV23 3–3882SC2085 MJE2361T 3–626 2SC2429 MJ16010 3–5122SC2121 MJ423 3–419 2SC243 MJ410 3–4172SC2122 MJ423 3–419 2SC2430 MJ15001 3–4972SC2126 MJE13005 3–661 2SC2431 MJ15015 3–52SC2127 BUV23 3–388 2SC2432 2N5882 3–772SC2128 MJ10015 3–461 2SC2433 MJ11016 3–4782SC2138 MJ16010 3–512 2SC2434 2N6328 —2SC2139 MJ16010 3–512 2SC2435 2N6059 3–932SC2140 MJ16010 3–512 2SC2436 2N6059 3–932SC2147 MJ10015 3–461 2SC2442 MJ10016 3–4612SC2148 MJ16010 3–512 2SC2443 MJ10016 3–4612SC2159 MJ10015 3–461 2SC2448 MJ16010 3–5122SC2167 MJE15030 3–684 2SC2449 MJ16010 3–5122SC2168 MJE15030 3–684 2SC245 2N3055A 3–52SC2169 MJ15001 3–497 2SC2450 MJ16010 3–5122SC2190 BUX48A 3–401 2SC2451 MJ16010 3–5122SC2191 2N6547 3–140 2SC2452 MJ16010 3–5122SC2204 MJ10016 3–461 2SC2453 MJ16010 3–5122SC2209 MJE181 3–589 2SC246 MJ410 3–4172SC2220 MJ10016 3–461 2SC2482 MJE2361T 3–6262SC2229 TIP47 3–887 2SC2487 MJ15001 3–4972SC2230 TIP47 3–887 2SC2488 MJ15001 3–4972SC2233 2N6497 3–136 2SC2489 MJ15001 3–4972SC2235 TIP47 3–887 2SC2492 MJ15001 3–4972SC2236 TIP31B 3–873 2SC2493 MJ15001 3–4972SC2238 TIP47 3–887 2SC2500 TIP31B 3–8732SC2242 MJE2361T 3–626 2SC2516 2N6497 3–1362SC2244 BUX48A 3–401 2SC2534 MJE13003 3–6552SC2245 MJ16010 3–512 2SC2535 MJE13005 3–6612SC2246 2N6547 3–140 2SC2536 MJE13005 3–6612SC2248 BUX48A 3–401 2SC2541 MJ16010 3–5122SC2249 MJ10015 3–461 2SC2555 MJW16206 3–8552SC2250 MJ10016 3–461 2SC2562 TIP42B 3–883 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–9
  • 16. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SC2569 2N3442 3–9 2SC495 2N4923 3–382SC2590 MJE341 3–604 2SC496 2N4921 3–382SC270 MJ423 3–419 2SC518 2N3716 3–122SC2792 MJE1320 3–620 2SC518A 2N3716 3–122SC2870L MJD340–1 3–577 2SC519 2N3055A 3–52SC2870S MJD340 3–577 2SC520 2N3716 3–122SC2871L MJD112–1 3–558 2SC520A 2N3716 3–122SC2871S MJD112 3–558 2SC521A 2N3716 3–122SC2873 MJD31C 3–542 2SC558 BUX48A 3–4012SC2881 MJD47 3–554 2SC586 MJ410 3–4172SC2882 MJD31C 3–542 2SC642 BU208A 3–2262SC2884 MJD31 3–542 2SC643 BU208A 3–2262SC2924 MJD340 3–577 2SC647 2N3716 3–122SC2982 MJD31 3–542 2SC665 2N3442 3–92SC3074 MJD41C 3–546 2SC681 MJ15011 3–5022SC3076 MJD31C 3–542 2SC687 MJ410 3–4172SC3132L MJD6039–1 3–584 2SC736 2N3055A 3–52SC3132S MJD6039 3–584 2SC768 2N3055 3–22SC3148 MJW16018 3–520 2SC769 MJ15001 3–4972SC3257 MJE13009 3–676 2SC770 MJ15011 3–5022SC3281 MJL3281A 3–843 2SC771 MJ15011 3–5022SC3294 TIP41B 3–883 2SC789 TIP31B 3–8732SC3306 MJE13009 3–676 2SC790 TIP31B 3–8732SC3307 MJW16018 3–520 2SC806 MJ423 3–4192SC3309 BUX48 3–401 2SC807 MJ413 3–4192SC3310 MJE16002 3–688 2SC808 MJ423 3–4192SC3346 MJE13009 3–676 2SC861 BUX48A 3–4012SC3386L MJD44H11–1 3–550 2SC862 BUX48A 3–4012SC3386S MJD44H11 3–550 2SC887 MJ410 3–4172SC3405 MJE1320 3–620 2SC888 MJ410 3–4172SC3419 TIP31B 3–873 2SC889 MJ410 3–4172SC3420 TIP41B 3–883 2SC902 MJ15001 3–4972SC3421 TIP47 3–887 2SC931 MJE3055T 3–6282SC3425 TIP50 3–887 2SC932 MJE3055T 3–6282SC3474 MJD112 3–558 2SC936 BU208A 3–2262SC3540 MJE15028 3–684 2SC937 BU208A 3–2262SC3559 MJW16018 3–520 2SC939 MJ15001 3–4972SC3621 MJE13005 3–661 2SC940 BUV23 3–3882SC4027 MJD340–1 3–577 2SC961 2N3055A 3–52SC4028 MJW16018 3–520 2SC999 BU208A 3–2262SC4053 MJE18004 3–715 2SD041 2N3716 3–122SC4065 MJF3055 3–794 2SD107 2N6056 3–972SC407 MJ15011 3–502 2SD1077L MJD31–1 3–5422SC408 MJ15011 3–502 2SD1077S MJD31 3–5422SC409 BUV23 3–388 2SD108 2N6056 3–972SC41 MJ410 3–417 2SD1080L MJD47–1 3–5542SC410 BUV23 3–388 2SD1080S MJD47 3–5542SC411 2N6547 3–140 2SD1081L MJD47–1 3–5542SC412 2N6547 3–140 2SD1081S MJD47 3–5542SC4134 MJD31C1 3–542 2SD110 MJ15001 3–4972SC4135 MJD31C1 3–542 2SD111 2N5882 3–772SC42 MJ410 3–417 2SD1112 MJD340 3–5772SC42A MJ410 3–417 2SD113 MJ802 3–4212SC43 2N3055A 3–5 2SD114 2N5686 3–662SC431 2N6341 3–117 2SD1164 MJD112–1 3–5582SC432 2N6341 3–117 2SD117 2N3442 3–92SC433 MJ15024 3–506 2SD1178 MJD112–1 3–5582SC434 MJ15024 3–506 2SD1178A MJD112–1 3–5582SC435 MJ10000 3–433 2SD118 2N3442 3–92SC436 MJ10000 3–433 2SD1187 TIP33C 3–8772SC44 2N3055A 3–5 2SD1222 MJD6039 3–5842SC492 2N3055A 3–5 2SD126 2N3442 3–92SC493 2N3055A 3–5 2SD1281L MJD44H11–1 3–550 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–10
  • 17. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SD1281S MJD44H11 3–550 2SD250 2N6328 —2SD1295 MJD200 3–569 2SD258 MJE15030 3–6842SD133 2N6338 3–117 2SD259 MJE15030 3–6842SD1412 2N6292 3–101 2SD262 2N6547 3–1402SD1413 MJE800T 3–612 2SD265 BUX48A 3–4012SD1414 TIP122 3–900 2SD266 BUX48A 3–4012SD1415 TIP120 3–900 2SD26C 2N3442 3–92SD1417 TIP101 3–891 2SD271 MJE13005 3–6612SD1465L MJD112–1 3–558 2SD272 MJE13005 3–6612SD1465S MJD112 3–558 2SD273 BUX48A 3–4012SD1520L MJD6039–1 3–584 2SD274 BUX48A 3–4012SD1520S MJD6039 3–584 2SD283 MJE15030 3–6842SD1590 MFJ6388 — 2SD284 MJE15030 3–6842SD161 MJ15001 3–497 2SD285 MJE15030 3–6842SD163 2N3716 3–12 2SD286 MJ15011 3–5022SD164 2N5882 3–77 2SD287 MJ15011 3–5022SD165 MJ15001 3–497 2SD288 TIP31B 3–8732SD166 MJ15011 3–502 2SD289 TIP31B 3–8732SD168 MJ3001 3–425 2SD293 2N6547 3–1402SD17 2N3442 3–9 2SD294 2N6547 3–1402SD172 2N5878 3–74 2SD297 MJE15030 3–6842SD173 2N5882 3–77 2SD299 BU208A 3–2262SD174 2N5878 3–74 2SD300 BU208A 3–2262SD1748 MJD112–1 3–558 2SD301 MJ3001 3–4252SD1748A MJD112–1 3–558 2SD310 2N6547 3–1402SD1749 MJD6039–1 3–584 2SD311 2N6547 3–1402SD1749A MJD6039–1 3–584 2SD313 TIP31B 3–8732SD175 2N5882 3–77 2SD314 TIP31B 3–8732SD176 2N5882 3–77 2SD317 TIP31B 3–8732SD177 MJ15001 3–497 2SD318 TIP31B 3–8732SD1799 MJD6039–1 3–584 2SD319 MJ15001 3–4972SD18 MJ15011 3–502 2SD322 MJ15011 3–5022SD1800 MJD112–1 3–558 2SD323 MJ15011 3–5022SD1801 MJD44H11–1 3–550 2SD325 TIP31B 3–8732SD1802 MJD44H11–1 3–550 2SD330 TIP31B 3–8732SD1803 MJD44H11–1 3–550 2SD331 TIP31B 3–8732SD1804 MJD44H11–1 3–550 2SD334 2N3055A 3–52SD1805 MJD44H11–1 3–550 2SD340 MJ15015 3–52SD181 MJ15001 3–497 2SD341 MJ15015 3–52SD1815 MJD44H11–1 3–550 2SD342 TIP31B 3–8732SD1816 MJD44H11–1 3–550 2SD343 TIP31B 3–8732SD1817 MJD6039–1 3–584 2SD344 TIP31B 3–8732SD199 BU208A 3–226 2SD345 TIP31B 3–8732SD200 BU208A 3–226 2SD347 TIP41B 3–8832SD202 2N3055A 3–5 2SD348 MJ16018 3–5202SD203 2N3442 3–9 2SD350 BU208A 3–2262SD206 2N5878 3–74 2SD351 BUX48A 3–4012SD207 2N5882 3–77 2SD356 2N4923 3–382SD208 MJ15001 3–497 2SD357 2N4923 3–382SD211 2N5878 3–74 2SD358 2N4923 3–382SD212 2N5882 3–77 2SD359 2N5191 3–442SD213 MJ15001 3–497 2SD360 2N5191 3–442SD214 MJ15001 3–497 2SD361 2N5191 3–442SD217 MJ15001 3–497 2SD363 MJ10015 3–4612SD218 MJ15001 3–497 2SD364 MJ10016 3–4612SD231 2N5302 3–54 2SD365 TIP31B 3–8732SD232 2N6275 3–108 2SD366 TIP31B 3–8732SD233 TIP31B 3–873 2SD368 MJ16018 3–5202SD235 TIP31B 3–873 2SD369 2N3716 3–122SD243 MJE15030 3–684 2SD372 MJ10015 3–4612SD244 MJE15030 3–684 2SD373 MJ10015 3–4612SD246 BU208A 3–226 2SD374 MJ10016 3–4612SD249 2N5302 3–54 2SD375 BUV23 3–388 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–11
  • 18. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SD376 BUV23 3–388 2SD494 MJE3055T 3–6282SD380 MJ16018 3–520 2SD495 MJE3055T 3–6282SD381 MJE15030 3–684 2SD496 2N6044 3–892SD382 MJE15030 3–684 2SD497 2N6044 3–892SD383 MJ423 3–419 2SD498 2N6045 3–892SD386 MJE13005 3–661 2SD499 MJE3055T 3–6282SD387 MJE13005 3–661 2SD500 MJE3055T 3–6282SD388 MJ15011 3–502 2SD501 2N6488 3–1322SD389 TIP31B 3–873 2SD502 2N6056 3–972SD390 TIP31B 3–873 2SD503 2N6056 3–972SD393 MJ16010 3–512 2SD504 2N6059 3–932SD394 MJ16010 3–512 2SD505 2N6059 3–932SD395 MJ16010 3–512 2SD506 2N6059 3–932SD396 2N6547 3–140 2SD517 BU208A 3–2262SD401 TIP47 3–887 2SD518 MJE13005 3–6612SD402 TIP47 3–887 2SD522 2N5882 3–772SD404 TIP120 3–900 2SD523 2N6056 3–972SD414 MJE341 3–604 2SD524 2N6056 3–972SD415 MJE341 3–604 2SD525 TIP41C 3–8832SD416 MJ16018 3–520 2SD526 TIP41B 3–8832SD418 MJ16018 3–520 2SD53 2N3055A 3–52SD422 MJE13005 3–661 2SD531 TIP41C 3–8832SD423 MJE13005 3–661 2SD533 MJ423 3–4192SD424 MJ15001 3–497 2SD538 MJ16010 3–5122SD425 MJ15001 3–497 2SD544 TIP41C 3–8832SD426 MJ15001 3–497 2SD549 TIP111 3–8952SD427 2N3055A 3–5 2SD55 2N6328 —2SD429 2N6547 3–140 2SD552 BUV23 3–3882SD430 2N3055A 3–5 2SD553 TIP41B 3–8832SD431 MJ15001 3–497 2SD570 TIP31B 3–8732SD432 MJ15001 3–497 2SD574 MJ11016 3–4782SD433 MJ15011 3–502 2SD577 BU208A 3–2262SD434 BUV23 3–388 2SD589 MJ16018 3–5202SD435 MJ13333 3–487 2SD598 2N3055A 3–52SD436 MJ13333 3–487 2SD60 2N3442 3–92SD437 MJ16010 3–512 2SD600 2N4923 3–382SD45 2N3442 3–9 2SD605 MJ10012 3–4572SD457 MJ10015 3–461 2SD608 TIP47 3–8872SD458 MJ16010 3–512 2SD610 TIP47 3–8872SD459 TIP121 3–900 2SD612 MJE521 3–6102SD46 2N3442 3–9 2SD613 TIP41C 3–8832SD460 TIP122 3–900 2SD622 MJE13005 3–6612SD461 MJ423 3–419 2SD626 MJ10012 3–4572SD463 2N6056 3–97 2SD627 BU208A 3–2262SD464 2N6056 3–97 2SD628 2N6059 3–932SD475 TIP31B 3–873 2SD629 2N6059 3–932SD476 TIP31B 3–873 2SD630 2N5302 3–542SD478 TIP47 3–887 2SD631 2N5302 3–542SD479 2N6038 3–85 2SD633 TIP122 3–9002SD480 2N6038 3–85 2SD634 TIP121 3–9002SD481 2N6039 3–85 2SD635 TIP120 3–9002SD482 2N5657 3–63 2SD640 BUX48A 3–4012SD483 2N5657 3–63 2SD642 MJ10016 3–4612SD484 2N5657 3–63 2SD643 MJ10015 3–4612SD485 2N5191 3–44 2SD644 MJ10016 3–4612SD486 2N5191 3–44 2SD645 MJ10016 3–4612SD487 2N5192 3–44 2SD646 MJ10016 3–4612SD488 2N4921 3–38 2SD649 BU208A 3–2262SD489 2N4922 3–38 2SD650 MJ10012 3–4572SD490 2N4923 3–38 2SD663 MJ10012 3–4572SD491 MJE3055T 3–628 2SD665 BUV23 3–3882SD492 2N3055 3–2 2SD668 MJE344 3–6042SD493 MJE3055T 3–628 2SD669 MJE344 3–604 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–12
  • 19. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement Number2SD67 2N3055A 3–5 2SD867 MJ15001 3–4972SD670 2N6578 3–144 2SD872 MJE3055T 3–6282SD673 2N3055A 3–5 2SD873 2N3773 3–212SD674 2N3055A 3–5 2SD878 2N3055 3–22SD675 2N3442 3–9 2SD88 2N5758 3–702SD676 2N3442 3–9 2SD880 TIP31B 3–8732SD678 TIP111 3–895 2SD882 MJE181 3–5892SD679 TIP111 3–895 2SD903 MJ16018 3–5202SD686 TIP122 3–900 2SD950 BU208A 3–2262SD687 MJE800T 3–612 2SD951 BU208A 3–2262SD689 TIP112 3–895 2SD952 BU208A 3–2262SD69 2N3442 3–9 2SD953 MJ16018 3–5202SD692 2N6056 3–97 2SD992 MJD31–1 3–5422SD693 MJ10012 3–457 BD127 MJE340 3–6022SD694 MJ10015 3–461 BD128 MJE340 3–6022SD695 MJ10015 3–461 BD129 MJE340 3–6022SD696 MJ10015 3–461 BD130 2N3055 3–22SD702 MJ10015 3–461 BD131 BD787 3–1942SD703 MJ10016 3–461 BD132 BD788 3–1942SD705 MJ10012 3–457 BD132 BD788 3–1942SD710 MJ10005 3–439 BD133 BD787 3–1942SD716 TIP41C 3–883 BD135 BD135 3–1582SD717 D44H10 3–411 BD135.10 BD135 3–1582SD718 MJE15028 3–684 BD135.16 BD135 3–1582SD721 2N6045 3–89 BD135.6 BD135 3–1582SD722 2N6045 3–89 BD136 BD136 3–1602SD723 TIP31C 3–873 BD136.10 BD136 3–1602SD724 MJE13005 3–661 BD136.16 BD136 3–1602SD725 MJ16018 3–520 BD136.6 BD136 3–1602SD726 TIP31C 3–873 BD137 BD137 3–1582SD727 2N3055A 3–5 BD137.10 BD137 3–1582SD728 2N3442 3–9 BD137.16 BD137 3–1582SD729 2N6284 3–112 BD137.6 MJE181 3–5892SD733 MJ15001 3–497 BD138 BD138 3–1602SD74 2N3442 3–9 BD138.10 BD138 3–1602SD751 MJ423 3–419 BD138.16 BD138 3–1602SD752 MJ15001 3–497 BD138.6 BD138 3–1602SD753 BUV23 3–388 BD139 BD139 3–1582SD757 MJE3439 3–630 BD139.10 BD139 3–1582SD758 MJE3439 3–630 BD139.16 BD139 3–1582SD759 TIP47 3–887 BD139.6 BD139 3–1582SD760 TIP47 3–887 BD140 BD140 3–1602SD761 TIP47 3–887 BD140.10 BD140.10 3–1602SD762 TIP31B 3–873 BD140.16 BD140 3–1602SD764 BU208A 3–226 BD140.6 BD140 3–1602SD765 BU208A 3–226 BD157 MJE340 3–6022SD768 2N6045 3–89 BD158 MJE340 3–6022SD793 MJE181 3–589 BD159 MJE340 3–6022SD794 MJE182 3–589 BD165 2N4921 3–382SD797 MJE802 3–612 BD166 2N4918 3–342SD801 BUX48A 3–401 BD167 2N4922 3–382SD802 BUX48A 3–401 BD168 2N4919 3–342SD803 2N6059 3–93 BD169 2N4923 3–382SD805 MJ10016 3–461 BD170 2N4920 3–342SD823 MJE15030 3–684 BD175 2N4923 3–382SD83 2N3442 3–9 BD175.10 2N4923 3–382SD836 TIP111 3–895 BD175.16 2N4923 3–382SD837 TIP120 3–900 BD175.6 2N4923 3–382SD839 MJE800T 3–612 BD176 BD180 3–1702SD84 MJ15011 3–502 BD176.10 BD180 3–1702SD840 TIP121 3–900 BD176.16 BD180 3–1702SD843 MJE15028 3–684 BD176.6 BD180 3–1702SD844 MJE3055T 3–628 BD177 BD179 3–168 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–13
  • 20. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBD177.10 BD179 3–168 BD262B BD682 3–190BD177.16 BD179 3–168 BD263 BD677 3–188BD177.6 BD179 3–168 BD263A BD679 3–188BD178 2N4919 3–34 BD263B BD681 3–188BD178.10 BD180 3–170 BD268A BDW46 3–212BD178.16 BD180 3–170 BD275 BD537 —BD178.6 BD180 3–170 BD276 BD538 —BD179 BD179 3–168 BD278 MJE3055T 3–628BD179.10 BD179 3–168 BD278A MJE3055T 3–628BD179.16 BD179 3–168 BD279 2N6035 3–85BD179.6 BD179 3–168 BD291 BD243B 3–178BD180 BD180 3–170 BD292 BD244B 3–178BD180.10 BD180 3–170 BD293 BD243B 3–178BD180.16 BD180 3–170 BD294 BD244B 3–178BD180.6 BD180 3–170 BD295 BD243B 3–178BD185 BD787 3–194 BD296 BD244B 3–178BD186 BD186 — BD306A BD787 3–194BD187 BD187 — BD306B BD787 3–194BD188 BD188 — BD307A BD787 3–194BD189 BD787 3–194 BD307B BD787 3–194BD190 BD788 3–194 BD311 2N3716 3–12BD195 MJE3055T 3–628 BD312 2N3792 3–25BD196 MJE2955T 3–628 BD329 MJE200 3–592BD197 MJE3055T 3–628 BD330 MJE210 3–592BD198 MJE2955T 3–628 BD337 BDX33D —BD199 MJE3055T 3–628 BD338 BDX34D —BD200 MJE2955T 3–628 BD342 2N3055 3–2BD202 BD796 — BD343 MJE2955T 3–628BD206 MJE2955T 3–628 BD344 BD138 3–160BD207 MJE3055T 3–628 BD345 BD137 3–158BD208 MJE2955T 3–628 BD348 BD140 3–160BD220 BD537 — BD349 BD139 3–158BD223 BD538 — BD361 MJE200 3–592BD226 BD135 3–158 BD361A MJE200 3–592BD227 BD136 3–160 BD362 MJE210 3–592BD228 BD137 3–158 BD362A MJE210 3–592BD229 BD138 3–160 BD375 BD787 3–194BD230 BD139 3–158 BD376 BD788 3–194BD231 BD140 3–160 BD377 BD787 3–194BD232 BD159 3–162 BD378 BD788 3–194BD237 BD237 2N4923 3–172 BD379 BD789 3–198BD238 2N4920 3–34 BD380 BD790 3–198BD240C TIP32C 3–873 BD385 MJE181 3–589BD241 BD241B 3–174 BD385–1 MJE181 3–589BD241A BD241B 3–174 BD385–2 MJE181 3–589BD241B BD241B 3–174 BD385–5 MJE181 3–589BD241C BD241C 3–174 BD385–8 MJE181 3–589BD242 BD242B 3–174 BD386 MJE171 3–589BD242A BD242B 3–174 BD386–1 MJE171 3–589BD242B BD242B 3–174 BD386–2 MJE171 3–589BD242C BD242C 3–174 BD386–5 MJE171 3–589BD243 BD243B 3–178 BD386–8 MJE171 3–589BD243A BD243B 3–178 BD387 MJE182 3–589BD243B BD243B 3–178 BD387–1 MJE182 3–589BD243C BD243C 3–178 BD387–2 MJE182 3–589BD244 BD244B 3–178 BD387–5 MJE182 3–589BD244A BD244B 3–178 BD387–8 MJE182 3–589BD244B BD244B 3–178 BD388 MJE172 3–589BD244C BD244C 3–178 BD388–1 MJE172 3–589BD249C BD249C — BD388–2 MJE172 3–589BD250C BD250C — BD388–5 MJE172 3–589BD262 BD678 3–190 BD388–8 MJE172 3–589BD262A BD680 3–190 BD389 MJE243 3–596 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–14
  • 21. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBD389–1 MJE243 3–596 BD436 BD438 3–185BD389–2 MJE243 3–596 BD438 BD438 3–185BD389–5 MJE243 3–596 BD440 BD440 3–185BD389–8 MJE243 3–596 BD442 BD442 3–185BD390 MJE253 3–596 BD443 BD179 3–168BD390–1 MJE253 3–596 BD443A BD179 3–168BD390–2 MJE253 3–596 BD466A 2N6038 3–85BD390–5 MJE253 3–596 BD466B 2N6038 3–85BD390–8 MJE253 3–596 BD477A 2N6035 3–85BD410 MJE340 3–602 BD477B 2N6035 3–85BD411 2N6038 3–85 BD537 TIP31B 3–873BD411–1 2N6038 3–85 BD538 TIP32B 3–873BD411–2 2N6038 3–85 BD539 BD243B 3–178BD411–5 2N6038 3–85 BD539A BD243B 3–178BD411–8 2N6038 3–85 BD539B BD243B 3–178BD412 2N6038 3–85 BD539C BD243C 3–178BD412–1 2N6038 3–85 BD540 BD244B 3–178BD412–2 2N6038 3–85 BD540A BD244B 3–178BD412–5 2N6038 3–85 BD540B BD244B 3–178BD412–8 2N6038 3–85 BD540C BD244C 3–178BD413 2N6035 3–85 BD544 BD808 3–206BD413–1 2N6035 3–85 BD544A BD808 3–206BD413–2 2N6035 3–85 BD544B BD810 3–206BD413–5 2N6035 3–85 BD561 BD187 —BD413–8 2N6035 3–85 BD575 BD241B 3–174BD414 2N6035 3–85 BD576 BD242B 3–174BD414–1 2N6035 3–85 BD577 BD241B 3–174BD414–2 2N6035 3–85 BD578 BD242B 3–174BD414–5 2N6035 3–85 BD579 BD241B 3–174BD414–8 2N6035 3–85 BD580 BD242B 3–174BD415 MJE181 3–589 BD581 BD241C 3–174BD415–1 MJE181 3–589 BD582 BD242C 3–174BD415–2 MJE181 3–589 BD589 BD537 —BD415–8 MJE181 3–589 BD590 BD538 —BD416 MJE171 3–589 BD591 BD241C 3–174BD416–1 MJE171 3–589 BD592 BD242C 3–174BD416–2 MJE171 3–589 BD601 BD801 3–202BD416–5 MJE171 3–589 BD602 BD802 3–204BD417 MJE182 3–589 BD606 BD808 3–206BD417–1 MJE182 3–589 BD608 BD808 3–206BD417–2 MJE182 3–589 BD610 BD810 3–206BD417–5 MJE182 3–589 BD611 BD433 —BD417–8 MJE182 3–589 BD612 BD434 —BD418 MJE172 3–589 BD613 BD435 —BD418–1 MJE172 3–589 BD614 BD436 —BD418–2 MJE172 3–589 BD615 BD437 3–182BD418–5 MJE172 3–589 BD616 BD438 3–185BD418–8 MJE172 3–589 BD617 BD439 —BD419 MJE243 3–596 BD618 BD440 3–185BD419–1 MJE243 3–596 BD619 BD441 3–182BD419–2 MJE243 3–596 BD620 BD442 3–185BD419–8 MJE243 3–596 BD633 BD241B 3–174BD420 MJE253 3–596 BD634 BD242B 3–174BD420–1 MJE253 3–596 BD635 BD241B 3–174BD420–2 MJE253 3–596 BD636 BD242B 3–174BD420–5 MJE253 3–596 BD637 BD241B 3–174BD420–8 MJE253 3–596 BD638 BD242B 3–174BD424 BD791 3–198 BD661 BD189 —BD429 MJE200 3–592 BD662 BD186 —BD430 MJE210 3–592 BD675 BD677 3–188BD433 BD437 3–182 BD675A BD677A 3–188BD434 BD438 3–185 BD676 BD678 3–190BD435 BD437 3–182 BD676A BD678A 3–190 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–15
  • 22. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBD677 BD677 3–188 BD880 BD780 3–192BD677A BD677A 3–188 BD905 2N6487 3–132BD678 BD678 3–190 BD906 2N6490 3–132BD678A BD678A 3–190 BD907 2N6487 3–132BD679 BD679 3–188 BD908 2N6490 3–132BD679A BD679A 3–188 BD909 2N6488 3–132BD680 BD680 3–190 BD910 2N6491 3–132BD680A BD680A 3–190 BD933 BD241B 3–174BD681 BD681 3–188 BD934 BD242B 3–174BD682 BD682 3–190 BD935 BD241B 3–174BD743D MJE15030 3–684 BD936 BD242B 3–174BD744 BD808 3–206 BD937 BD241B 3–174BD744A BD808 3–206 BD938 BD242B 3–174BD744B BD810 3–206 BD939 BD241C 3–174BD744D MJE15031 3–684 BD940 BD242C 3–174BD775 BD777 3–192 BD941 MJE15030 3–684BD776 BD776 3–192 BD942 MJE15031 3–684BD777 BD777 3–192 BD951 BD537 —BD778 BD778 3–192 BD952 BD538 —BD780 BD780 3–192 BD953 BD241C 3–174BD785 BD787 3–194 BD954 BD242C 3–174BD786 BD788 3–194 BD955 MJE15030 3–684BD787 BD787 3–194 BD956 MJE15031 3–684BD788 BD788 3–194 BD957 BD775 —BD789 BD789 3–198 BD977 BD777 3–192BD790 BD790 3–198 BD978 BD778 3–192BD791 BD791 3–198 BD980 BD780 3–192BD792 BD792 3–198 BDT29 TIP31B 3–873BD801 BD801 3–202 BDT29A TIP32B 3–873BD802 BD802 3–204 BDT29B TIP31B 3–873BD806 BD808 3–206 BDT29C TIP31C 3–873BD808 BD808 3–206 BDT30 TIP30A —BD809 BD810 3–206 BDT30B TIP30B 3–871BD810 BD810 3–206 BDT30C TIP30C 3–871BD813 MJE181 3–589 BDT31 TIP31B 3–873BD814 MJE171 3–589 BDT31A TIP31B 3–873BD815 MJE182 3–589 BDT31B TIP31B 3–873BD816 MJE172 3–589 BDT31C TIP31C 3–873BD817 MJE243 3–596 BDT32 TIP32B 3–873BD818 MJE253 3–596 BDT32A TIP32B 3–873BD825 MJE181 3–589 BDT32B TIP32B 3–873BD826 MJE171 3–589 BDT32C TIP32C 3–873BD827 MJE182 3–589 BDT41 TIP41B 3–883BD828 MJE172 3–589 BDT41A TIP41B 3–883BD829 MJE243 3–596 BDT41B TIP41B 3–883BD830 MJE253 3–596 BDT41C TIP41C 3–883BD833 BD787 3–194 BDT42 TIP42B 3–883BD834 BD788 3–194 BDT42A TIP42B 3–883BD835 BD787 3–194 BDT42B TIP42B 3–883BD836 BD788 3–194 BDT42C TIP42C 3–883BD837 BD789 3–198 BDT60 TIP125 3–900BD838 BD790 3–198 BDT60A TIP126 3–900BD839 BD790 3–198 BDT60B TIP127 3–900BD861 BD677 3–188 BDT60C BDX53D —BD862 BD678 3–190 BDT61 TIP120 3–900BD863 BD677 3–188 BDT61A TIP121 3–900BD864 BD678 3–190 BDT61B TIP122 3–900BD865 BD679 3–188 BDT61C BDX53D —BD866 BD680 3–190 BDT62A BDW46 3–212BD875 BD775 — BDT62B BDW47 3–212BD876 BD776 3–192 BDT62C BDW47 3–212BD877 BD777 3–192 BDT63B BDW42 3–212BD878 BD778 3–192 BDT63C BDW42 3–212 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–16
  • 23. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBDT64B BDW46 3–212 BDW57 BD137 3–158BDT64C BDW47 3–212 BDW58 BD138 3–160BDT65B BDW42 3–212 BDW59 BD139 3–158BDT65C BDW42 3–212 BDW60 BD140 3–160BDT92 BD808 3–206 BDW63 BDX53B 3–221BDT94 BD810 3–206 BDW63A BDX53B 3–221BDV64 BDV64A — BDW63B BDX53B 3–221BDV64A BDV64B 3–208 BDW63C BDX53C 3–221BDV64B BDV64B 3–208 BDW63D BDX53D —BDV64C BDV64B 3–208 BDW64 BDX54B 3–221BDV65 BDV65A — BDW64A BDX54B 3–221BDV65A BDV65B 3–208 BDW64B BDX54B 3–221BDV65B BDV65B 3–208 BDW64C BDX54C 3–221BDV65C BDV65B 3–208 BDW73D BDX33D —BDV66C MJH11018 3–825 BDW74D BDX34D —BDV66D MJH11019 3–825 BDW83 BDV65A —BDV67D MJH11020 3–825 BDW83A BDV65A —BDV91 MJE3055T 3–628 BDW83B BDV65A —BDV92 TIP34B 3–877 BDW83C BDV65B 3–208BDV93 TIP34C 3–877 BDW84 BDV64A —BDV94 TIP2955 3–908 BDW84A BDV64A —BDV95 TIP33B 3–877 BDW84B BDV64A —BDV96 TIP33C 3–877 BDW84C BDV64B 3–208BDW21 2N3716 3–12 BDW93C BDW42 3–212BDW21A 2N3716 3–12 BDW94B BDW46 3–212BDW21B 2N3716 3–12 BDW94C BDW47 3–212BDW21C 2N5882 3–77 BDX10 2N3055A 3–5BDW22 2N3792 3–25 BDX10–4 2N3055A 3–5BDW22B 2N3792 3–25 BDX10–6 2N3055A 3–5BDW22C 2N5880 3–77 BDX10–7 2N3055A 3–5BDW23 BDX53B 3–221 BDX10C 2N3055A 3–5BDW23A BDX53B 3–221 BDX18 MJ2955 3–2BDW23B BDX53B 3–221 BDX33B BDX33B 3–217BDW23C BDX53C 3–221 BDX33C BDX33C 3–217BDW24 BDX54B 3–221 BDX33D BDX33C 3–217BDW24A BDX54B 3–221 BDX34B BDX34B 3–217BDW24B BDX54B 3–221 BDX34C BDX34C 3–217BDW24C BDX54C 3–221 BDX34D BDX34C 3–217BDW42 BDW42 3–212 BDX35 TIP42C 3–883BDW43 BDW42 3–212 BDX36 TIP42D —BDW46 BDW46 3–212 BDX37 TIP42D —BDW47 BDW47 3–212 BDX42 BD775 —BDW48 BDW47 3–212 BDX43 BD777 3–192BDW51 2N3716 3–12 BDX45 BD776 3–192BDW51A 2N3716 3–12 BDX46 BD778 3–192BDW51B 2N3716 3–12 BDX53 BDX53B 3–221BDW51C 2N5882 3–77 BDX53A BDX53B 3–221BDW52 2N3792 3–25 BDX53B BDX53B 3–221BDW52A 2N3792 3–25 BDX53C BDX53C 3–221BDW52B 2N3792 3–25 BDX53D BDX53C 3–221BDW52C 2N5880 3–77 BDX54 BDX54B 3–221BDW53 TIP120 3–900 BDX54A BDX54B 3–221BDW53A TIP120 3–900 BDX54B BDX54B 3–221BDW53B TIP121 3–900 BDX54C BDX54C 3–221BDW53C BDX53C 3–221 BDX54D BDX54C 3–221BDW53D BDX53D — BDX70 2N6487 3–132BDW54 TIP125 3–900 BDX71 2N6487 3–132BDW54A TIP125 3–900 BDX72 2N6488 3–132BDW54B TIP126 3–900 BDX73 2N6488 3–132BDW54C BDX54C 3–221 BDX74 2N6487 3–132BDW54D BDX54D — BDX75 2N6487 3–132BDW55 BD135 3–158 BDX83 MJ3001 3–425BDW56 BD136 3–160 BDX83A MJ3001 3–425 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–17
  • 24. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBDX83B MJ3001 3–425 BUF420A MJW18020 —BDX83C MJ4035 — BUH100 BUH100 3–278BDX84 MJ2501 3–425 BUH150 BUH150 3–287BDX84A MJ2501 3–425 BUH50 BUH50 3–262BDX84B MJ2501 3–425 BUH51 BUH51 3–270BDX84C MJ4032 — BUL146 BUL146 3–335BDX91 2N3716 3–12 BUL146F BUL146F 3–335BDX92 2N3792 3–25 BUL147 BUL147 3–343BDX93 2N3716 3–12 BUL147F BUL147F 3–343BDX94 2N3792 3–25 BUL382 BUL45 3–316BDX95 2N5882 3–77 BUL43B BUL43B 3–304BDX96 2N5880 3–77 BUL44 BUL44 3–296BDY29 2N5303 3–54 BUL44D2 BUL44D2 3–306BDY34 BD787 3–194 BUL44F BUL44F 3–296BDY37 2N3773 3–21 BUL45 BUL45 3–316BDY96 BUX48 3–401 BUL45D2 BUL45D2 3–325BDY96–1 BUX48 3–401 BUL45F BUL45F 3–316BDY96/01 BUX48 3–401 BUS11 MJE16002 3–688BDY97 BUX48 3–401 BUS12 BUX48 3–401BDY97–1 BUX48 3–401 BUS12A BUX48A 3–401BU1008ADF MJF16018+DIODE — BUS13 BUX48 3–401BU1008AF MJF16018 — BUS13A BUX48A 3–401BU104P BU406 3–244 BUS14 BUX98 —BU105 BU208A 3–226 BUS14A BUX98A —BU108 BU208A 3–226 BUS46P MJE16002 3–688BU109P BU407 3–244 BUS47 BUX48 3–401BU124 BU426 — BUS47A BUX48A 3–401BU126 BUX48A 3–401 BUS47AP BUV47A —BU134 MJ423 3–419 BUS47P BUV47 —BU137 MJ16018 3–520 BUS48 BUX48 3–401BU157 MJ16018 3–520 BUS48A BUX48A 3–401BU180 MJE5741 3–640 BUS48AP MJW16010A 3–847BU180A MJE5742 3–640 BUS48P MJW16010A 3–847BU204 BU208A 3–226 BUS50 BUS50 3–351BU205 BU208A 3–226 BUS52 BUS52 —BU205A BU208A 3–226 BUS97 MJ16010 3–512BU207 BU208A 3–226 BUS98 BUX98 3–353BU208 BU208A 3–226 BUS98A BUX98A 3–353BU208A BU208A 3–226 BUT11AF BUT11AF 3–360BU208D MJF16018+DIODE — BUT33 BUT33 3–364BU223 MJ423 3–419 BUT34 BUT34 3–370BU223A MJ423 3–419 BUT35 BUT35 —BU322 BU323A 3–231 BUT56A BUT56A —BU322A BU323A 3–231 BUT90 BUS50 3–351BU323 BU323A 3–231 BUT91 BUS52 —BU323A BU323A 3–231 BUT92 BUS52 —BU323AP BU323AP 3–235 BUV10 BUV10 —BU323P BU323AP 3–235 BUV10N BUV10 —BU323Z BU323Z 3–239 BUV11 BUV11 3–376BU326A — BUV11N BUV11 3–376BU406 BU406 3–244 BUV12 BUV11 3–376BU407 BU407 3–244 BUV18 BUS50 3–351BU426 BUV48 3–391 BUV19 BUS50 3–351BU426A BUV48A 3–391 BUV20 BUV20 3–379BU433 BUV48 3–391 BUV21 BUV21 3–382BU500 BU500 — BUV21N BUV21 3–382BU522 BU522B 3–246 BUV22 BUV22 3–385BU522A BU522B 3–246 BUV23 BUV23 3–388BU522B BU522B 3–246 BUV24 BUX98 —BU806 BU806 3–249 BUV25 BUX98A —BU808 BU208A 3–226 BUV44 BUX48 3–401BUD43B BUD43B 3–251 BUV45 BUX48A 3–401BUD44D2 BUD44D2 3–253 BUV46 BUV46 — Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–18
  • 25. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberBUV47 BUV48 3–391 D40D10 MJE182 3–589BUV47A BUV48A 3–391 D40D11 MJE182 3–589BUV48 BUV48 3–391 D40D13 MJE182 3–589BUV48A BUV48A 3–391 D40D14 MJE182 3–589BUV60 BUV60 — D40D2 MJE181 3–589BUV98A MJW18020 — D40D3 MJE181 3–589BUW13 MJW16010A 3–847 D40D4 MJE181 3–589BUW13A MJW16010A 3–847 D40D5 MJE181 3–589BUW34 BUX48 3–401 D40D7 MJE181 3–589BUW35 BUX48 3–401 D40D8 MJE181 3–589BUW36 BUX48A 3–401 D40E1 MJE181 3–589BUW44 BUX48 3–401 D40E5 MJE181 3–589BUW45 BUX48 3–401 D40E7 MJE182 3–589BUW46 BUX48A 3–401 D40K1 MJE800 3–612BUW72 MJE13009 3–676 D40K2 MJE800 3–612BUW74 BUX48 3–401 D40K3 MJE800 3–612BUW75 BUX48 3–401 D40K4 MJE800 3–612BUW76 BUX48 3–401 D40N1 MJE340 3–602BUW77 BUX48 3–401 D40N2 MJE340 3–602BUW84 MJE13003 3–655 D40N3 MJE340 3–602BUW85 MJE13003 3–655 D40N4 MJE340 3–602BUX11 BUX11 — D40P1 MJE341 3–604BUX12 BUV11 3–376 D40P3 MJE344 3–604BUX13 BUX48 3–401 D40P5 MJE340 3–602BUX14 BUX48 3–401 D41C2 D44H8 3–411BUX15 BUX48A 3–401 D41D1 2N4918 3–34BUX17 BUX48 3–401 D41D10 2N4920 3–34BUX17A BUX48 3–401 D41D11 2N4920 3–34BUX17B BUX48 3–401 D41D13 2N4920 3–34BUX17C BUX48 3–401 D41D14 2N4920 3–34BUX18 2N6544 — D41D2 2N4918 3–34BUX18A 2N6544 — D41D4 2N4919 3–34BUX18B BUX48A 3–401 D41D5 2N4919 3–34BUX18C BUX48A 3–401 D41D7 2N4919 3–34BUX21 BUV21 3–382 D41D8 2N4919 3–34BUX41 BUX41 3–398 D41E1 2N4918 3–34BUX41N BUX41 3–398 D41E5 2N4919 3–34BUX42 BUX48 3–401 D41E7 2N4920 3–34BUX43 BUX48 3–401 D41K1 MJE700 3–612BUX47 BUX48 3–401 D41K2 MJE700 3–612BUX47A BUX48A 3–401 D41K3 MJE700 3–612BUX48 BUX48 3–401 D41K4 MJE700 3–612BUX48A BUX48A 3–401 D42C1 MJE181 3–589BUX48S BUX48 3–401 D42C2 MJE181 3–589BUX82 BUX48A 3–401 D42C3 MJE181 3–589BUX83 BUX48A 3–401 D42C4 MJE171 3–589BUX84 BUX85 3–408 D42C5 MJE171 3–589BUX85 BUX85 3–408 D42C6 MJE171 3–589BUX86 MJE13003 3–655 D42C7 MJE171 3–589BUX87 MJE13003 3–655 D42C8 MJE171 3–589BUX8O 2N6547 3–140 D42C9 MJE171 3–589BUX98 BUX98 — D43C1 MJE181 3–589BUX98A BUX98A — D43C2 MJE181 3–589BUY29 MJ410 3–417 D43C3 MJE181 3–589BUY30 MJ423 3–419 D43C4 MJE171 3–589BUY49P MJE340 3–602 D43C5 MJE171 3–589BUY69A BUX48A 3–401 D43C6 MJE171 3–589BUY69B BUX48 3–401 D43C7 MJE171 3–589D40C1 MJE800 3–612 D43C8 MJE171 3–589D40C2 MJE800 3–612 D43C9 MJE171 3–589D40C4 MJE800 3–612 D44D1 TIP101 3–891D40C5 MJE800 3–612 D44D2 TIP101 3–891D40D1 MJE181 3–589 D44D3 2N6044 3–89 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–19
  • 26. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberD44D4 2N6044 3–89 D72F5T2 MJD44H11 3–550D44D5 2N6044 3–89 D72FYD MJD6039 3–584D44D6 2N6044 3–89 D72FYD1 MJD6039–1 3–584D44H1 D44H8 3–411 D72K1.5D1 MJD6039–1 3–584D44H10 D44H10 3–411 D72K1.5D2 MJD6039 3–584D44H11 D44H11 3–411 D72K3D1 MJD6039–1 3–584D44H2 D44H8 3–411 D72K3D2 MJD6039 3–584D44H4 D44H8 3–411 D73F5T1 MJD44H11–1 3–550D44H5 D44H8 3–411 D73F5T2 MJD44H11 3–550D44H7 D44H8 3–411 D73FY4D MJD6039 3–584D44H8 D44H8 3–411 D73FY4D1 MJD6039–1 3–584D44R1 TIP47 3–887 D73K3D1 MJD6039–1 3–584D44R2 TIP47 3–887 D73K3D2 MJD6039 3–584D44R3 TIP48 3–887 DTS1010 2N6056 3–97D44R4 TIP48 3–887 DTS1020 MJ3001 3–425D44R5 TIP47 3–887 DTS401 BUX48A 3–401D44R6 TIP48 3–887 DTS402 BUX48A 3–401D44TD3 MJE16002 3–688 DTS4026 MJ10012 3–457D44TD4 MJE16002 3–688 DTS4039 MJ10000 3–433D44TD5 MJE16002 3–688 DTS4040 MJ10000 3–433D44TE3 MJE16002 3–688 DTS4041 MJ10000 3–433D44TE4 MJE16002 3–688 DTS4045 MJ10000 3–433D44TE5 MJE16002 3–688 DTS4059 MJ10000 3–433D44VH1 D44VH10 3–413 DTS4061 MJ10000 3–433D44VH10 D44VH10 3–413 DTS4066 MJ10000 3–433D44VH4 D44VH10 3–413 DTS4067 MJ10000 3–433D44VH7 D44VH10 3–413 DTS4074 MJ10005 3–439D45C1 D45C12 3–415 DTS4075 MJ10005 3–439D45C10 D45C12 3–415 DTS410 MJ410 3–417D45C11 D45C12 3–415 DTS411 MJ423 3–419D45C12 D45C12 3–415 DTS413 MJ413 3–419D45C2 D45C12 3–415 DTS423 MJ423 3–419D45C3 D45C12 3–415 DTS425 BUX48A 3–401D45C4 D45C12 3–415 DTS431 MJ423 3–419D45C5 D45C12 3–415 DTS660 2N6233 —D45C6 D45C12 3–415 DTS663 2N6235 —D45C7 D45C12 3–415 DTS665 2N6235 —D45C8 D45C12 3–415 DTS701 BU208A 3–226D45C9 D45C12 3–415 DTS702 BU208A 3–226D45E1 TIP125 3–900 DTS712 BU208A 3–226D45E2 TIP126 3–900 DTS714 BU208A 3–226D45E3 TIP126 3–900 DTS801 BU208A 3–226D45H1 D45H11 3–411 DTS802 BU208A 3–226D45H10 D45H10 3–411 DTS804 BU208A 3–226D45H11 D45H11 3–411 DTS812 BU208A 3–226D45H12 D45H11 3–411 DTS814 BU208A 3–226D45H2 D45H8 3–411 FT2955 MJE2955T 3–628D45H4 D45H8 3–411 FT3055 MJE3055T 3–628D45H5 D45H8 3–411 FT317 MJE15028 3–684D45H7 D45H8 3–411 FT317A MJE15028 3–684D45H8 D45H8 3–411 FT317B MJE15030 3–684D45H9 D45H11 3–411 FT401B BUX48A 3–401D45VH1 D45VH10 3–413 FT402 BUX48A 3–401D45VH10 D45VH10 3–413 FT410 MJ410 3–417D45VH4 D45VH10 3–413 FT411 MJ423 3–419D45VH7 D45VH10 3–413 FT413 MJ413 3–419D56W1 BU208A 3–226 FT417 MJE15029 3–684D56W2 BU208A 3–226 FT417A MJE15029 3–684D56W3 BU208A 3–226 FT417B MJE15031 3–684D56W4 BU208A 3–226 FT423 MJ423 3–419D64VP4 MJ16010 3–512 FT431 MJ423 3–419D64VP5 MJ16010 3–512 FT47 TIP47 3–887D72F5T1 MJD44H11–1 3–550 FT48 TIP48 3–887 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–20
  • 27. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberFT49 TIP49 3–887 IR647 2N6052 3–93FT50 TIP50 3–887 IR660 MJ410 3–417GE5060 MJ10000 3–433 IR663 MJ423 3–419GE5061 MJ10000 3–433 IR665 BU208A 3–226GE6060 MJ10015 3–461 IR701 BU208A 3–226GE6061 MJ10015 3–461 IR801 BU208A 3–226GE6062 MJ10015 3–461 IR802 MJ802 3–421GE6251 MJ10005 3–439 KDT410 MJ410 3–417GE6252 MJ10005 3–439 KDT411 MJ423 3–419GE6253 MJ10005 3–439 KDT413 MJ413 3–419IR1000 MJ1000 3–423 KDT423 MJ423 3–419IR1001 MJ1001 3–423 KDT431 MJ423 3–419IR1010 2N6056 3–97 KP3946 2N6274 3–108IR1020 MJ3001 3–425 KP3948 2N6274 3–108IR2500 MJ2501 3–425 KSA1010 MJE15029 3–684IR2501 MJ2501 3–425 KSA1220A MJE350 3–606IR3000 MJ3001 3–425 KSA614 TIP42B 3–883IR3001 MJ3001 3–425 KSA940 MJE15031 3–684IR3771 2N3771 3–17 KSB546 MJE15031 3–684IR3772 2N3772 3–17 KSB596 TIP32B 3–873IR3777 2N3773 3–21 KSB601 BDX34C 3–217IR401 BUX48A 3–401 KSB707 D45H11 3–411IR402 BUX48A 3–401 KSB744 MJE171 3–589IR4039 MJ10000 3–433 KSB744A MJE171 3–589IR4040 MJ10000 3–433 KSB772 MJE171 3–589IR4041 MJ10000 3–433 KSB794 MJE703 3–612IR4045 MJ10000 3–433 KSB795 MJE703 3–612IR4050 MJ10000 3–433 KSB834 TIP32B 3–873IR4055 MJ10000 3–433 KSC1507 MJE2360T 3–626IR4059 MJ10000 3–433 KSC1520 MJE3439 3–630IR4061 MJ10000 3–433 KSC1520A MJE2360T 3–626IR410 MJ410 3–417 KSC2073 MJE15030 3–684IR411 MJ423 3–419 KSC2233 TIP41C 3–883IR413 MJ413 3–419 KSC2334 MJE15028 3–684IR423 MJ423 3–419 KSC2335 MJE13007 3–667IR425 BUX48A 3–401 KSC2517 TIP41C 3–883IR431 MJ423 3–419 KSC2688 MJE3439 3–630IR4502 MJ4502 3–431 KSC2690 MJE340 3–602IR5000 MJ10000 3–433 KSC2690A MJE340 3–602IR5001 MJ10000 3–433 KSC2752 2N5657 3–63IR5060 MJ10000 3–433 KSD288 TIP41B 3–883IR5061 MJ10000 3–433 KSD362 D44H11 3–411IR515 BUV23 3–388 KSD363 MJE15028 3–684IR516 BUV23 3–388 KSD401 MJE15030 3–684IR517 2N6251 3–104 KSD526 TIP31B 3–873IR518 2N6547 3–140 KSD560 BDX33C 3–217IR519 2N6547 3–140 KSD568 D44H11 3–411IR5252 MJ10007 3–445 KSD569 D44H11 3–411IR5261 MJ10007 3–445 KSD708 D45H11 3–411IR6000 MJ10005 3–439 KSD73 D44H8 3–411IR6001 MJ10005 3–439 KSD794 MJE181 3–589IR6002 MJ10005 3–439 KSD794A MJE181 3–589IR6060 MJ10005 3–439 KSD818 MJW16018 3–520IR6061 MJ10005 3–439 KSD819 MJW16018 3–520IR6062 MJ10005 3–439 KSD820 MJW16018 3–520IR6251 MJ10007 3–445 KSD821 MJW16018 3–520IR6252 MJ10007 3–445 KSD868 MJW16018 3–520IR6302 2N5631 3–59 KSD869 MJW16018 3–520IR640 MJ3001 3–425 KSD870 MJW16018 3–520IR641 MJ3001 3–425 KSD871 MJW16018 3–520IR642 2N6578 3–144 KSD880 TIP31B 3–873IR645 MJ2501 3–425 KSD882 MJE181 3–589IR646 MJ2501 3–425 KSD985 MJE803 3–612 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–21
  • 28. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberKSD986 MJE803 3–612 MJ14001 MJ14003 3–493MDS1678 MJE181 3–589 MJ14002 MJ14002 3–493MDS20 2N5657 3–63 MJ14003 MJ14003 3–493MDS21 2N5657 3–63 MJ15001 MJ15001 3–497MDS26 MJE181 3–589 MJ15002 MJ15002 3–497MDS27 MJE181 3–589 MJ15003 MJ15003 3–500MDS60 MJE350 3–606 MJ15004 MJ15004 3–500MDS73 MJE171 3–589 MJ15011 MJ15011 3–502MDS74 MJE172 3–589 MJ15012 MJ15012 3–502MDS75 MJE253 3–596 MJ15015 MJ15015 3–5MDS76 MJE181 3–589 MJ15016 MJ15016 3–5MDS77 MJE171 3–589 MJ15018 MJ15020 3–504MJ1000 MJ1001 3–423 MJ15019 MJ15021 3–504MJ10000 MJ10000 3–433 MJ15020 MJ15020 3–504MJ10002 MJ10007 3–445 MJ15021 MJ15021 3–504MJ10003 MJ10007 3–445 MJ15022 MJ15024 3–506MJ10004 MJ10005 3–439 MJ15023 MJ15025 3–509MJ10005 MJ10005 3–439 MJ15024 MJ15024 3–506MJ10006 MJ10007 3–445 MJ15025 MJ15025 3–509MJ10007 MJ10007 3–445 MJ15026 MJ15024 3–506MJ10009 MJ10009 3–451 MJ15027 MJ15025 3–509MJ1001 MJ1001 3–423 MJ16008 MJ16010 3–512MJ10012 MJ10012 3–457 MJ16010 MJ16010 3–512MJ10015 MJ10015 3–461 MJ16012 MJ16012 3–512MJ10016 MJ10016 3–461 MJ16014 MJ16018 3–520MJ10020 MJ10020 3–466 MJ16016 MJ16018 3–520MJ10021 MJ10021 3–466 MJ16018 MJ16018 3–520MJ10022 MJ10022 3–472 MJ16020 MJ16020 3–526MJ10023 MJ10023 3–472 MJ16022 MJ16022 3–526MJ105 BU208A 3–226 MJ16110 MJ16110 3–529MJ11011 MJ11013 3–478 MJ205 BU208A 3–226MJ11012 MJ11014 3–478 MJ21193 MJ21193 3–537MJ11013 MJ11013 3–478 MJ21194 MJ21194 3–537MJ11014 MJ11014 3–478 MJ2267 MJ15016 3–5MJ11015 MJ11015 3–478 MJ2268 MJ2955 3–2MJ11016 MJ11016 3–478 MJ2300 MJE270 3–600MJ11017 MJ11017 3–481 MJ2305 MJE271 3–600MJ11018 MJ11018 3–481 MJ2500 MJ2501 3–425MJ11021 MJ11021 3–481 MJ2501 MJ2501 3–425MJ11022 MJ11022 3–481 MJ2801 2N3055 3–2MJ11028 MJ11030 3–485 MJ2802 2N5882 3–77MJ11029 MJ11031 3–485 MJ2840 2N5878 3–74MJ11030 MJ11030 3–485 MJ2841 2N5878 3–74MJ11031 MJ11031 3–485 MJ2901 MJ15016 3–5MJ11032 MJ11032 3–485 MJ2955 MJ2955 3–2MJ11033 MJ11033 3–485 MJ2955A MJ2955A 3–5MJ12002 BU208A 3–226 MJ3000 MJ3001 3–425MJ12003 BU208A 3–226 MJ3001 MJ3001 3–425MJ12004 BU208A 3–226 MJ3029 BUX48A 3–401MJ12005 MJ16018 3–520 MJ3030 BUX48A 3–401MJ12022 MJ16012 3–512 MJ3042 MJ10012 3–457MJ13010 2N6547 3–140 MJ3055 2N3055 3–2MJ13018 BUV23 3–388 MJ3055A 2N3055A 3–5MJ13019 BUV23 3–388 MJ3237 MJE15031 3–684MJ1302A MJ1302A 3–427 MJ3238 MJE15031 3–684MJ13080 MJE16106 3–696 MJ3247 MJE15030 3–684MJ13090 MJ16110 3–529 MJ3248 MJE15030 3–684MJ13091 MJ16010 3–512 MJ3281A MJ3281A 3–427MJ13330 BUV23 3–388 MJ4030 MJ11013 3–478MJ13331 BUV23 3–388 MJ4031 MJ11013 3–478MJ13332 MJ13333 3–487 MJ4032 MJ11015 3–478MJ13333 MJ13333 3–487 MJ4033 MJ11014 3–478MJ14000 MJ14002 3–493 MJ4034 MJ11014 3–478 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–22
  • 29. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberMJ4035 MJ11016 3–478 MJD3055 MJD3055 3–580MJ410 MJ410 3–417 MJD3055–1 MJD3055–1 3–580MJ411 MJ423 3–419 MJD30C MJD32C 3–542MJ413 MJ413 3–419 MJD30C1 MJD32C1 3–542MJ423 MJ423 3–419 MJD31 MJD31 3–542MJ4237 MJ15012 3–502 MJD31–1 MJD31–1 3–542MJ4238 MJ15012 3–502 MJD31C MJD31C 3–542MJ4247 MJ15011 3–502 MJD31C1 MJD31C1 3–542MJ4248 MJ15011 3–502 MJD32 MJD32 3–542MJ425 BUX48A 3–401 MJD32–1 MJD32–1 3–542MJ431 MJ423 3–419 MJD32C MJD32C 3–542MJ4360 MJE13002 3–655 MJD32C1 MJD32C1 3–542MJ4361 MJE13003 3–655 MJD32CRL MJD32CT4 3–542MJ4380 MJE13005 3–661 MJD32RL MJD32RL —MJ4381 MJE13005 3–661 MJD340 MJD340 3–577MJ4400 MJE13005 3–661 MJD340–1 MJD340–1 3–577MJ4401 MJE13005 3–661 MJD350 MJD350 3–577MJ4502 MJ4502 3–431 MJD350–1 MJD350–1 3–577MJ480 2N3055 3–2 MJD350RL MJD350T4 3–577MJ481 2N3055 3–2 MJD41C MJD41C 3–546MJ490 2N3792 3–25 MJD41C1 MJD41C1 3–546MJ491 2N3792 3–25 MJD42C MJD42C 3–546MJ701 BU208A 3–226 MJD42C–1 MJD42C–1 3–546MJ702 BU208A 3–226 MJD42CRL MJD42CT4 3–546MJ704 BU208A 3–226 MJD44H11 MJD44H11 3–550MJ721 BU208A 3–226 MJD44H11–1 MJD44H11–1 3–550MJ723 BU208A 3–226 MJD45H11 MJD45H11 3–550MJ802 MJ802 3–421 MJD45H11–1 MJD45H11–1 3–550MJ804 BU208A 3–226 MJD45H11RL MJD45H11T4 3–550MJ8500 BU208A 3–226 MJD47 MJD47 3–554MJ8501 BU208A 3–226 MJD47–1 MJD47–1 3–554MJ8502 BU208A 3–226 MJD50 MJD50 3–554MJ8503 BU208A 3–226 MJD50–1 MJD50–1 3–554MJ8504 MJ16018 3–520 MJD6036 MJD6036 3–584MJ8505 MJ16018 3–520 MJD6036–1 MJD6036–1 3–584MJD112 MJD112 3–558 MJD6036RL MJD6036T4 3–584MJD112–1 MJD112–1 3–558 MJD6039 MJD6039 3–584MJD117 MJD117 3–558 MJD6039–1 MJD6039–1 3–584MJD117–1 MJD117–1 3–558 MJE101 MJE2955T 3–628MJD117RL MJD117T4 3–558 MJE102 MJE2955T 3–628MJD122 MJD122 3–563 MJE103 MJE2955T 3–628MJD122–1 MJD122–1 3–563 MJE104 MJE2955T 3–628MJD127 MJD127 3–563 MJE105 TIP42B 3–883MJD127–1 MJD127–1 3–563 MJE1090 TIP106 3–891MJD127RL MJD127T4 3–563 MJE1091 TIP107 3–891MJD200 MJD200 3–569 MJE1092 TIP106 3–891MJD200–1 MJD200–1 3–569 MJE1093 TIP107 3–891MJD210 MJD210 3–569 MJE1100 TIP101 3–891MJD210–1 MJD210–1 3–569 MJE1101 TIP101 3–891MJD210RL MJD210T4 3–569 MJE1102 TIP102 3–891MJD243 MJD243 3–573 MJE1103 TIP102 3–891MJD243–1 MJD243–1 3–573 MJE1123 MJE1123 3–616MJD253 MJD253 — MJE12007 MJE1320 3–620MJD253–1 MJD253–1 — MJE1290 2N6491 3–132MJD29 MJD31 3–542 MJE1291 2N6491 3–132MJD29–1 MJD31–1 3–542 MJE13002 MJE13002 3–655MJD2955 MJD2955 3–580 MJE13003 MJE13003 3–655MJD2955–1 MJD2955–1 3–580 MJE13004 MJE13005 3–661MJD2955RL MJD2955T4 3–580 MJE13005 MJE13005 3–661MJD29C MJD31C 3–542 MJE13006 MJE13007 3–667MJD29C1 MJD31C1 3–542 MJE13007 MJE13007 3–667MJD30 MJD32 3–542 MJE13008 MJE13009 3–676MJD30–1 MJD32–1 3–542 MJE13009 MJE13009 3–676 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–23
  • 30. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberMJE13070 MJE16002 3–688 MJE223 MJE182 3–589MJE13071 MJE16002 3–688 MJE224 MJE182 3–589MJE1320 MJE1320 3–620 MJE225 MJE182 3–589MJE15020 MJE13007 3–667 MJE230 MJE171 3–589MJE15028 MJE15028 3–684 MJE231 MJE171 3–589MJE15029 MJE15029 3–684 MJE232 MJE171 3–589MJE15030 MJE15030 3–684 MJE233 MJE172 3–589MJE15031 MJE15031 3–684 MJE234 MJE172 3–589MJE15032 MJE15032 — MJE235 MJE172 3–589MJE15033 MJE15033 — MJE2360 MJE2360T 3–626MJE16002 MJE16002 3–688 MJE2360T MJE2360T 3–626MJE16004 MJE16004 3–688 MJE2361 MJE2361T 3–626MJE16032 MJW16018 3–520 MJE2361T MJE2361T 3–626MJE16034 MJW16018 3–520 MJE2370 TIP32B 3–873MJE16080 MJW16206 3–855 MJE2371 TIP32B 3–873MJE16081 MJW16206 3–855 MJE242 MJE243 3–596MJE16106 MJE16106 3–696 MJE243 MJE243 3–596MJE16204 MJE16204 3–814 MJE244 MJE243 3–596MJE1660 2N6487 3–132 MJE2480 TIP31B 3–873MJE1661 2N6487 3–132 MJE2481 TIP31B 3–873MJE170 MJE171 3–589 MJE2482 TIP31B 3–873MJE171 MJE171 3–589 MJE2483 TIP31B 3–873MJE172 MJE172 3–589 MJE2490 TIP32B 3–873MJE180 MJE181 3–589 MJE2491 TIP32B 3–873MJE18002 MJE18002 3–704 MJE252 MJE253 3–596MJE18002D2 MJE18002D2 3–712 MJE2520 TIP31B 3–873MJE18004 MJE18004 3–715 MJE2521 TIP31B 3–873MJE18004D2 MJE18004D2 3–724 MJE2522 TIP31B 3–873MJE18006 MJE18006 3–734 MJE2523 TIP31B 3–873MJE18008 MJE18008 3–742 MJE253 MJE253 3–596MJE18009 MJE18009 3–750 MJE254 MJE253 3–596MJE181 MJE181 3–589 MJE270 MJE253 3–596MJE182 MJE182 3–589 MJE271 MJE271 3–600MJE18204 MJE18204 3–759 MJE2801 2N6107 3–101MJE18206 MJE18206 3–769 MJE2801K MJE3055T 3–628MJE18604D2 MJE18604D2 3–779 MJE2801T MJE3055T 3–628MJE200 MJE200 3–592 MJE29 TIP31B 3–873MJE201 MJE3055T 3–628 MJE2901 MJE2955T 3–628MJE2010 TIP42B 3–883 MJE2901K MJE2955T 3–628MJE2011 TIP42B 3–883 MJE2901T MJE2955T 3–628MJE202 MJE3055T 3–628 MJE2955 MJE2955T 3–628MJE2020 TIP41B 3–883 MJE2955K MJE2955T 3–628MJE2021 TIP41B 3–883 MJE2955T MJE2955T 3–628MJE203 MJE3055T 3–628 MJE29A TIP31B 3–873MJE204 MJE3055T 3–628 MJE29B TIP31B 3–873MJE205 MJE3055T 3–628 MJE29C TIP31C 3–873MJE2050 MJE200 3–592 MJE30 TIP32B 3–873MJE2055 MJE3055T 3–628 MJE3055 2N6107 3–101MJE205K TIP41B 3–883 MJE3055K MJE3055T 3–628MJE2090 TIP125 3–900 MJE3055T MJE3055T 3–628MJE2091 TIP125 3–900 MJE30A TIP32B 3–873MJE2092 TIP126 3–900 MJE30B TIP32B 3–873MJE2093 TIP126 3–900 MJE30C TIP32C 3–873MJE210 MJE210 3–592 MJE31 TIP31B 3–873MJE2100 TIP120 3–900 MJE31A TIP31B 3–873MJE2101 TIP120 3–900 MJE31B TIP31B 3–873MJE2102 TIP121 3–900 MJE31C TIP31C 3–873MJE2103 TIP121 3–900 MJE32 TIP32B 3–873MJE2150 MJE210 3–592 MJE32A TIP32B 3–873MJE2160 TIP48 3–887 MJE32B TIP32B 3–873MJE220 MJE181 3–589 MJE32C TIP32C 3–873MJE221 MJE181 3–589 MJE33 TIP41B 3–883MJE222 MJE181 3–589 MJE3300 2N6038 3–85 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–24
  • 31. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberMJE3301 2N6038 3–85 MJE494 2N5195 3–49MJE3302 2N6039 3–85 MJE51 2N6497 3–136MJE3310 2N6035 3–85 MJE5170 MJE15031 3–684MJE3311 2N6035 3–85 MJE5171 MJE15031 3–684MJE3312 2N6036 3–85 MJE5172 MJE15031 3–684MJE3370 MJE371 3–608 MJE5180 MJE15030 3–684MJE3371 2N5194 3–49 MJE5181 MJE15030 3–684MJE33A TIP41B 3–883 MJE5182 MJE15030 3–684MJE33B TIP41B 3–883 MJE5190 TIP31B 3–873MJE33C TIP41C 3–883 MJE5191 TIP31B 3–873MJE34 TIP42B 3–883 MJE5192 TIP31B 3–873MJE340 MJE340 3–602 MJE5193 TIP32B 3–873MJE340K TIP48 3–887 MJE5194 TIP32B 3–873MJE341 MJE341 3–604 MJE5195 TIP32C 3–873MJE341K TIP47 3–887 MJE51T 2N6497 3–136MJE3439 MJE3439 3–630 MJE52 2N6498 3–136MJE344 MJE344 3–604 MJE520 MJE521 3–610MJE3440 MJE3439 3–630 MJE520K TIP31B 3–873MJE344K TIP47 3–887 MJE521 MJE521 3–610MJE345 MJE3439 3–630 MJE521K TIP31B 3–873MJE34A TIP42B 3–883 MJE5220 D44H10 3–411MJE34B TIP42B 3–883 MJE5221 D44H10 3–411MJE34C TIP42C 3–883 MJE5230 D45H10 3–411MJE350 MJE350 3–606 MJE5231 D45H10 3–411MJE3520 MJE521 3–610 MJE52T 2N6498 3–136MJE3521 2N5191 3–44 MJE53 MJE13005 3–661MJE370 MJE371 3–608 MJE53T MJE13005 3–661MJE370K TIP32B 3–873 MJE5655 TIP47 3–887MJE371 MJE371 3–608 MJE5656 TIP48 3–887MJE371K TIP32B 3–873 MJE5657 TIP49 3–887MJE3738 TIP47 3–887 MJE5730 MJE5730 3–636MJE3739 TIP48 3–887 MJE5731 MJE5731 3–636MJE41 TIP41B 3–883 MJE5731A MJE5731A 3–636MJE41A TIP41B 3–883 MJE5732 MJE5731A 3–636MJE41B TIP41B 3–883 MJE5740 MJE5742 3–640MJE41C TIP41C 3–883 MJE5741 MJE5742 3–640MJE42 TIP42B 3–883 MJE5742 MJE5742 3–640MJE42A TIP42B 3–883 MJE5850 MJE5851 3–644MJE42B TIP42B 3–883 MJE5851 MJE5851 3–644MJE42C TIP42C 3–883 MJE5852 MJE5852 3–644MJE4340 MJE4342 3–632 MJE5960 2N6490 3–132MJE4341 MJE4342 3–632 MJE5974 TIP42B 3–883MJE4342 MJE4342 3–632 MJE5975 TIP42B 3–883MJE4343 MJE4343 3–632 MJE5976 TIP42B 3–883MJE4350 MJE4352 3–632 MJE5977 TIP41B 3–883MJE4351 MJE4352 3–632 MJE5978 TIP41B 3–883MJE4352 MJE4352 3–632 MJE5979 TIP41B 3–883MJE4353 MJE4353 3–632 MJE5980 2N6490 3–132MJE47 TIP47 3–887 MJE5981 2N6490 3–132MJE48 TIP48 3–887 MJE5982 2N6491 3–132MJE482 2N5191 3–44 MJE5983 2N6487 3–132MJE483 2N5191 3–44 MJE5984 2N6487 3–132MJE484 2N5192 3–44 MJE5985 2N6488 3–132MJE488 2N5191 3–44 MJE6040 2N6041 3–89MJE49 TIP49 3–887 MJE6041 2N6041 3–89MJE4918 TIP32B 3–873 MJE6042 2N6041 3–89MJE4919 TIP32B 3–873 MJE6043 2N6044 3–89MJE492 2N5194 3–49 MJE6044 2N6044 3–89MJE4920 TIP32B 3–873 MJE6045 2N6045 3–89MJE4921 TIP31B 3–873 MJE700 MJE700 3–612MJE4922 TIP31B 3–873 MJE700T MJE700T 3–612MJE4923 TIP31B 3–873 MJE701 MJE703 3–612MJE493 2N5194 3–49 MJE701T MJE703 3–612 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–25
  • 32. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberMJE702 MJE702 3–612 MJH16110 MJW16110 3–529MJE702T TIP126 3–900 MJH16206 MJW16206 3–855MJE703 MJE703 3–612 MJH16212 MJW16212 3–864MJE703T TIP126 3–900 MJH6282 MJH6283 3–821MJE710 2N4918 3–34 MJH6283 MJH6283 3–821MJE711 2N4919 3–34 MJH6285 MJH6286 3–821MJE712 2N4920 3–34 MJH6286 MJH6286 3–821MJE720 2N4921 3–38 MJL1302A MJL1302A 3–851MJE721 2N4923 3–38 MJL21193 MJL21193 3–838MJE722 2N4923 3–38 MJL21194 MJL21194 3–838MJE800 MJE800 3–612 MJL3281A MJL3281A 3–843MJE800T MJE800T 3–612 MJW16012 MJW16012 3–512MJE801 MJE803 3–612 MJW16018 MJW16018 3–520MJE801T MJE803 3–612 MJW16206 MJW16206 3–855MJE802 MJE802 3–612 MPC900 2N6052 3–93MJE802T TIP121 3–900 NSD102 2N4923 3–38MJE803 MJE803 3–612 NSD103 2N4923 3–38MJE803T TIP121 3–900 NSD104 2N4923 3–38MJE8500 MJE1320 3–620 NSD105 2N4923 3–38MJE8501 MJE1320 3–620 NSD106 2N4923 3–38MJE8503A MJE8503A 3–650 NSD131 MJE340 3–602MJE9780 MJE9780 3–653 NSD132 MJE340 3–602MJF102 MJF6388 3–802 NSD133 MJE340 3–602MJF107 MJF6668 3–802 NSD134 MJE340 3–602MJF122 MJF122 3–788 NSD135 MJE340 3–602MJF127 MJF127 3–788 NSD151 MJE800 3–612MJF13007 MJF13007 3–667 NSD152 MJE800 3–612MJF13009 MJF13009 — NSD202 2N4919 3–34MJF15030 MJF15030 3–809 NSD203 2N4919 3–34MJF15031 MJF15031 3–809 NSD204 2N4919 3–34MJF18002 MJF18002 3–704 NSD205 2N4919 3–34MJF18004 MJF18004 3–715 NSD206 2N4919 3–34MJF18006 MJF18006 3–734 NSD3439 MJE3439 3–630MJF18008 MJF18008 3–742 NSD3440 MJE3439 3–630MJF18009 MJF18009 3–750 NSE170 MJE171 3–589MJF18204 MJF18204 3–759 NSE171 MJE171 3–589MJF18206 MJF18206 3–769 NSE180 MJE181 3–589MJF2955 MJF2955 3–794 NSE181 MJE181 3–589MJF3055 MJF3055 3–794 NSP105 TIP42B 3–883MJF31C MJF31C — NSP2010 TIP42B 3–883MJF32C MJF32C — NSP2011 TIP42B 3–883MJF44H11 MJF44H11 — NSP2021 TIP41B 3–883MJF45H11 MJF45H11 — NSP205 TIP41B 3–883MJF47 MJF47 3–783 NSP2090 TIP125 3–900MJF6107 MJF6107 3–797 NSP2091 TIP125 3–900MJF6284 MJH6284 3–821 NSP2092 TIP126 3–900MJF6287 MJH6287 3–821 NSP2093 TIP126 3–900MJF6668 MJF6668 3–802 NSP2100 TIP120 3–900MJH10012 MJH10012 3–457 NSP2101 TIP120 3–900MJH11017 MJH11017 3–825 NSP2102 TIP121 3–900MJH11018 MJH11018 3–825 NSP2103 TIP121 3–900MJH11019 MJH11019 3–825 NSP2370 TIP32B 3–873MJH11020 MJH11020 3–825 NSP2480 TIP31B 3–873MJH11021 MJH11021 3–825 NSP2481 TIP31B 3–873MJH11022 MJH11022 3–825 NSP2490 TIP32B 3–873MJH16006A MJH16006A 3–830 NSP2491 TIP32B 3–873MJH16010 MJW16010 3–512 NSP2520 TIP31B 3–873MJH16010A MJW16010A 3–847 NSP2955 MJE2955T 3–628MJH16012 MJW16010 3–512 NSP3054 TIP31B 3–873MJH16018 MJW16018 3–520 NSP3055 MJE3055T 3–628MJH16032 MJW16018 3–520 NSP370 TIP32B 3–873MJH16034 MJW16018 3–520 NSP371 TIP32B 3–873MJH16106 MJE16106 3–696 NSP41 TIP41B 3–883 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–26
  • 33. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberNSP41A TIP41B 3–883 NSP700 TIP126 3–900NSP41B TIP41B 3–883 NSP700A TIP106 3–891NSP41C TIP41C 3–883 NSP701 TIP122 3–900NSP42 TIP42B 3–883 NSP702 TIP127 3–900NSP42A TIP42B 3–883 PMD10K–100 2N6059 3–93NSP42B TIP42B 3–883 PMD10K–40 2N6059 3–93NSP42C TIP42C 3–883 PMD10K–60 2N6059 3–93NSP4918 TIP32B 3–873 PMD10K–80 2N6059 3–93NSP4919 TIP32B 3–873 PMD11K–100 2N6052 3–93NSP4920 TIP32B 3–873 PMD11K–40 2N6052 3–93NSP4921 TIP31B 3–873 PMD11K–60 2N6052 3–93NSP4922 TIP31B 3–873 PMD11K–80 2N6052 3–93NSP4923 TIP31B 3–873 PMD12K–100 2N6059 3–93NSP5190 TIP31B 3–873 PMD12K–40 MJ1000 3–423NSP5191 TIP31B 3–873 PMD12K–60 MJ1000 3–423NSP5192 TIP31B 3–873 PMD12K–80 MJ1001 3–423NSP5193 TIP32B 3–873 PMD13K–100 2N6052 3–93NSP5194 TIP32B 3–873 PMD1600K 2N6283 3–112NSP5195 TIP32C 3–873 PMD1601K 2N6283 3–112NSP520 TIP31B 3–873 PMD1602K 2N6283 3–112NSP521 TIP31B 3–873 PMD1603K 2N6284 3–112NSP575 TIP31B 3–873 PMD16K–100 2N6284 3–112NSP576 TIP32B 3–873 PMD16K–40 2N6283 3–112NSP577 TIP31B 3–873 PMD16K–60 2N6283 3–112NSP578 TIP32B 3–873 PMD16K–80 2N6283 3–112NSP579 TIP31B 3–873 PMD1700K 2N6286 3–112NSP580 TIP32B 3–873 PMD1701K 2N6286 3–112NSP581 TIP31C 3–873 PMD1702K 2N6286 3–112NSP582 TIP32C 3–873 PMD1703K 2N6287 3–112NSP585 TIP31B 3–873 PMD17K–100 2N6287 3–112NSP586 TIP32B 3–873 PMD17K–40 2N6286 3–112NSP587 TIP31B 3–873 PMD17K–60 2N6284 3–112NSP588 TIP32B 3–873 PMD17K–80 2N6286 3–112NSP589 TIP31B 3–873 PMD20K–120 2N6578 3–144NSP590 TIP32B 3–873 PMD25K–120 2N6578 3–144NSP595 TIP31B 3–873 RCA1000 MJ1000 3–423NSP596 TIP32B 3–873 RCA1001 MJ1001 3–423NSP597 TIP31B 3–873 RCA120 TIP120 3–900NSP5974 TIP42B 3–883 RCA121 TIP121 3–900NSP5975 TIP42B 3–883 RCA122 TIP122 3–900NSP5976 TIP42B 3–883 RCA125 TIP125 3–900NSP5977 TIP41B 3–883 RCA126 TIP126 3–900NSP5978 TIP41B 3–883 RCA1B01 2N5878 3–74NSP5979 TIP41B 3–883 RCA1B04 MJ15024 3–506NSP598 TIP32B 3–873 RCA1B05 MJ15024 3–506NSP5980 2N6490 3–132 RCA1B06 MJ15003 3–500NSP5981 2N6490 3–132 RCA1B09 MJ15024 3–506NSP5982 2N6491 3–132 RCA1C03 MJE15028 3–684NSP5983 2N6487 3–132 RCA1C04 MJE15029 3–684NSP5984 2N6487 3–132 RCA1C05 TIP41B 3–883NSP5985 2N6488 3–132 RCA1C06 TIP42C 3–883NSP599 TIP31B 3–873 RCA1C07 MJE3055T 3–628NSP600 TIP32B 3–873 RCA1C08 MJE2955T 3–628NSP695 TIP120 3–900 RCA1C09 MJE3055T 3–628NSP695A TIP101 3–891 RCA1C10 2N6292 3–101NSP696 TIP125 3–900 RCA1C11 2N6107 3–101NSP696A TIP106 3–891 RCA1C12 MJE15028 3–684NSP697 TIP120 3–900 RCA1C13 MJE15029 3–684NSP697A TIP101 3–891 RCA1C14 2N6290 —NSP698 TIP125 3–900 RCA1C15 2N6388 3–124NSP698A TIP106 3–891 RCA1C16 2N6668 3–147NSP699 TIP121 3–900 RCA29 TIP31B 3–873NSP699A TIP101 3–891 RCA29A TIP31B 3–873 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–27
  • 34. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberRCA29B TIP31B 3–873 RCP133A MJE344 3–604RCA29C TIP31C 3–873 RCP133B MJE344 3–604RCA30 TIP32B 3–873 RCP133C MJE340 3–602RCA3054 TIP31B 3–873 RCP133D MJE340 3–602RCA3055 2N6487 3–132 RCP135 2N4923 3–38RCA30A TIP32B 3–873 RCP135B MJE340 3–602RCA30B TIP32B 3–873 RCP137 2N4923 3–38RCA30C TIP32C 3–873 RCP137B MJE340 3–602RCA31 TIP31B 3–873 RCS617 2N5882 3–77RCA31A TIP31B 3–873 RCS618 2N5880 3–77RCA31B TIP31B 3–873 SDM20301 2N6283 3–112RCA31C TIP31C 3–873 SDM20302 2N6283 3–112RCA32 TIP32B 3–873 SDM20303 2N6283 3–112RCA32A TIP32B 3–873 SDM20304 2N6286 3–112RCA32B TIP32B 3–873 SDM20311 2N6283 3–112RCA32C TIP32C 3–873 SDM20312 2N6283 3–112RCA3441 MJE15030 3–684 SDM20313 2N6283 3–112RCA41 TIP41B 3–883 SDM20314 2N6286 3–112RCA410 MJ410 3–417 SDM20321 2N6283 3–112RCA411 MJ423 3–419 SDM20322 2N6283 3–112RCA413 MJ413 3–419 SDM20323 2N6283 3–112RCA41A TIP41B 3–883 SDM20324 2N6286 3–112RCA41B TIP41B 3–883 SDM21301 2N6286 3–112RCA41C TIP41C 3–883 SDM21302 2N6286 3–112RCA42 TIP42B 3–883 SDM21303 2N6286 3–112RCA423 MJ423 3–419 SDM21304 2N6287 3–112RCA42A TIP42B 3–883 SDM21311 2N6286 3–112RCA42B TIP42B 3–883 SDM21312 2N6286 3–112RCA42C TIP42C 3–883 SDM21313 2N6286 3–112RCA431 MJ423 3–419 SDM21314 2N6287 3–112RCA6263 MJE15030 3–684 SDM6000 MJ10012 3–457RCA8203 TIP106 3–891 SDM6001 MJ10012 3–457RCA8203A 2N6667 3–147 SDM6002 MJ10012 3–457RCA8203B 2N6668 3–147 SDM6003 MJ10012 3–457RCA8350 MJ2501 3–425 SDN1010 2N6056 3–97RCA8766 MJ10007 3–445 SDN1020 MJ3001 3–425RCA8766A MJ10007 3–445 SDN4040 MJ10000 3–433RCA8766B MJ10007 3–445 SDN4045 MJ10000 3–433RCA8766C MJ10007 3–445 SDN6000 MJ10000 3–433RCA8766D MJ10007 3–445 SDN6001 MJ10000 3–433RCA8766E MJ10007 3–445 SDN6060 MJ10000 3–433RCA8767 2N6547 3–140 SDN6061 MJ10000 3–433RCA8767A 2N6547 3–140 SDN6062 MJ10000 3–433RCA8767B 2N6547 3–140 SDN6251 MJ10007 3–445RCA9113 2N6547 3–140 SDN6252 MJ10007 3–445RCA9113A 2N6547 3–140 SDN6253 MJ10007 3–445RCA9113B 2N6547 3–140 SDT1056 BUX48A 3–401RCP111A MJE340 3–602 SDT1057 BUX48A 3–401RCP111B MJE340 3–602 SDT1058 BUX48A 3–401RCP111C MJE340 3–602 SDT1059 BUX48A 3–401RCP111D MJE340 3–602 SDT1061 BUX48A 3–401RCP113A MJE340 3–602 SDT1062 BUX48A 3–401RCP113B MJE340 3–602 SDT1063 BUX48A 3–401RCP113C MJE340 3–602 SDT1064 BUX48A 3–401RCP113D MJE340 3–602 SDT13301 2N6547 3–140RCP115 MJE341 3–604 SDT13302 2N6547 3–140RCP115B MJE340 3–602 SDT13303 2N6547 3–140RCP117 MJE341 3–604 SDT13304 MJ16010 3–512RCP117B MJE340 3–602 SDT410 MJ410 3–417RCP131A MJE344 3–604 SDT411 MJ423 3–419RCP131B MJE344 3–604 SDT413 MJ413 3–419RCP131C MJE340 3–602 SDT423 MJ423 3–419RCP131D MJE340 3–602 SDT425 BUX48A 3–401 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–28
  • 35. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberSDT431 MJ423 3–419 SVT400–3 BUX48A 3–401SDT5101 TIP41B 3–883 SVT400–5C BUX48A 3–401SDT5102 TIP41B 3–883 SVT450–3 BUX48A 3–401SDT5103 TIP41B 3–883 SVT450–5C MJE16106 3–696SDT5111 TIP42B 3–883 SVT6000 MJ10005 3–439SDT5112 TIP42B 3–883 SVT6001 MJ10005 3–439SDT5113 TIP42B 3–883 SVT6002 MJ10005 3–439SDT7206 2N6341 3–117 SVT6060 MJ10005 3–439SDT7603 2N6338 3–117 SVT6061 MJ10005 3–439SDT7604 2N6339 3–117 SVT6062 MJ10005 3–439SDT7605 2N6341 3–117 SVT6251 MJ10007 3–445SDT7609 2N6338 3–117 SVT6252 MJ10007 3–445SDT7610 2N6339 3–117 SVT6253 MJ10007 3–445SDT7611 2N6341 3–117 SVT6546 MJ16110 3–529SDT7612 BUV23 3–388 SVT6547 MJ16110 3–529SDT7731 2N5882 3–77 SVT7531 MJE16106 3–696SDT7732 2N5882 3–77 SVT7533 MJE16106 3–696SDT7733 2N5882 3–77 SVT7534 MJE16106 3–696SDT7734 2N5629 — SVT7543 MJE16106 3–696SDT7735 2N5631 3–59 SVT7544 MJE16106 3–696SDT7736 2N5631 3–59 SVT7550 MJ16010 3–512SDT9201 2N3055 3–2 SVT7551 MJ16010 3–512SDT9202 2N5878 3–74 SVT7552 MJ16010 3–512SDT9205 2N3055 3–2 SVT7553 MJ16110 3–529SDT9206 2N3055 3–2 SVT7554 MJ16010 3–512SDT9207 2N5878 3–74 SVT7555 MJ16010 3–512SDT9208 2N5882 3–77 SVT7560 MJ16010 3–512SDT9209 MJ15001 3–497 SVT7561 MJ16012 3–512SDT9210 2N3055 3–2 SVT7563 MJ16110 3–529SDT9307 2N3716 3–12 SVT7564 MJ16110 3–529SDT9308 2N3716 3–12 SVT7565 MJ16110 3–529SDT9309 2N3716 3–12 SVT7570 MJ16010 3–512SDT9701 2N5303 3–54 SVT7571 MJ16012 3–512SDT9702 2N5629 — SVT7573 MJ16110 3–529SDT9703 2N5631 3–59 SVT7574 MJ16110 3–529SDT9704 2N5882 3–77 SVT7575 MJ16012 3–512SDT9705 2N5629 — TIP100 TIP101 3–891SDT9706 2N5631 3–59 TIP101 TIP101 3–891SDT9707 2N3055 3–2 TIP102 TIP102 3–891SE9300 2N6387 3–124 TIP105 TIP106 3–891SE9301 2N6388 3–124 TIP106 TIP106 3–891SE9302 BDX33C 3–217 TIP107 TIP107 3–891SE9303 MJ1000 3–423 TIP110 TIP111 3–895SE9304 MJ1001 3–423 TIP111 TIP111 3–895SE9306 2N6287 3–112 TIP112 TIP112 3–895SE9307 2N6283 3–112 TIP115 TIP116 3–895SE9308 2N6286 3–112 TIP116 TIP116 3–895SE9400 2N6667 3–147 TIP117 TIP117 3–895SE9401 2N6668 3–147 TIP120 TIP120 3–900SE9402 BDX34C 3–217 TIP121 TIP121 3–900SE9406 2N6286 3–112 TIP122 TIP122 3–900SE9407 2N6286 3–112 TIP125 TIP125 3–900SE9408 2N6287 3–112 TIP126 TIP126 3–900SGSF564 MJ16018 3–520 TIP127 TIP127 3–900SV7056 MJE340 3–602 TIP140 TIP141 3–904SVT100–5C 2N5882 3–77 TIP140T TIP101 3–891SVT200–10C MJ15024 3–506 TIP141 TIP141 3–904SVT250–10C MJ15024 3–506 TIP141T TIP101 3–891SVT300–10C MJ16110 3–529 TIP142 TIP142 3–904SVT350–12 2N6547 3–140 TIP142T TIP102 3–891SVT350–3 BUX48A 3–401 TIP145 TIP146 3–904SVT350–5C MJE16106 3–696 TIP145T TIP106 3–891SVT400–12 MJ16110 3–529 TIP146 TIP146 3–904 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–29
  • 36. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberTIP146T TIP106 3–891 TIP511 MJ15011 3–502TIP147 TIP147 3–904 TIP512 MJ15011 3–502TIP147T TIP107 3–891 TIP513 MJ15012 3–502TIP150 MJE13007 3–667 TIP514 MJE15030 3–684TIP151 MJE13007 3–667 TIP517 2N6339 3–117TIP152 MJE13007 3–667 TIP518 2N6341 3–117TIP160 MJE5742 3–640 TIP519 MJ15012 3–502TIP161 MJE5742 3–640 TIP520 MJ15012 3–502TIP162 MJE5742 3–640 TIP523 MJ15012 3–502TIP29 TIP29C 3–871 TIP524 2N6497 3–136TIP2955 TIP2955 3–908 TIP525 MJ15011 3–502TIP29A TIP29C 3–871 TIP526 MJ15011 3–502TIP29B TIP29C 3–871 TIP527 MJ15012 3–502TIP29C TIP29C 3–871 TIP528 MJ15012 3–502TIP29D MJE15030 3–684 TIP545 MJ15016 3–5TIP29E MJE15030 3–684 TIP546 MJ15016 3–5TIP29F MJE15030 3–684 TIP550 BU208A 3–226TIP30 TIP30C 3–871 TIP551 BU208A 3–226TIP3055 TIP3055 3–908 TIP552 BU208A 3–226TIP30A TIP30C 3–871 TIP553 BU208A 3–226TIP30B TIP30C 3–871 TIP554 MJE16106 3–696TIP30C TIP30C 3–871 TIP555 MJE16106 3–696TIP30D MJE15031 3–684 TIP556 MJE16106 3–696TIP30E MJE15031 3–684 TIP562 MJ16012 3–512TIP30F MJE15031 3–684 TIP563 MJ16012 3–512TIP31 TIP31B 3–873 TIP565 MJ10009 3–451TIP31A TIP31B 3–873 TIP575 MJE16106 3–696TIP31B TIP31B 3–873 TIP575A MJE16106 3–696TIP31C TIP31C 3–873 TIP575B MJE16106 3–696TIP31D MJE15030 3–684 TIP575C MJE16106 3–696TIP31E MJE15030 3–684 TIP600 TIP101 3–891TIP31F MJE15030 3–684 TIP601 TIP101 3–891TIP32 TIP32B 3–873 TIP602 TIP102 3–891TIP32A TIP32B 3–873 TIP605 TIP106 3–891TIP32B TIP32B 3–873 TIP606 TIP106 3–891TIP32C TIP32C 3–873 TIP607 TIP107 3–891TIP32D MJE15031 3–684 TIP61 TIP31C 3–873TIP32E MJE15031 3–684 TIP61A TIP31C 3–873TIP32F MJE15031 3–684 TIP61B TIP31C 3–873TIP33C TIP33C 3–877 TIP61C TIP31C 3–873TIP35A TIP35B 3–879 TIP62 TIP32C 3–873TIP35C TIP35C 3–879 TIP620 TIP120 3–900TIP36A TIP36B 3–879 TIP621 TIP121 3–900TIP36C TIP36C 3–879 TIP622 TIP122 3–900TIP41 TIP41B 3–883 TIP625 TIP125 3–900TIP41A TIP41B 3–883 TIP626 TIP126 3–900TIP41B TIP41B 3–883 TIP627 TIP127 3–900TIP41C TIP41C 3–883 TIP62A TIP32C 3–873TIP41D MJE15030 3–684 TIP62B TIP32C 3–873TIP41E MJE15030 3–684 TIP62C TIP32C 3–873TIP41F MJE15030 3–684 TIP63 TIP47 3–887TIP42 TIP42B 3–883 TIP64 TIP48 3–887TIP42A TIP42B 3–883 TIP640 MJ3001 3–425TIP42B TIP42B 3–883 TIP641 MJ3001 3–425TIP42C TIP42C 3–883 TIP660 MJ10007 3–445TIP42D MJE15031 3–684 TIP661 MJ10007 3–445TIP42E MJE15031 3–684 TIP662 MJ10007 3–445TIP42F MJE15031 3–684 TIP665 MJ10009 3–451TIP47 TIP47 3–887 TIP666 MJ10007 3–445TIP48 TIP48 3–887 TIP667 MJ10007 3–445TIP49 TIP49 3–887 TIP701 MJE16106 3–696TIP50 TIP50 3–887 TIP73 TIP48 3–887TIP510 MJ15011 3–502 TIP73A 2N6487 3–132 Index and Cross Reference Motorola Bipolar Power Transistor Device Data 1–30
  • 37. INDEX AND CROSS REFERENCE (continued) Motorola Motorola Motorola Motorola Industry Nearest Similar Page Industry Nearest Similar Page Part Number Replacement Replacement Number Part Number Replacement Replacement NumberTIP73B 2N6488 3–132 TIPL752 MJE16106 3–696TIP74 2N6490 3–132 TIPL752A MJE16106 3–696TIP74A 2N6490 3–132 TIPL753 MJE16106 3–696TIP74B 2N6491 3–132 TIPL753A MJE16106 3–696TIP75 MJE13005 3–661 TIPL755 MJ16110 3–529TIP75A MJE13005 3–661 TIPL755A MJ16010 3–512TIP75B MJE13005 3–661 TIPL760 MJE16002 3–688TIP75C MJE13005 3–661 TIPL760A MJE16002 3–688 Motorola Bipolar Power Transistor Device Data Index and Cross Reference 1–31
  • 38. Index and Cross Reference Motorola Bipolar Power Transistor Device Data1–32
  • 39. Selector Guide The selector guides on the subsequent pages offer a quick “first–selection” capability for devices that fit spe- cific applications categories. 1. by package 2. by major product category 3. by major applications In each case, pertinent electrical characteristics are supplied to permit rapid comparison of potentially suit- able devices. Bipolar Power Transistors . . . . . . . . . . . . . . . . . . . 5.5–2 Selection by Package . . . . . . . . . . . . . . . . . . . . . . 5.5–2 Plastic (Isolated TO–220 Type) . . . . . . . . . . . . 5.5–3 Plastic TO–220AB . . . . . . . . . . . . . . . . . . . . . . . 5.5–4 Plastic TO–218 Type . . . . . . . . . . . . . . . . . . . . . 5.5–7 Plastic TO–247 Type . . . . . . . . . . . . . . . . . . . . . 5.5–8 Large Plastic TO–264 . . . . . . . . . . . . . . . . . . . . 5.5–9 Plastic TO–225AA Type (Formerly TO–126 Type) . . . . . . . . . . . . . . . . . 5.5–9 DPAK – Surface Mount Power Packages . . 5.5–11 Metal TO–204AA (Formerly TO–3), TO–204AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5–12 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5–16 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5–17Motorola Bipolar Power Transistor Device Data Selector Guide 2–1
  • 40. Bipolar Power TransistorsSelection by Package Package IC VCE PD Page Range Range (Watts) # (Amps) (Volts) TO–204AA 4–30 40–1500 90–250 5.5–12 (TO–3) CASE 1–07 TO–204AE 50–80 60–1000 150–300 5.5–12 CASE 197A DPAK 0.5–10 40–400 12.5–20 5.5–11 CASE 369 DPAK 0.5–10 40–400 12.5–20 5.5–11 CASE 369A TO–218 TYPE 5.0–25 60–1500 80–150 5.5–7 CASE 340D TO–220AB 0.5–15 30–1800 30–125 5.5–4 CASE 221A–06 ISOLATED 1–12 80–450 20–45 5.5–3 TO–220 TYPE CASE 221D TO–225AA 0.3–5.0 25–400 12.5–40 5.5–9 (TO–126 TYPE) CASE 77 TO–247 TYPE 10–30 400–1500 125–180 5.5–8 CASE 340F TO–264 15–16 200–650 250 5.5–9 CASE 340GSelector Guide Motorola Bipolar Power Transistor Device Data2–2
  • 41. CASE 221D Isolated TO–220 Type UL Recognized File #E69369 STYLE 1: PIN 1. BASE 1 2. COLLECTOR 2 3. EMITTER 3Table 1. Plastic (Isolated TO–220 Type) Device Type Resistive Switching ICCont VCEO(sus) VCES ts tf fT PD (Case) Amps Volts Volts hFE @ IC µs µs @ IC MHz Watts Max Min Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 1 250 MJF47 30/150 0.3 2 typ 0.17 typ 0.3 10 28 2 400 700 BUL44F 14/34 0.2 2.75(3) 0.2(3) 1 13 typ 25 1000 MJF18002 14/34 0.2 2.75(3) 0.175(3) 1 13 typ 25 3 100 MJF31C MJF32C 10 min 1 0.6 0.3 1 3 28 5 100 MJF122 (2) MJF127 (2) 2000 min 3 1.5 typ 1.5 typ 3 4(1) 28 400 700 BUL45F 14/34 0.3 1.7(3) 0.15(3) 1 12 typ 35 450 1000 BUT11AF 10 min .005 4 0.8 2.5 40 1000 MJF18004 14/34 0.3 1.7(3) 0.15(3) 1 13 typ 35 550 1200 MJF18204 18/35 0.5 2.75(3) 0.2(3) 2 12 35 6 400 700 BUL146F 14/34 0.5 2.5(3) 0.15(3) 3 14 typ 40 450 1000 MJF18006 14/34 0.5 3.2(3) 0.15(3) 3 14 typ 40 8 80 MJF6107 30/90 2 0.5 typ 0.13 typ 2 4 35 150 MJF15030 MJF15031 40 min 3 1 typ 0.15 typ 3 30 35 400 700 MJF13007 5/30 5 3 0.7 5 4 40 BUL147F 14/34 1 2.5(3) 0.18(3) 2 14 typ 45 450 1000 MJF18008 16/34 1 2.75(3) 0.18(3) 2 13 typ 45 10 60 MJF3055 MJF2955 20/100 4 — — — 2 40 80 MJF44H11 MJF45H11 40/100 4 0.5 typ 0.14 typ 5 40 35 100 MJF6388 (2) MJF6668 (2) 3k/20k 3 1.5 typ 1.5 typ 20(1) 40 450 1000 MJF18009 14/34 1.5 2.75(3) 0.2(3) 3 12 50 12 400 700 MJF13009 6/30 8 3 0.7 8 8 40(1)|h | @ 1 MHz FE(2)Darlington(3)Switching tests performed w/special application simulator circuit. See data sheet for details.Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–3
  • 42. STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR 4 1 2 CASE 221A–06Table 2. Plastic TO–220AB 3 (TO–220AB) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 0.5 350 MJE2360T 15 min 0.1 10 typ 30 MJE2361T 40 min 0.1 10 typ 30 1 100 TIP29C TIP30C 15/75 1 0.6 typ 0.3 typ 1 3 30 250 TIP47 30/150 0.3 2 typ 0.18 typ 0.3 10 40 300 TIP48 MJE5730 30/150 0.3 2 typ 0.18 typ 0.3 10 40 350 TIP49 MJE5731 30/150 0.3 2 typ 0.18 typ 0.3 10 40 400 TIP50 MJE5731A (7) 30/150 0.3 2 typ 0.18 typ 0.3 10 40 2 100 TIP112 (2) TIP117 (2) 500 min 2 1.7 typ 1.3 typ 2 25(1) 50 400/700 BUL44 14/36 0.4 2.75(3) 0.175(3) 1 13 typ 50 450/1000 BUX85 30 0.1 3.5 1.4 1 4 50 450/1000 MJE18002 14/34 0.2 3(3) 0.17(3) 1 12 typ 40 900/1800 MJE1320 3 min 1 4 typ 0.8 typ 1 80 3 80 BD241B BD242B 25 min 1 3 40 100 BD241C BD242C 25 min 1 3 40 TIP31C TIP32C 25 min 1 0.6 typ 0.3 typ 1 3 40 150 MJE9780 50/200 0.5 5 typ 40(1)|h | @ 1 MHz FE(2)Darlington(3)Switching tests performed w/special application simulator circuit. See data sheet for details.(7)V CEO = 375 V(8)When 2 voltages are given, the format is V CEO(sus)/VCES.Devices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–4
  • 43. Table 2. Plastic TO–220AB (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 4 40 MJE1123 45/100 4 5 75 60 MJE800 (2) MJE700 (2) 750 min 1.5 1(1) 40 80 D44C12 D45C12 40/120 0.2 1 40 typ 30 400/700 MJE13005 6/30 3 3 0.7 3 4 60 5 100 TIP122 (2) TIP127 (2) 1k min 3 1.5 typ 1.5 typ 4 4(1) 75 250 2N6497 10/75 2.5 1.8 0.8 2.5 5 80 300 2N6498 10/75 2.5 1.8 0.8 2.5 5 80 400/700 BUL45 14/34 0.3 1.7(3) 0.15(3) 1 12 typ 75 450/1000 MJE16002 5 min 5 3 0.3 3 80 450/850 MJE16004 7 min 5 2.7 0.35 3 80 450/1000 MJE18004 14/34 0.3 1.7 0.15 1.0 13 75 550/1200 MJE18204 18/35 0.5 2.75(3) 0.2(3) 2 12 75 6 80 BD243B BD244B 15 min 3 0.4 typ 0.15 typ 3 3 65 100 BD243C BD244C 15 min 3 0.4 typ 0.15 typ 3 3 65 TIP41C TIP42C 15/75 3 0.4 typ 0.15 typ 3 3 65 250/550 MJE16204 5 min 6 1.5(2) 0.15(2) 1 10 80 400/700 BUL146 14/34 0.5 1.75(3) 0.15(3) 3 14 typ 100 450/1000 MJE18006 14/34 0.5 3.2(3) 0.13(3) 3 14 typ 100 7 30 2N6288 2N6111 30/150 3 0.4 typ 0.15 typ 3 4 40 50 2N6109 30/150 2.5 0.4 typ 0.15 typ 3 4 40 70 2N6292 2N6107 30/150 2 0.4 typ 0.15 typ 3 4 40 100 BD801 BD802 15 min 3 3 65 150 BU407 30 min 1.5 0.75 5 10 60 200 BU406 30 min 1.5 0.75 5 10 60 450 BU522B (2) 250 min 2.5 7.5 75(1)|h | @ 1 MHz FE(2)Darlington(3)Switching tests performed w/special application simulator circuit. See data sheet for details.(7)V CEO = 375 V(8)When 2 voltages are given, the format is V CEO(sus)/VCES.Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–5
  • 44. Table 2. Plastic TO–220AB (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 8 60 2N6043(2) 2N6040(2) 1k/10k 4 1.5 typ 1.5 typ 3 4(1) 75 80 2N6044 (2) 2N6041 (2) 1k/10k 4 1.5 typ 1.5 typ 3 4(1) 75 BDX53B (2) BDX54B (2) 750 min 3 4(1) 60 100 2N6045 (2) 2N6042 (2) 1k/10k 3 1.5 typ 1.5 typ 3 4(1) 75 BDX53C (2) BDX54C (2) 750 min 3 TIP102 (2) TIP107 (2) 1k/20k 3 1.5 typ 1.5 typ 3 4(1) 80 120 MJE15028 MJE15029 20 min 4 30 50 150 MJE15030 MJE15031 20 min 4 30 50 200 BU806 (2) 100 min 5 0.55 typ 0.2 typ 5 60 300/600 MJE5740(2) 200 min 4 8 typ 2 typ 6 4 80 MJE5850 15 min 2 2 0.5 4 80 350 MJE5741 (2) 200 min 4 8 typ 2 typ 6 80 MJE5851 15 min 2 2 0.5 4 80 MJE5742 (2) 200 min 4 8 typ 2 typ 6 80 MJE13007 5/30 5 3 0.7 5 80 MJE5852 15 min 2 2 0.5 4 80 400/650 MJE16106 6/22 8 2 typ 0.1 typ 5 100 400/700 BUL147 14/34 1 2.5(3) 0.18(3) 2 14 typ 125 450/1000 MJE18008 16/34 1 2.75(3) 0.18(3) 2 13 typ 125 10 20 BD808 15 min 4 1.5 90 60 D44H8 D45H8 40 min 4 50 MJE3055T MJE2955T 20/70 4 75 2N6387 (2) 2N6667 (2) 1k/20k 5 20(1) 65 80 BDX33B (2) BDX34B (2) 750 min 3 3 70 BD809 BD810 15 min 4 1.5 90 2N6388 (2) 2N6668 (2) 1k/20k 5 20(1) 65 D44H10 D45H10 20 min 4 0.5 typ 0.14 typ 5 50 typ 50 D44H11 D45H11 40 min 4 0.5 typ 0.14 typ 5 50 typ 50(1)|h | @ 1 MHz FE(2)Darlington(3)Switching tests performed w/special application simulator circuit. See data sheet for details.(7)V CEO = 375 V(8)When 2 voltages are given, the format is V CEO(sus)/VCES.(9)Self protected DarlingtonDevices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–6
  • 45. Table 2. Plastic TO–220AB (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 10 100 BDX33C (2) BDX34C (2) 750 min 3 3 70 450/1000 MJE18009 14/34 1.5 2.75(3) 0.2(3) 3 12 150 12 400/700 MJE13009 6/30 8 3 0.7 8 4 100 15 80 2N6488 2N6491 20/150 5 0.6 typ 0.3 typ 5 5 75 D44VH10 D45VH10 20 min 4 0.5 0.09 8 50 typ 83 100 BDW42 (2) BDW47 (2) 1k min 5 1 typ 1.5 typ 5 4 85 STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR 4 1 CASE 340D 2 (TO–218 Type, 3 SOT–93)Table 3. Plastic TO–218 Type Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 8 500/1000 MJH16006A 5 min 8 2.5 0.25 5 125 10 60 TIP140(2) TIP145(2) 500 min 10 2.5 typ 2.5 typ 5 4(1) 125 TIP141 (2) TIP146 (2) 500 min 10 2.5 typ 2.5 typ 5 4(1) 125 100 BDV65B (2) BDV64B (2) 1k min 5 125 TIP33C TIP34C 20/100 3 3 80 TIP142(2) TIP147(2) 500 min 10 2.5 typ 2.5 typ 5 4(1) 125 400 BU323AP (2) 150/100 6 15 15 6 125 MJH10012 (2) 100/2k 6 15 15 6 118(1)|h | @ 1 MHz FE(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES.Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–7
  • 46. Table 3. Plastic TO–218 Type (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 15 60 TIP3055 TIP2955 5 min 10 2.5 80 150 MJH11018 (2) MJH11017 (2) 400/15k 10 3 150 200 MJH11020 (2) MJH11019 (2) 400/15k 10 3 150 250 MJH11022 (2) MJH11021 (2) 400/15k 10 3 150 400 BUV48 8 min 10 2 0.4 10 150 450 BUV48A 8 min 8 2 0.4 10 150 16 140 MJE4342 MJE4352 15 min 8 1.2 typ 1.2 typ 8 1 125 160 MJE4343 MJE4353 15 min 8 1.2 typ 1.2 typ 8 1 125 20 60 MJH6282(2) MJH6285(2) 750/18k 10 4 125 100 MJH6284 (2) MJH6287 (2) 750/18k 10 4 125 25 80 TIP35A TIP36A 15/75 15 0.6 typ 0.3 typ 10 3 125 100 BD249C BD250C 10 min 15 3 125 TIP35C TIP36C 15/75 15 0.6 typ 0.3 typ 10 3 125(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES. STYLE 2: PIN 1. BASE 2. COLLECTOR 3. EMITTER 1 2 3 CASE 340F (TO–247 Type)Table 4. Isolated Mounting Hole — Plastic TO–247 Type Device Type Resistive Switching PDICCont VCEO(sus) VCES ts tf fT (Case) Amps Volts Volts hFE @ IC µs µs @ IC MHz Watts Max Min Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 10 650 1500 MJW16212 4/10 10 4(3) 0.5(3) 5.5 150 800 1500 MJW16018 4 min 5 4.5 typ 0.2 typ 5 3 typ 150 12 500 1200 MJW16206 5/13 10 2.25 0.25 6.5 3 typ 150 15 450 850 MJW16010 5 min 15 1.2 typ 0.2 typ 10 150 850 MJW16012 7 min 15 0.9 typ 0.15 typ 10 150 500 1000 MJW16010A 5 min 15 3 0.4 10 150(3)Switching tests performed w/special application simulator circuit. See data sheet for details.(10)Tested in Applications simulator: see Data Sheet.Devices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–8
  • 47. New Product New Product New Product New Product STYLE 2: PIN 1. BASE 2. COLLECTOR 3. EMITTER 1 CASE 340G 2 (TO–264) 3Table 5. Large Plastic TO–264 Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 15 200 MJL3281A MJL1302A 60/175 0.1 30 typ 200 650/1500 MJL16218 4/11 12 2.5 typ 170 16 250 MJL21194 MJL21193 25/75 8 4 200 New Product New Product New Product New Product STYLE 1: STYLE 3: PIN 1. EMITTER PIN 1. BASE 2. COLLECTOR 2. COLLECTOR 3. BASE 3. EMITTER CASE 77 3 21 (TO–225AA)Table 6. Plastic TO–225AA Type (Formerly TO–126 Type) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 0.3 350 MJE3439 40/160 0.02 15 15 0.5 150 MJE341 25/200 0.05 15 20.8 200 MJE344 30/300 0.05 15 20.8 250 2N5655 30/250 0.1 3.5 typ 0.24 typ 0.1 10 20 BD157 30/240 0.05 20 300 BD158 30/240 0.05 20 MJE340 MJE350 30/240 0.05 20.8 2N5656 30/250 0.1 3.5 typ 0.24 typ 0.1 10 20Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–9
  • 48. Table 6. Plastic TO–225AA Type (Formerly TO–126 Type) (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 0.5 350 2N5657 30/250 0.1 3.5 typ 0.24 typ 0.1 10 20 BD159 30/240 0.05 20 1 40 2N4921 2N4918 20/100 0.5 0.6 typ 0.3 typ 0.5 3 30 60 2N4922 2N4919 20/100 0.5 0.6 typ 0.3 typ 0.5 3 30 80 2N4923 2N4920 20/100 0.5 0.6 typ 0.3 typ 0.5 3 30 1.5 45 BD165 BD166 15 min 0.5 6 20 BD135 BD136 40/250 0.15 12.5 60 BD137 BD138 40/250 0.15 12.5 80 BD169 15 min 0.5 6 20 BD139 BD140 40/250 0.15 12.5 BD140–10 63/160 0.15 12.5 300 MJE13002 (11) 5/25 1 4 0.7 1 5 40 400 MJE13003 (11) 5/25 1 4 0.7 1 5 40 2 80 BD237 BD238 25 min 1 3 25 100 MJE270 (2)(11) MJE271 (2)(11) 1.5k min 0.12 6 15 3 60 MJE181 MJE171 50/250 0.1 0.6 typ 0.12 typ 0.1 50 12.5 80 BD179 BD180 40/250 0.15 3 30 MJE182 MJE172 50/250 0.1 0.6 typ 0.12 typ 0.1 50 12.5 200 BUY49P 30 min 0.5 25 20 4 40 MJE521 MJE371 40 min 1 40 45 BD437 BD438 40 min 2 3 36 BD776 (2) 750 min 2 20 15 60 BD440 25 min 2 3 36 BD677 (2) BD678 (2) 750 min 1.5 40 BD677A (2) BD678A (2) 750 min 2 40 BD787 BD788 20 min 2 50 15 BD777 (2) BD778 (2) 750 min 2 20 15 2N5191 2N5194 25/100 1.5 0.4 typ 0.4 typ 1.5 2 40 MJE800 (2) MJE700 (2) 750 min 1.5 1(1) 40 2N6038 (2) 2N6035 (2) 750/18k 2 1.7 typ 1.2 typ 2 25 40 80 2N5192 2N5195 25/100 1.5 0.4 typ 0.4 typ 1.5 2 40 BD441 BD442 15 min 2 3 36 BD679 (2) BD680 (2) 750 min 1.5 40 BD679A (2) BD680A (2) 750 min 2 40 BD789 BD790 10 min 2 40 15 (1) |h | @ 1 MHz FE (2)Darlington(11)Case 77, Style 3Devices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–10
  • 49. Table 6. Plastic TO–225AA Type (Formerly TO–126 Type) (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 4 80 BD779 (2) BD780 (2) 750 min 2 20 15 MJE802 (2) MJE702 (2) 750 min 1.5 1(1) 40 MJE803 (2) MJE703 (2) 750 min 2 1(1) 40 2N6039 (2) 2N6036 (2) 750/18k 2 1.7 typ 1.2 typ 2 25 40 100 BD681(2) BD682(2) 750 min 1.5 40 BD791 BD792 10 min 2 40 15 MJE243 MJE253 40/120 0.2 0.15 typ 0.07 typ 2 40 15 5 25 MJE200 MJE210 45/180 2 0.13 typ 0.035 typ 2 65 15 4 1 2 3 CASE 369A(13) STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4 4. COLLECTOR 1 2 CASE 369(12) 3Table 7. DPAK – Surface Mount Power Packages Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 0.5 300 MJD340 MJD350 30/240 0.05 15 1 250 MJD47 30/150 0.3 2 0.2 0.3 10 15 375 MJD5731 TBD TBD TBD TBD TBD TBD TBD 400 MJD50 30/150 0.3 2 0.2 0.3 10 15 1.5 400 MJD13003 5/25 1 4 0.7 1 4 15(1)|h | @ 1 MHz FE(2)Darlington(12)Case 369–07 may be ordered by adding –1 suffix to part number.(13)Case 369A–13 may be ordered as tape and reel by adding a “T4” suffix; 2500 units/reel.Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–11
  • 50. Table 7. DPAK – Surface Mount Power Packages (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 2 100 MJD112 (2) MJD117 (2) 1000 min 2 1.7 1.3 2 25(1) 20 3 40 MJD31 MJD32 10 min 1 0.6 0.3 1 3 15 100 MJD31C MJD32C 10 min 1 0.6 0.3 1 3 15 4 80 MJD6039 (2) MJD6036 (2) 1k/12k 2 1.7 1.2 2 25 20 100 MJD243 MJD253 40/180 0.2 0.16 0.04 1 40 12.5 5 25 MJD200 MJD210 45/180 2 0.15 0.04 2 65 12.5 6 100 MJD41C MJD42C 15/75 3 0.4 0.15 3 3 20 8 80 MJD44H11 MJD45H11 40 min 4 0.5 0.14 5 50 typ 20 100 MJD122 (2) MJD127 (2) 1k/12k 4 1.5 2 4 4(1) 20 10 60 MJD3055 MJD2955 20/100 4 1.5 1.5 3 2 20 80 MJD44E3 (2) 1k min 5 2 0.5 10 20 2 1 .040″ .060″ STYLE 1: PIN 1. BASE CASE 1–07 CASE 197A TO–204AE 2. EMITTER TO–204AA (Used for high current types at end of 3. COLLECTOR table. See types w/footnote(16).)Table 8. Metal TO–204AA (Formerly TO–3), TO–204AE Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 4 200 MJ15018 30 min 1 20 150 250 MJ15020 MJ15021 30 min 1 20 150 5 700/1500 BU208A 2.5 min 4.5 8 typ 0.4 typ 4.5 4 typ 90 8 60 MJ1000(2) 1k min 3 90 2N6055(2) 750/18k 4 1.5 typ 1.5 typ 4 4(1) 100 80 MJ1001 (2) 1k min 3 90 2N6056 (2) 750/18k 4 1.5 typ 1.5 typ 4 4(1) 100(1)|h | @ 1 MHz FE(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES.(12)Case 369 may be ordered by adding –1 suffix to part number.(13)Case 369A may be ordered as tape and reel by adding a “T4” suffix; 2500 units/reel.Devices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–12
  • 51. Table 8. Metal TO–204AA (Formerly TO–3), TO–204AE (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 10 60 2N3715 2N3791 30 min 3 0.3 typ 0.4 typ 5 4 150 MJ3000(2) MJ2500(2) 1k min 5 150 80 2N3716 2N3792 30 min 3 0.3 typ 0.4 typ 5 4 150 2N5878 20/100 4 1 0.8 4 4 150 MJ3001 (2) MJ2501 (2) 1k min 5 150 140 2N3442 20/70 4 117 250 MJ15011 MJ15012 20/100 2 200 325 MJ413 20/80 0.5 2.5 125 MJ423 30/90 1 2.5 125 400 BU323A (2) 150 min 6 7.5 typ 5.2 typ 6 175 MJ10007 (2) 30/300 5 1.5 0.5 5 10(1) 150 MJ10012 (2) 100/2k 6 15 15 6 175 12 60 2N6057(2) 2N6050(2) 750/18k 6 1.6 typ 1.5 typ 6 4(1) 150 80 2N6058(2) 2N6051(2) 750/18k 6 1.6 typ 1.5 typ 6 4(1) 150 100 2N6059 (2) 2N6052 (2) 750/18k 6 1.6 typ 1.5 typ 6 4(1) 150 15 60 2N3055 MJ2955 20/70 4 0.7 typ 0.3 typ 4 2.5 115 2N3055A MJ2955A 20/70 4 0.8 115 2N6576 (2) 2k/20k 4 2 7 10 10–200(1) 120 2N5881 2N5879 20/100 6 1 0.8 6 4 160 80 2N5882 2N5880 20/100 6 1 0.8 6 4 160 90 2N6577 (2) 2k/20k 4 2 7 10 10–200(1) 120 120 MJ15015 MJ15016 20/70 4 0.7 typ 0.3 typ 4 1 180 2N6578 (2) 2k/20k 4 2 7 10 10–200(1) 120 140 MJ15001 MJ15002 25/150 4 2 200 150 MJ11018(2) MJ11017(2) 100 min 15 3(1) 175 200 MJ11020 (2) 100 min 15 3(1) 175 MJ3281A MJ1302A 60/175 0.1 30 typ 250 250 MJ11022 (2) MJ11019 (2) 100 min 15 3(1) 175 MJ11021(2) 6/30 10 4 0.7 10 6 to 24 175 400/850 BUX48 8 min 10 2 0.4 10 175 2N6547 6/30 10 4 0.7 10 6 to 24 175 400/650 MJ16110 6/20 15 0.8 typ 0.1 typ 10 175 450/1000 BUX48A 8 min 8 2 0.4 10 175(1)|h | @ 1 MHz FE(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES.Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–13
  • 52. Table 8. Metal TO–204AA (Formerly TO–3), TO–204AE (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 15 450/850 MJ16010 5 min 15 1.2 typ 0.2 typ 10 175 MJ16012 7 min 15 0.9 typ 0.15 typ 10 175 16 140 2N3773 2N6609 15/60 8 1.1 typ 1.5 typ 8 4 150 2N5631 2N6031 15/60 8 1.2 typ 1.2 typ 8 1 200 200 MJ15022 MJ15023 15/60 8 5 250 250 MJ15024 MJ15025 15/60 8 5 250 MJ21194 MJ21193 25/75 8 4 250 20 60 2N3772 15/60 10 2 150 2N6282(2) 2N6285 (2) 750/18k 10 2.5 typ 2.5 typ 10 4(1) 160 75 2N5039 20/100 10 1.5 0.5 10 60 140 80 2N6283 (2) 2N6286 (2) 750/18k 10 2.5 typ 2.5 typ 10 4(1) 160 90 2N5038 20/100 12 1.5 0.5 12 60 140 100 2N6284 (2) 2N6287 (2) 750/18k 10 2.5 typ 2.5 typ 10 4(1) 160 140 MJ15003 MJ15004 25/150 5 2 250 200 BUV11 10 min 12 1.8 0.4 12 8 150 350 MJ10000 (2) 40/400 10 3 1.8 10 10(1) 175 400 MJ10005 (2) 40/400 10 1.5 0.5 10 10(1) 175 MJ13333 10/60 5 4 0.7 10 175 500 MJ10009 (2) 30/300 10 2 0.6 10 8(1) 175 25 60 2N5885 2N5883 20/100 10 1 0.8 10 4 200 80 2N5886 2N5884 20/100 10 1 0.8 10 4 200 2N6436 30/120 10 1 0.25 10 40 200 100 2N6338 2N6437 30/120 10 1 0.25 10 40 200 120 2N6339 2N6438 30/120 10 1 0.25 10 40 200 140 2N6340 30/120 10 1 0.25 10 40 200 150 2N6341 30/120 10 1 0.25 10 40 200 30 40 2N3771 15/60 15 2 150 2N5301 2N4398 15/60 15 2 1 10 2 200 60 2N5302 2N4399 15/60 15 2 1 10 2 200 MJ11012(2) MJ11011(2) 1k min 20 4(1) 200 90 MJ11014 (2) MJ11013 (2) 1k min 20 4(1) 200 100 2N6328 6/30 30 3 200 MJ802 MJ4502 25/100 7.5 2 200 120 MJ11016 (2) MJ11015 (2) 1k min 20 4(1) 200(1)|h | @ 1 MHz FE(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES.Devices listed in bold, italic are Motorola preferred devices. Selector Guide Motorola Bipolar Power Transistor Device Data 2–14
  • 53. Table 8. Metal TO–204AA (Formerly TO–3), TO–204AE (continued) Device Type Resistive Switching PD ICCont VCEO(sus) ts tf fT (Case) Amps Volts hFE @ IC µs µs @ IC MHz Watts Max Min(8) NPN PNP Min/Max Amp Max Max Amp Min @ 25°C 30 325 BUV23 8 min 16 1.8 0.4 16 8 250 400/1000 BUS98 8 min 20 2.3 0.4 20 250 BUX98 8 min 20 3 0.8 20 250 450/850 MJ16020(16) 5 min 30 1.8 0.2 20 250 MJ16022(16) 7 min 30 1.5 0.15 20 250 450/1000 BUS98A 8 min 16 2.3 0.4 16 250 BUX98A 8 min 16 3 0.8 16 250 40 200 BUV21 (16) 10 min 25 1.8 0.4 25 8 150 250 BUV22 (16) 10 min 20 1.1 0.35 20 8 250 350 MJ10022 (2)(16) 50/600 10 2.5 0.9 20 250 400 MJ10023 (2)(16) 50/600 10 2.5 0.9 20 250 50 60 2N5685 (16) 15/60 25 0.5 typ 0.3 typ 25 2 300 80 2N5686 (16) 2N5684 (16) 15/60 25 0.5 typ 0.3 typ 25 2 300 90 MJ11030 (2)(16) MJ11031 (2)(16) 400 min 50 300 100 2N6274 (16) 30/120 20 0.8 0.25 20 30 250 120 2N6275 (16) 2N6379 (16) 30/120 20 0.8 0.25 20 30 250 MJ11032 (2)(16) MJ11033 (2)(16) 400 min 50 300 125 BUV20 (16) 10 min 50 1.2 0.25 50 8 250 BUV60 (16) 10 min 80 1.1 0.25 80 250 150 2N6277 (16) 30/120 20 0.8 0.25 20 30 250 400 MJ10015 (2)(16) 10 min 40 2.5 1 20 250 500 BUT34 (2)(16) 15 min 32 3 1.5 32 250 MJ10016 (2)(16) 10 min 40 2.5 1 20 250 56 400 BUT33 (2)(16) 20 min 36 3.3 1.6 36 250 60 60 MJ14001(16) 15/100 50 300 80 MJ14002 (16) MJ14003 (16) 15/100 50 300 200 MJ10020 (2)(16) 75 min 15 3.5 0.5 30 250 250 MJ10021 (2)(16) 75 min 15 3.5 0.5 30 250 70 125 BUS50 (16) 15 min 50 1.5 0.3 70 350 80 100 BUV18A (16) 10 min 80 1.1 0.25 80 250(1)|h | @ 1 MHz FE(2)Darlington(8)When 2 voltages are given, the format is V CEO(sus) / VCES.(16)Case 197A–03 (TO–204AE)Devices listed in bold, italic are Motorola preferred devices. Motorola Bipolar Power Transistor Device Data Selector Guide 2–15
  • 54. AudioGENERAL DESIGN CURVES FOR POWER AUDIO OUTPUT STAGES V(BR)CEO Required on Output and Driver Transistor Output Transistor Peak Collector Current versus versus Output Power for 4, 8 and 18 Ohm Loads Output Power for 4, 8 and 16 Ohm Loads 500 50 PEAK OUTPUT CURRENT (AMPS) 16 OHMS 30 300 4 OHMS 8 OHMSV (BR) CEO (VOLTS) 8 OHMS 100 4 OHMS 10 70 50 5.0 16 OHMS 30 3.0 10 1.0 10 30 50 100 300 500 1000 10 30 50 100 300 500 1000 OUTPUT POWER (WATTS) OUTPUT POWER (WATTS) Another important parameter that must be considered before selecting the output transistors is the safe–operating area thesedevices must withstand. For a complete discussion see Application Note AN485. Table 9. Recommended Power Transistors for Audio/Servo Loads RMS PD fT Power Watts hFE @ IC MHz ISB Output NPN PNP Case @ 25°C VCEO Min/Max Amps Typ Volts/Amps To 25W MJE15030 MJE15031 TO–220 50 150 20 min 4 30 14/3.6 MJE15032 MJE15033 TO–220 50 250 50 min 1 40 50/1 25 to 50W 2N3055A MJ2955A TO–204 120 120 20/70 4 3 60/2 MJ15001 MJ15002 TO–204 200 140 25/150 4 3 40/5 50 to 100W MJ15015 MJ15016 TO–204 180 120 20/70 4 3 60/3 MJ15003 MJ15004 TO–204 250 140 25/150 5 3 100/1 MJ15020 MJ15021 TO–204 150 250 30 min 1 20 50/3 Over 100W MJ15024 MJ15025 TO–204 250 250 15/60 8 8 80/2.2 MJ3281A MJ1302A TO–204 250 200 60/175 7 30 50/4 MJL3281A MJL1302A 340G–01 150 200 60/175 7 30 40/4 MJ21194 MJ21193 TO–204 250 250 25/75 8 7 100/2 MJL21194 MJL21193 340G–01 200 200 25/75 8 7 100/2 The Power Transistors shown are provided for reference only and show device capability. The final choice of the Power Transis-tors used is left to the circuit designer and depends upon the particular safe–operating area required and the mounting and heatsinking configuration used. Selector Guide Motorola Bipolar Power Transistor Device Data 2–16
  • 55. For this growing ballast market Motorola offers optimizedElectronic Lamp Ballasts devices such as Power MOSFETs, Bipolar Transistors, Linear drive ICs, custom Start–Stop ICs, Diodes and Silicon Bilateral As in many other areas of its semiconductor activity, Switches.Motorola is an industry leader in the fast growing market of Even more important are our efforts to develop theElectronic Ballast Semiconductors. We introduced the first technology for tomorrow in close cooperation with the world’sdedicated devices for this market in 1988. Today, devices leading manufacturers of Electronic Transformers and Lampbased on advanced technologies such as H2BIP (High Gain, Ballasts, as well as assisting them today in their choice ofHigh Frequency Bipolar) and ZPCMOS (Zero Power Control technology.MOS) are leading the way in providing benefits for ballast This capability is driven from our centre of competencemanufacturers, consumers and the environment. based in Toulouse, France. An important team of Applications, Two factors make the Electronic Lamp Ballast market grow Design, Product, Manufacturing and Marketing Engineersat an ever increasing rate — Economics and the Environment. drives our worldwide dedication to this market. Lamps based on Electronic Ballasts have long lifetimes The intention of this section is to provide you with aand very low power consumption, so contributing to the ‘snapshot’ of our bipolar transistor products and capabilities.efficient use of energy and to preservation of the environment. It is a document showing Motorola’s professionalism in thisMotorola designs silicon solutions specifically for these area, and illustrating some of the expertise available to you —applications. the Electronic Lamp Ballast manufacturer. World Lamp Ballast Market Motorola Bipolar Power Transistor Device Data Selector Guide 2–17
  • 56. Cross Reference Transistors for Electronic Lamp Ballasts Motorola Motorola Motorola Motorola Industry Direct Nearest Industry Direct Nearest Part Number Replacement Replacement Part Number Replacement Replacement2SC4053 MJE18004 BULD50 BUL44D22SC4546 BUL146F BULD85 BUL45D22SC4630 MJF18004 BUT11AF MJF180042SC4820 MJF18002 BUT18 BUH100BU1706A MJE18604D2 BUT93 BUL45BU1708A MJE18604D2 BUT93D BUL44D2BUD43B–1 BUD43B–1 BUV46 MJE18006BUF610 MJE18004D2 KSC5021F MJE18004BUF654 BUL146 KSC5027F MJE18604D2BUH100 BUH100 MJD13003–1 MJE13003–1BUH150 BUH150 MJE13003 MJE13003BUH50 BUH50 MJE13005 MJE13005BUH51 BUH51 MJE13007 MJE13007BUL146 BUL146 MJE13009 MJE13009BUL146F BUL146F MJE18002 MJE18002BUL147 BUL147 MJE18004 MJE18004BUL147F BUL147F MJE18004D2 MJE18004D2BUL213 MJE18204 MJE18006 MJE18006BUL216 MJE18206 MJE18008 MJE18008BUL381 BUL45 MJE18009 MJE18009BUL38D BUL45D2 MJE18204 MJE18204BUL410 MJE18006 MJE18206 MJE18206BUL416 MJE18604D2 MJE18604D2 MJE18604D2BUL43B BUL43B MJF18002 MJF18002BUL44 BUL44 MJF18004 MJF18004BUL44D2 BUL44D2 MJF18006 MJF18006BUL44F BUL44F MJF18008 MJF18008BUL45 BUL45 MJF18009 MJF18009BUL45D2 BUL45D2 MJF18204 MJF18204BUL45F BUL45F MJF18206 MJF18206BUL48 MJE18004D2 TD13003 MJD13003–1BUL510 MJE18004D2 TD13004 BUF43B–1BUL57 BUL147 TEO13005D BUL44D2–1BUL67 BUL147 TEO13007 MJE13007BUL810 BUV48A TEO13003 MJE13003BUL87 BUL147 TEO13005 MJE13005BULD215 BUL45D2 TEO13009 MJE13009Selector Guide Motorola Bipolar Power Transistor Device Data2–18
  • 57. Cross Reference Transistors for Electronic Lamp Ballasts STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR 4 1 2 CASE 221A–06 3 (TO–220AB) Table 10. TO–220AB Bipolar Transistors ICCont VCEO(sus) VCES IC hFE min Inductive Switching PD (Case) Amps Volts Volts Operating @ IC Operating @ IC Operating Watts Max Min Min Device Type Amps VCE = 1 V Tsi Min/Max (µs) @ 25°C 2 350 650 BUL43B 0.8 9 1.8 / 3.3 40 400 700 BUL44 0.8 10 2.6 / 3.8 50 400 700 BUL44D2* 0.8 20 2.05 / 2.35 50 450 1000 MJE18002 1 6 / 2.75 50 4 500 800 BUH50 2 typ 8 typ / 2.5 50 5 400 700 BUL45 2 7 2.6 / 3.8 75 400 700 BUL45D2* 2 10 1.95 / 2.25 75 450 1000 MJE18004 2 6 / 2.5 75 450 1000 MJE18004D2* 2 6 2.1 / 2.4 75 550 1200 MJE18204 2 5 / 2.75 75 600 1600 MJE18604D2* 0.5 15 / 1.0 75 6 400 700 BUL146 3 8 2.6 / 3.8 100 450 1000 MJE18006 3 6 / 3.2 100 8 400 700 BUL147 4.5 8 2.6 / 3.8 125 450 1000 MJE18008 4.5 6 / 3.2 125 550 1200 MJE18206 3 5 / 2.75 100 10 400 700 BUH100 5 typ10 typ / 3.0 100 450 1000 MJE18009 7 8 / 2.75 150 15 400 700 BUH150 10 typ 8 typ / 2.75 150BUHXXX Series are specified for Halogen applications.* D2 suffix indicates transistor with built in C–E freewheeling diode and antisaturation network. Motorola Bipolar Power Transistor Device Data Selector Guide 2–19
  • 58. Cross Reference Transistors for Electronic Lamp Ballasts CASE 221D–02 Isolated TO–220 Type UL Recognized File #E69369 STYLE 1: PIN 1. BASE 1 2. COLLECTOR 2 3. EMITTER 3 Table 11. Isolated TO–220 Bipolar Transistors ICCont VCEO(sus) VCES IC hFE min Inductive Switching PD (Case) Amps Volts Volts Operating @ IC Operating @ IC Operating Watts Max Min Min Device Type Amps VCE = 1 V Tsi Min/Max (µs) @ 25°C 2 400 700 BUL44F 0.8 10 2.6 / 3.8 25 450 1000 MJF18002 1 6 / 2.75 25 5 400 700 BUL45F 2 7 2.6 / 3.8 35 450 1000 MJF18004 2 6 / 2.5 35 550 1200 MJF18204 2 5 / 2.75 40 6 400 700 BUL146F 3 8 2.6 / 3.8 40 450 1000 MJF18006 3 6 / 3.2 40 8 400 700 BUL147F 4.5 8 2.6 / 3.8 45 450 1000 MJF18008 4.5 6 / 3.2 45 550 1200 MJF18206 5 6 / 2.75 45 10 450 1000 MJF18009 7 8 / 2.75 50 STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4 4. COLLECTOR 1 2 CASE 369–07 Table 12. DPAK Bipolar Transistors 3 ICCont VCEO(sus) VCES IC hFE min Inductive Switching PD (Case) Amps Volts Volts Operating @ IC Operating @ IC Operating Watts Max Min Min Device Type Amps VCE = 1 V Tsi Min/Max (µs) @ 25°C 2 350 650 BUD43B–1 0.8 9 typ 1.8 / 3.3 25 400 700 BUD44D2–1* 0.8 20 typ 2.05 / 2.35 25 STYLE 1: STYLE 3: PIN 1. EMITTER PIN 1. BASE 2. COLLECTOR 2. COLLECTOR 3. BASE 3. EMITTER CASE 77–08 3 21 (TO–225AA) Table 13. Case 77 (TO–225) Bipolar Transistors ICCont VCEO(sus) VCES IC hFE min Inductive Switching PD (Case) Amps Volts Volts Operating @ IC Operating @ IC Operating Watts Max Min Min Device Type Amps VCE = 1 V Tsi Min/Max (µs) @ 25°C 1.5 400 700 MJE13003 1 typ6 typ / 3.0 40 4 400 700 BUH51 1 8 / 3.75 50BUHXXX Series are specified for Halogen applications.* D2 suffix indicates transistor with built in C–E freewheeling diode and antisaturation network. Selector Guide Motorola Bipolar Power Transistor Device Data 2–20
  • 59. The following power transistor data sheets are arranged in alphanumeric sequence, some data sheets may contain information applying to more than one transistor––e.g.2N4398, 2N4399, 2N5745. To determine if a particular device type is covered by a data sheet in this section, either refer to the alphanu- meric listing of the Index and Cross Reference on Data Sheets page 1–2 or simply turn to the proper sequence for indication of where the Data Sheet can be found.Motorola Bipolar Power Transistor Device Data 3–1
  • 60. MOTOROLASEMICONDUCTOR TECHNICAL DATA NPN 2N3055 *Complementary Silicon Power PNPTransistors MJ2955 *. . . designed for general–purpose switching and amplifier applications. *Motorola Preferred Device• DC Current Gain — hFE = 20 – 70 @ IC = 4 Adc• Collector–Emitter Saturation Voltage — 15 AMPERE VCE(sat) = 1.1 Vdc (Max) @ IC = 4 Adc POWER TRANSISTORS• Excellent Safe Operating Area COMPLEMENTARY SILICON 60 VOLTS MAXIMUM RATINGS 115 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Rating Symbol Value UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCEO 60 Vdc Collector–Emitter Voltage VCER 70 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCB 100 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VEB 7 Vdc Collector Current — Continuous IC 15 AdcÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î ÎÎ Î Î Base Current IB 7 Adc CASE 1–07 TO–204AA (TO–3) Total Power Dissipation @ TC = 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎ Î Î Î PD 115 Watts Derate above 25_C 0.657 W/_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Operating and Storage Junction Temperature Î Î ÎÎ Î Î Î Î TJ, Tstg – 65 to + 200 _C RangeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Characteristic Symbol Max Unit Î Î ÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Thermal Resistance, Junction to CaseÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î RθJC 1.52 _C/W 160 140 PD, POWER DISSIPATION (WATTS) 120 100 80 60 40 20 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power DeratingPreferred devices are Motorola recommended choices for future use and best overall value. 3–2 Motorola Bipolar Power Transistor Device Data
  • 61. 2N3055 MJ2955 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1) VCEO(sus) 60 — VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 200 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 200 mAdc, RBE = 100 Ohms) VCER(sus) 70 — Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎ Î Î Î Î Î Collector Cutoff Current (VCE = 30 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICEO — 0.7 mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current (VCE = 100 Vdc, VBE(off) = 1.5 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ICEX — 1.0 mAdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (VCE = 100 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î — 5.0 Emitter Cutoff Current IEBO — 5.0 mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (VBE = 7.0 Vdc, IC = 0)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î *ON CHARACTERISTICS (1)Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain hFE — (IC = 4.0 Adc, VCE = 4.0 Vdc)Î Î Î Î Î (IC = 10 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 20 5.0 70 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Collector–Emitter Saturation VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCE(sat) Vdc (IC = 4.0 Adc, IB = 400 mAdc) — 1.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 10 Adc, IB = 3.3 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 3.0 Î Î Î ÎÎÎÎ Î Î Î Î Î Base–Emitter On Voltage (IC = 4.0 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î VBE(on) — 1.5 VdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î SECOND BREAKDOWNÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Second Breakdown Collector Current with Base Forward Biased (VCE = 40 Vdc, t = 1.0 s, Nonrepetitive)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Is/b 2.87 — Adc DYNAMIC CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Current Gain — Bandwidth ProductÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ fT 2.5 — MHz (IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎ Î Î ÎÎ Î Î Î Î Î *Small–Signal Current Gain hfe 15 120 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î (IC = 1.0 Adc, VCE = 4.0 Vdc, f = 1.0 kHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *Small–Signal Current Gain Cutoff Frequency (VCE = 4.0 Vdc, IC = 1.0 Adc, f = 1.0 kHz) fhfe 10 — kHzÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î * Indicates Within JEDEC Registration. (2N3055) (1) Pulse Test: Pulse Width 300 µs, Duty Cycle v v 2.0%. 2N3055, MJ2955 20 50 µs 10 dc There are two limitations on the power handling ability of a IC, COLLECTOR CURRENT (AMP) 1 ms transistor: average junction temperature and second break- 6 down. Safe operating area curves indicate IC – VCE limits of 4 the transistor that must be observed for reliable operation; 500 µs i.e., the transistor must not be subjected to greater dissipa- 2 250 µs tion than the curves indicate. The data of Figure 2 is based on TC = 25_C; TJ(pk) is 1 variable depending on power level. Second breakdown pulse 0.6 limits are valid for duty cycles to 10% but must be derated for BONDING WIRE LIMIT temperature according to Figure 1. 0.4 THERMALLY LIMITED @ TC = 25°C (SINGLE PULSE) SECOND BREAKDOWN LIMIT 0.2 6 10 20 40 60 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 2. Active Region Safe Operating Area Motorola Bipolar Power Transistor Device Data 3–3
  • 62. 2N3055 MJ2955 NPN PNP 2N3055 MJ2955 500 200 300 VCE = 4.0 V VCE = 4.0 V TJ = 150°C TJ = 150°C 200 25°C 100hFE , DC CURRENT GAIN hFE , DC CURRENT GAIN 25°C 100 70 – 55°C 70 – 55°C 50 50 30 30 20 20 10 7.0 5.0 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 3. DC Current GainVCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 2.0 TJ = 25°C TJ = 25°C 1.6 1.6 IC = 1.0 A 4.0 A 8.0 A IC = 1.0 A 4.0 A 8.0 A 1.2 1.2 0.8 0.8 0.4 0.4 0 0 5.0 10 20 50 100 200 500 1000 2000 5000 5.0 10 20 50 100 200 500 1000 2000 5000 IB, BASE CURRENT (mA) IB, BASE CURRENT (mA) Figure 4. Collector Saturation Region 1.4 2.0 TJ = 25°C TJ = 25°C 1.2 1.6V, VOLTAGE (VOLTS) 1.0 V, VOLTAGE (VOLTS) 0.8 1.2 VBE(sat) @ IC/IB = 10 VBE(sat) @ IC/IB = 10 VBE @ VCE = 4.0 V 0.6 VBE @ VCE = 4.0 V 0.8 0.4 0.4 0.2 VCE(sat) @ IC/IB = 10 VCE(sat) @ IC/IB = 10 0 0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 IC, COLLECTOR CURRENT (AMPERES) IC, COLLECTOR CURRENT (AMP) Figure 5. “On” Voltages 3–4 Motorola Bipolar Power Transistor Device Data
  • 63. MOTOROLA SEMICONDUCTOR TECHNICAL DATA NPN Complementary Silicon 2N3055A High-Power Transistors . . . PowerBase complementary transistors designed for high power audio, stepping MJ15015* MJ2955A motor and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, dc–to–dc converters, inverters, or for inductive loads requiring higher safe operating area than the 2N3055 and MJ2955. PNP • Current–Gain — Bandwidth–Product @ IC = 1.0 Adc fT = 0.8 MHz (Min) – NPN MJ15016* = 2.2 MHz (Min) – PNP • Safe Operating Area — Rated to 60 V and 120 V, Respectively *Motorola Preferred DeviceÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 15 AMPERE COMPLEMENTARYÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î 2N3055A MJ15015 SILICONÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Rating Symbol MJ2955A MJ15016 Unit POWER TRANSISTORSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î VCEO 60 120 Vdc 60, 120 VOLTS 115, 180 WATTS Collector–Base Voltage VCBO 100 200 VdcÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Voltage BaseÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î VCEV 100 200 Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Reversed BiasedÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Emitter–Base Voltage VEBO 7.0 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎCollector Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î IC 15 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Base CurrentÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IB 7.0 Adc CASE 1–07 Total Device Dissipation @ TC = 25_C PD 115 180 Watts TO–204AA Î Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 0.65 1.03 W/_C (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Operating and Storage Junction Temperature RangeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ TJ, Tstg – 65 to + 200 _CÎ Î ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Max Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎThermal Resistance, Junction to CaseÎÎÎ Î Î Î RθJC 1.52 0.98 _C/W * Indicates JEDEC Registered Data. (2N3055A) 200 PD(AV), AVERAGE POWER DISSIPATION (W) 150 MJ15015 MJ15016 100 50 2N3055A MJ2955A 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power Derating Preferred devices are Motorola recommended choices for future use and best overall value. REV 1 Motorola Bipolar Power Transistor Device Data 3–5
  • 64. Motorola Bipolar Power Transistor Device Data 3–6 * Indicates JEDEC Registered Data. (2N3055A)Î Î Î Î Î Î v 2%. (1) Pulse Test: Pulse Width = 300 µs, Duty Cycle µs 6.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î tf Fall Time µs 3.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ts tp = 25 µs Duty Cycle v 2% Storage Time IB1 = IB2 = 0.4 Adc, 0 4 Adc µs 4.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î tr (VCC = 30 Vdc, IC = 4.0 Adc, Rise Time 0.5 —Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ µs td Delay TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î RESISTIVE LOAD *SWITCHING CHARACTERISTICS (2N3055A only)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) pF 600 60ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎCob Output Capacitance 18 2.2ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MJ2955A, MJ15016 (IC = 1.0 Adc, VCE = 4.0 Vdc, f = 1.0 MHz) MHz 6.0 0.8Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î fT 2N3055A, MJ15015 Current–Gain — Bandwidth ProductÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *DYNAMIC CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 4.0 Adc, VCE = 4.0 Vdc) Vdc 1.8 0.7 VBE(on) Base–Emitter On VoltageÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 5.0 Î Î Î Î Î — (IC = 15 Adc, IB = 7.0 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 3.0 — (IC = 10 Adc, IB = 3.3 Adc) 1.1 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 4.0 Adc, IB = 400 mAdc) Vdc VCE(sat) Collector–Emitter Saturation VoltageÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î — 5.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 10 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 70 20 (IC = 4.0 Adc, VCE = 4.0 Vdc) 70 10ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 4.0 Adc, VCE = 2.0 Vdc) —Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î hFE DC Current GainÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ON CHARACTERISTICS (1) — 3.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 60 Vdc) MJ15015, MJ15016 — 1.95 (t = 0.5 s non–repetitive) 2N3055A, MJ2955A AdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î IS/b Second Breakdown Collector Current with Base Forward BiasedÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *SECOND BREAKDOWNÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î mAdcÎÎÎÎ Î Î Î Î Î Î Î Î 0.2 5.0 — —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎIEBO MJ15015, MJ15016 2N3055A, MJ2955A (VEB = 7.0 Vdc, IC = 0) Emitter Cutoff Current 6.0 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î MJ15015, MJ15016 TC = 150_C) 30 — 2N3055A, MJ2955A (VCEV = Rated Value, VBE(off) = 1.5 Vdc,ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î mAdcÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICEV Collector Cutoff Current 1.0 — MJ15015, MJ15016 (VCEV = Rated Value, VBE(off) = 1.5 Vdc) mAdc 5.0 — ICEV 2N3055A, MJ2955A *Collector Cutoff Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î 0.1 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î MJ15015, MJ15016 (VCE = 60 Vdc, VBE(off) = 0 Vdc) 0.7 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î 2N3055A, MJ2955A (VCE = 30 Vdc, VBE(off) = 0 Vdc) mAdc ICEO Collector Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 120 MJ15015, MJ15016 (IC = 200 mAdc, IB = 0) Vdc — 60 VCEO(sus)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3055A, MJ2955A *Collector–Emitter Sustaining Voltage OFF CHARACTERISTICS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Unit Max Min Symbol CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3055A MJ15015 MJ2955A MJ15016
  • 65. 2N3055A MJ15015 MJ2955A MJ15016 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 200 2.8 TJ = 25°C 100 TJ = 150°C 2.4 70hFE , DC CURRENT GAIN 50 2 – 55°C 30 1.6 IC = 1 A 4A 8A 20 VCE = 4.0 V 25°C 1.2 10 7 0.8 5 0.4 3 2 0 0.2 0.3 0.5 0.7 1 2 3 5 7 10 15 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 IC, COLLECTOR CURRENT (AMP) IB, BASE CURRENT (AMP) Figure 2. DC Current Gain Figure 3. Collector Saturation Region f T, CURRENT–GAIN — BANDWIDTH PRODUCT (MHz) 3.5 10 TC = 25°C 3 5.0 MJ2955A V, VOLTAGE (VOLTS) 2.5 MJ15016 2 2.0 1.5 2N3055A VBE(sat) @ IC/IB = 10 MJ15015 1 1.0 VBE(on) @ VCE = 4 V 0.5 VCE(sat) @ IC/IB = 10 0 0.2 0.3 0.5 0.7 1 2 3 5 7 10 20 0.1 0.2 0.3 0.5 1.0 2.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMPS) Figure 4. “On” Voltages Figure 5. Current–Gain — Bandwidth Product 10 7 VCC = 30 V 5 IC/IB = 10 VCC TJ = 25°C + 30 V 3 2 t, TIME ( µs) tr 7.5 Ω 25 µs 1 +13 V SCOPE 0.7 30 Ω 0 0.5 1N6073 0.3 –11 V 0.2 tr, tf ≤ 10 ns td –5 V DUTY CYCLE = 1.0% 0.1 0.2 0.3 0.5 0.7 1 2 3 5 7 10 15 IC, COLLECTOR CURRENT (AMP) Figure 6. Switching Times Test Circuit Figure 7. Turn–On Time (Circuit shown is for NPN) Motorola Bipolar Power Transistor Device Data 3–7
  • 66. 2N3055A MJ15015 MJ2955A MJ15016 10 400 7 TJ = 25°C 5 2N3055A 3 200 Cib MJ15015 C, CAPACITANCE (pF) 2 ts MJ2955A MJ15016t, TIME ( µs) tf 0.1 100 0.7 0.5 VCC = 30 50 Cob IC/IB = 10 0.3 IB1 = IB2 0.2 TJ = 25°C 30 0.1 20 0.2 0.3 0.5 0.7 1 2 3 5 7 10 15 1.0 2.0 5.0 10 20 50 100 200 500 1000 IC, COLLECTOR CURRENT (AMPS) VR, REVERSE VOLTAGE (VOLTS) Figure 8. Turn–Off Times Figure 9. Capacitances COLLECTOR CUT–OFF REGION NPN PNP 10,000 1000 VCE = 30 V VCE = 30 V 1000 100IC, COLLECTOR CURRENT (µ A) IC, COLLECTOR CURRENT (µ A) 100 10 TJ = 150°C TJ = 150°C 10 1.0 100°C 100°C 1.0 0.1 IC = ICES IC = ICES REVERSE FORWARD REVERSE FORWARD 0.1 0.01 25°C 25°C 0.01 0.001 + 0.2 + 0.1 0 – 0.1 – 0.2 – 0.3 – 0.4 – 0.5 – 0.2 – 0.1 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 VBE, BASE–EMITTER VOLTAGE (VOLTS) VBE, BASE–EMITTER VOLTAGE (VOLTS) Figure 10. 2N3055A, MJ15015 Figure 11. MJ2955A, MJ15016 20 20 30 µs 0.1 ms IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMP) 10 10 100 µs 5.0 1 ms 1.0 ms 5 2.0 100 ms 1.0 100 ms BONDING WIRE LIMIT BONDING WIRE LIMIT 2 THERMAL LIMIT @ TC = 25°C dc THERMAL LIMIT @ TC = 25°C 0.5 (SINGLE PULSE) (SINGLE PULSE) SECOND BREAKDOWN LIMIT SECOND BREAKDOWN LIMIT dc 1 0.2 10 20 60 100 15 20 30 60 100 120 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 12. Forward Bias Safe Operating Area Figure 13. Forward Bias Safe Operating Area 2N3055A, MJ2955A MJ15015, MJ15016 There are two limitations on the power handling ability of a tion than the curves indicate. transistor: average junction temperature and second break- The data of Figures 12 and 13 is based on TC = 25_C; down. Safe Operating area curves indicate IC – VCE limits of TJ(pk) is variable depending on power level. Second break- the transistor that must be observed for reliable operation; down pulse limits are valid for duty cycles to 10% but must be i.e., the transistor must not be subjected to greater dissipa- derated for temperature according to Figure 1. 3–8 Motorola Bipolar Power Transistor Device Data
  • 67. MOTOROLA SEMICONDUCTOR TECHNICAL DATA 2N3442 High-Power Industrial Transistors 10 AMPERE NPN silicon power transistor designed for applications in industrial and commercial POWER TRANSISTOR equipment including high fidelity audio amplifiers, series and shunt regulators and NPN SILICON power switches. 140 VOLTS • Collector –Emitter Sustaining Voltage — 117 WATTS VCEO(sus) = 140 Vdc (Min) • Excellent Second Breakdown Capability CASE 1–07 TO–204AA (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Rating Symbol Value Unit Collector–Emitter Voltage VCEO 140 VdcÎÎÎÎÎÎ ÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Emitter–Base Voltage VCB VEB 160 7.0 Vdc VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Collector Current — Continuous Collector Current — Peak Î Î Î IC 10 15** AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Base Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IB 7.0 Adc Peak —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Total Power Dissipation @ TC = 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î PD 117 WattsÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î 0.67 W/_C Operating and Storage Junction TJ, Tstg – 65 to + 200 _CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature RangeÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Max UnitÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Thermal Resistance, Junction to Case RθJC 1.5 _C/WÎ Î Î Î * Indicates JEDEC Registered Data. ** This data guaranteed in addition to JEDEC registered data. REV 7 Motorola Bipolar Power Transistor Device Data 3–9
  • 68. Motorola Bipolar Power Transistor Device Data 3–10 Figure 1. Power Derating TC, CASE TEMPERATURE (°C) 200 175 50 75 100 125 150 25 0 0 0.2 0.4 0.6 0.8 1.0 PD /PD(MAX), POWER DISSIPATION (NORMALIZED) 5. fT = |hfe| • ftest v 2.0%. 4. Pulse Test: Pulse Width = 300 µs, Duty Cycle NOTES: * Indicates JEDEC Registered Data.ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 2.0 Adc, VCE = 4.0 Vdc, f = 1.0 kHz) — 72 12 hfe Small–Signal Current GainÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 2.0 Adc, VCE = 4.0 Vdc, ftest = 40 kHz) kHz — 80 fT Current–Gain — Bandwidth Product (2)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î Î Î Î Î Î DYNAMIC CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 10 Adc, VCE = 4.0 Vdc) Vdc 5.7 — VBE(on) Base–Emitter On VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 10 Adc, IB = 2.0 Adc) VdcÎÎÎ Î Î Î Î Î Î Î Î Î 5.0 — VCE(sat) Collector–Emitter Saturation VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î — 7.5ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 70 20 (IC = 10 Adc, VCE = 4.0 Vdc) (IC = 3.0 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — hFEÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DC Current Gain ON CHARACTERISTICS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VBE = 7.0 Vdc, IC = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ mAdc 5.0 — IEBOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Emitter Cutoff Current 30 — (VCE = 140 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C)Î Î Î Î Î Î 5.0 — (VCE = 140 Vdc, VBE(off) = 1.5 Vdc) mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎICEX Î Collector Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (VCE = 140 Vdc, IB = 0) mAdc 200 — ICEO Collector Cutoff CurrentÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 200 mAdc, IB = 0) Vdc — 140 VCEO(sus) Collector–Emitter Sustaining Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Unit Max Min Symbol CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3442
  • 69. 2N3442 ACTIVE REGION SAFE OPERATING AREA INFORMATION 20 10 µs 10 There are two limitations on the power–handling ability of IC, COLLECTOR CURRENT (AMP) a transistor: average junction temperature and second 7.0 dc 5.0 breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable 3.0 30 µs operation, i.e., the transistor must not be subjected to 2.0 50 µs greater dissipation than the curves indicate. TJ = 200°C 100 µs The data of Figure 2 is based on TJ(pk) = 200_C; TC is 1.0 1.0 ms variable depending on conditions. At high case temper- 0.7 CURRENT LIMIT 100 ms atures, thermal limitations will reduce the power that can be 0.5 THERMAL LIMIT @ TC = 25°C handled to values less than the limitations imposed by SINGLE PULSE second breakdown. 0.3 SECOND BREAKDOWN LIMIT 0.2 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 2. 2N3442 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 400 1.4 TJ = 150°C VCE = 4.0 V 200 1.2 IC = 1.0 A 2.0 A 4.0 A 8.0 AhFE, DC CURRENT GAIN 100 1.0 – 55°C 60 25°C 0.8 40 0.6 20 0.4 10 0.2 6.0 TJ = 25°C 4.0 0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 2.0 5.0 10 20 50 100 200 500 1.0 k 2.0 k IC, COLLECTOR CURRENT (AMP) IB, BASE CURRENT (mA) Figure 3. DC Current Gain Figure 4. Collector–Saturation Region Motorola Bipolar Power Transistor Device Data 3–11
  • 70. MOTOROLASEMICONDUCTOR TECHNICAL DATA NPNSilicon NPN Power Transistors 2N3715. . . designed for medium–speed switching and amplifier applications. These devices 2N3716feature:• Total Switching Time at 3 A typically 1.15 µs• Gain Ranges Specified at 1 A and 3 A 10 AMPERE• Low VCE(sat): typically 0.5 V at IC = 5 A and IB = 0.5 A POWER TRANSISTORS• Excellent Safe Operating Areas SILICON NPN• Complement to 2N3791–92 60 – 80 VOLTS 150 WATTS CASE 1–07 TO–204AA (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Symbol 2N3715 2N3716 Unit Collector–Emitter Voltage VCEO 60 80 VoltsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VCB 80 100 VoltsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VEB 7.0 7.0 Volts Collector Current IC 10 10 Amps ÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Base CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Power Dissipation IB PD 4.0 150 4.0 150 Amps WattsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Thermal Resistance Î Î θJC 1.17 1.17 _C/WÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î Î Operating Junction and Storage Temperature Range Î Î TJ, Tstg – 65 to + 200 _C 160 140 PD, POWER DISSIPATION (WATTS) 120 100 80 60 40 20 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power–Temperature Derating Curve Safe Area Limits are indicated by Figures 12, 13. Both limits are applicable and must be observed. REV 7 3–12 Motorola Bipolar Power Transistor Device Data
  • 71. 2N3715 2N3716ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Characteristic Symbol Min Max Unit ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Emitter–Base Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VEB = 7.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î All Types IEBO — 5.0 mAdc Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î Collector–Emitter Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICEX mAdc (VCE = 80 Vdc, VBE = – 1.5 Vdc) 2N3715 — 1.0 (VCE = 100 Vdc, VBE = – 1.5 Vdc) 2N3716 — 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCE = 60 Vdc, VBE = – 1.5 Vdc, TC = 150_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N3715 — 10 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (VCE = 80 Vdc, VBE = – 1.5 Vdc, TC = 150_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î 2N3716 — 10 Collector–Emitter Sustaining Voltage (1) VCEO(sus)* VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 200 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3715 2N3716 60 80 — —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ hFE* — (IC = 1.0 Adc, VCE = 2.0 Vdc) 2N3715, 2N3716 50 150ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 3.0 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3715, 2N3716 30 — ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎ Î Î Î Î Î Collector–Emitter Saturation Voltage (1) (IC = 5.0 Adc, IB = 0.5 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3715, 2N3716 VCE(sat)* — 0.8 Vdc Base–Emitter Saturation Voltage (1) VBE(sat)* — 1.5 VdcÎ Î Î Î Î Î (IC = 5.0 Adc, IB = 0.5 Adc) 2N3715, 2N3716ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Base–Emitter Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 3.0 Adc, VCE = 2.0 Vdc) All Types VBE* — 1.5 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Small Signal Current GainÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (VCE = 10 Vdc, IC = 0.5 Adc, f = 1.0 MHz) All Types hfe 4.0 — — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ Switching Times (Figure 2) Typ µsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 5.0 A, IB1 = IB2 = 0.5 Adc) Rise TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î tr 0.45 Storage Time ts 0.3 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎ Î Î Î Î Î Fall Time (1) Pulse Test: Pulse Width Î v 300 µs, Duty Cycle v 2.0%. tf 0.4 TEST CIRCUIT IC = 5 A, IB1 = IB2 = 0.5 A ton ~ 30 µs f ≈ 150 cps DUTY CYCLE ≈ 2% 1.5 +11.5 V WAVE SHAPE 1.0 ts AT POINT A –9 VSWITCHING TIMES ( µ s) 0.7 toff + 30 V 0.5 ~ 1.7 ms ~ 4.8 ms tf 6Ω 0.3 tr 4W 100 Ω 20 Ω 900 Ω 1W A 1W 0.2 Hg RELAYS 900 Ω IB1 = IB2 100 Ω 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 + 62 V –9 V 100 Ω – 4 V IC, COLLECTOR CURRENT (AMPS) Figure 2. Typical Switching Times Motorola Bipolar Power Transistor Device Data 3–13
  • 72. 2N3715 2N3716 10 1000 7.0 700 5.0 2N3715, 2N3716 500IC, COLLECTOR CURRENT (AMPS) 3.0 300 VCE = 2 V 2.0 200 IB , BASE CURRENT (mA) SEE NOTE 2 1.0 100 0.7 70 0.5 50 0.3 TJ = 175°C 30 0.2 VCE = 2 V 20 TJ = 175°C – 40°C 0.1 SEE NOTES 1, 2 10 0.07 – 40°C 7.0 0.05 5.0 25°C 0.03 3.0 0.02 25°C 2.0 0.01 1.0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 0 0.4 0.8 1.2 1.6 2.0 IB, BASE CURRENT (mA) VBE, BASE–EMITTER VOLTAGE (VOLTS) Figure 3. Collector Current versus Base Current Figure 4. Base Current–Voltage Variations 10 7 2N3715, 2N3716 IC, COLLECTOR CURRENT (AMPS) 5 3 2 VCE = 2 V SEE NOTE 2 TJ = 175°C – 40°C 1 0.7 0.5 25°C 0.3 0.2 0.1 0.1 0.4 0.8 1.2 1.6 2.0 VBE, BASE–EMITTER VOLTAGE (VOLTS) Figure 5. Collector Current–Voltage VariationsNOTE 1. Dotted line indicates metered base current plus the ICBO of the transistor at 175_C.NOTE 2. Pulse test: pulse width ≈ 200 µsec, duty cycle ≈ 1.5%. 3–14 Motorola Bipolar Power Transistor Device Data
  • 73. 2N3715 2N3716 VCE(sat) , COLLECTOR–EMITTER SATURATION 1.4 TJ = 1.2 25°C – 40°C 1.0 175°C VOLTAGE (VOLTS) SEE NOTE 2 0.8 IC = 5 A 0.6 0.4 IC = 3 A 0.2 IC = 1 A 0.1 10 20 30 50 70 100 200 300 500 700 1000 2000 IB, BASE CURRENT (mA) Figure 6. Collector–Emitter Saturation Voltage Variations 1.4 VBE(sat) , BASE–EMITTER SATURATION 1.2 IC = 5 A 1.0 IC = 3 A VOLTAGE (VOLTS) 0.8 IC = 1 A 0.6 TJ = 0.4 25°C – 40°C 0.2 175°C SEE NOTE 2 0.1 10 20 30 50 70 100 200 300 500 700 1000 2000 IB, BASE CURRENT (mA) Figure 7. Base–Emitter Saturation Voltage Variations 10 100 7.0 50 5.0 IC, COLLECTOR CURRENT (mA)IC, COLLECTOR CURRENT (mA) 30 3.0 20 VCE = VCEO – 20 V 2.0 SEE NOTE 2 10 5.0 1.0 3.0 0.7 2.0 0.5 TJ = 175°C 1.0 TJ = 175°C 0.3 0.5 0.2 TJ = 100°C 0.3 VCE = VCEO – 20 V 0.2 TJ = 100°C REVERSE FORWARD SEE NOTE 2 0.1 0.1 – 0.6 – 0.4 – 0.2 0 0.2 0.4 1 10 100 1000 10,000 100,000 VBE, BASE–EMITTER VOLTAGE (VOLTS) RBE, EXTERNAL BASE–EMITTER RESISTANCE (OHMS) Figure 8. Collector Current versus Figure 9. Collector Current versus Base–Emitter Voltage Base–Emitter Resistance Motorola Bipolar Power Transistor Device Data 3–15
  • 74. 2N3715 2N3716 200 hFE , CURRENT GAIN 150 TJ = 175°C hFE + IBC ) ICBO I – ICBO 25°C VCE = 2 V 100 – 40°C 50 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (AMPS) Figure 10. Current Gain Variations fτ , CURRENT GAIN — BANDWIDTH PRODUCT (mc) 8 6 4 VCE = 6 V 2 0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 IC, COLLECTOR CURRENT (AMPS) Figure 11. Current Gain — Bandwidth Product versus Collector Current SAFE OPERATING AREAS 10 10 7 DC to 5 ms ≤ 50 µs 7 DC to 5 ms ≤ 50 µs IC, COLLECTOR CURRENT (AMPS)IC, COLLECTOR CURRENT (AMPS) 5 5 250 µs 500 µs 250 µs 3 1 ms 3 500 µs 2 2 1 ms 1 1 0.7 0.7 0.5 0.5 0.3 0.3 0.2 0.2 0.1 0.1 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 12. 2N3715 Figure 13. 2N3716 The Safe Operating Area Curves indicate IC – VCE limits short. (Duty cycle of the excursions make no significantbelow which the device will not go into secondary break- change in these safe areas.) To insure operation below thedown. Collector load lines for specific circuits must fall within maximum TJ, the power–temperature derating curve must bethe applicable Safe Area to avoid causing a collector–emitter observed for both steady state and pulse power conditions. 3–16 Motorola Bipolar Power Transistor Device Data
  • 75. MOTOROLA SEMICONDUCTOR TECHNICAL DATA 2N3771* High Power NPN Silicon Power 2N3772 Transistors *Motorola Preferred Device . . . designed for linear amplifiers, series pass regulators, and inductive switching 20 and 30 AMPERE applications. POWER TRANSISTORS • Forward Biased Second Breakdown Current Capability NPN SILICON IS/b = 3.75 Adc @ VCE = 40 Vdc — 2N3771 40 and 60 VOLTS IS/b = 2.5 Adc @ VCE = 60 Vdc — 2N3772 150 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol 2N3771 2N3772 Unit Collector–Emitter Voltage VCEO 40 60 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VCEX 50 80 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VCB 50 100 Vdc CASE 1–07 TO–204AA Emitter–Base Voltage VEB 5.0 7.0 Vdc Î Î Î ÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Collector Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î IC 30 20 Adc (TO–3) Peak 30 30ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ ÎBase Current — Continuous Peak IB 7.5 15 5.0 15 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Total Device Dissipation @ TC = 25_C Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ PD 150 0.855 Watts W/_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î Î Î Î Î Operating and Storage Junction Temperature RangeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î TJ, Tstg – 65 to + 200 _CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristics Thermal Resistance, Junction to Case Symbol θJC 2N3771, 2N3772 1.17 Unit _C/WÎÎÎÎÎÎÎÎÎ Î Î Î * Indicates JEDEC Registered Data. 200 175 PD, POWER DISSIPATION (WATTS) 150 125 100 75 50 25 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power Derating Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 Motorola Bipolar Power Transistor Device Data 3–17
  • 76. Motorola Bipolar Power Transistor Device Data 3–18 (1) Pulse Test: 300 µs, Rep. Rate 60 cps. * Indicates JEDEC Registered Data.ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 2.5 (VCE = 60 Vdc) 2N3772Î — 3.75 (VCE = 40 Vdc) 2N3771 Adc IS/bÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Second Breakdown Energy with Base Forward Biased, t = 1.0 s (non–repetitive) SECOND BREAKDOWNÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.0 Adc, VCE = 4.0 Vdc, f = 1.0 kHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — Î Î Î Î — 40 hfeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Small–Signal Current Gain (IC = 1.0 Adc, VCE = 4.0 Vdc, ftest = 50 kHz) MHz — 0.2 fTÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth ProductÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *DYNAMIC CHARACTERISTICS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 8.0 Adc, VCE = 4.0 Vdc) 2.2 — 2N3772 (IC = 10 Adc, VCE = 4.0 Vdc) 2.7 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (IC = 15 Adc, VCE = 4.0 Vdc) VdcÎÎÎ Î Î Î Î Î Î Î Î VBE(on)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Base–Emitter On Voltage 4.0 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N3772 (IC = 20 Adc, IB = 4.0 Adc) 4.0 — 2N3771 (IC = 30 Adc, IB = 6.0 Adc) 1.4 — Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2.0 — 2N3772 (IC = 10 Adc, IB = 1.0 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (IC = 15 Adc, IB = 1.5 Adc) Vdc VCE(sat) Collector–Emitter Saturation VoltageÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î — 5.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î 2N3772 (IC = 20 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 5.0 2N3771 (IC = 30 Adc, VCE = 4.0 Vdc) (IC = 8.0 Adc, VCE = 4.0 Vdc) Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 60 15 2N3772 (IC = 10 Adc, VCE = 4.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 60 15 2N3771 (IC = 15 Adc, VCE = 4.0 Vdc) — hFEÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain (1) *ON CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 5.0 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N3772 (VBE = 7.0 Vdc, IC = 0) 5.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (VBE = 5.0 Vdc, IC = 0) mAdc IEBO *Emitter Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 5.0 — 2N3772 (VCB = 100 Vdc, IE = 0) 2.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (VCB = 50 Vdc, IE = 0) mAdc Î Î Î Î Î ICBOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *Collector Cutoff Current (VCE = 45 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ Î Î Î Î Î Î Î Î10 — 2N3772 Î Î Î Î10 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N3771 (VCE = 30 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) Î Î Î Î4.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N6257 (VCE = 45 Vdc, VEB(off) = 1.5 Vdc) 5.0 — 2N3772 (VCE = 100 Vdc, VEB(off) = 1.5 Vdc) 2.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (VCE = 50 Vdc, VEB(off) = 1.5 Vdc) mAdcÎÎÎ Î Î Î Î Î Î Î Î Î ICEVÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *Collector Cutoff Current Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 25 Vdc, IB = 0) 10 — 2N3772 (VCE = 50 Vdc, IB = 0) 10 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 (VCE = 30 Vdc, IB = 0) mAdcÎÎÎ Î Î Î Î Î Î Î Î ICEOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *Collector Cutoff Current — 70 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N3772 (IC = 0.2 Adc, RBE = 100 Ohms) Vdc — 45 VCER(sus) 2N3771 Collector–Emitter Sustaining VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 80 2N3772 (IC = 0.2 Adc, VEB(off) = 1.5 Vdc, RBE = 100 Ohms) Vdc — 50 VCEX(sus) 2N3771 Collector–Emitter Sustaining VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î — 60 2N3772 (IC = 0.2 Adc, IB = 0) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Vdc ΠΠΗ 40 VCEO(sus)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3771 *Collector–Emitter Sustaining Voltage (1) Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Unit Max Min SymbolÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) 2N3771 2N3772
  • 77. 2N3771 2N3772 1.0 0.7 r(t), EFFECTIVE TRANSIENT THERMAL D = 0.5 0.5 RESISTANCE (NORMALIZED) 0.3 0.2 0.2 0.1 0.1 0.05 θJC(t) = r(t) θJC P(pk) 0.07 θJC = 0.875°C/W MAX 0.05 D CURVES APPLY FOR POWER 0.02 PULSE TRAIN SHOWN t1 0.03 0.01 READ TIME AT t1 t2 0.02 SINGLE PULSE TJ(pk) – TC = P(pk) θJC(t) DUTY CYCLE, D = t1/t2 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 2000 t, TIME (ms) Figure 2. Thermal Response — 2N3771, 2N3772 40 There are two limitations on the power handling ability of a 30 transistor: average junction temperature and second break- 40 µsIC, COLLECTOR CURRENT (AMP) 2N3771 down. Safe operating area curves indicate I C – V CE limits of 20 the transistor that must be observed for reliable operation: 2N3772, (dc) 100 µs i.e., the transistor must not be subjected to greater dissipa- dc tion than the curves indicate. 200 µs 10 TC = 25°C Figure 3 is based on JEDEC registered Data. Second 7.0 BONDING WIRE LIMITED 1.0 ms breakdown pulse limits are valid for duty cycles to 10% THERMALLY LIMITED provided T J(pk) < 200_C. T J(pk) may be calculated from the 5.0 (SINGLE PULSE) 100 ms data of Figure 2. Using data of Figure 2 and the pulse power SECOND BREAKDOWN LIMITED limits of Figure 3, T J(pk) will be found to be less than T J(max) CURVES APPLY BELOW RATED VCEO 3.0 PULSE CURVES APPLY 500 ms for pulse widths of 1 ms and less. When using Motorola 2N3771 transistors, it is permissible to increase the pulse power limits FOR ALL DEVICES 2N3772 2.0 until limited by T J(max). 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 3. Active–Region Safe Operating Area — 2N3771, 2N3772 VCC + 30 V 10 5.0 VCC = 30 IC/IB = 10 VBE(off) = 5.0 V 25 µs RC 2.0 TJ = 25°C +11 V SCOPE RB 1.0 t, TIME ( µs) tr 0.5 0 51 D1 0.2 – 9.0 V 0.1 tr, tf ≤ 10 ns –4 V DUTY CYCLE = 1.0% 0.05 td RB AND RC ARE VARIED TO OBTAIN DESIRED CURRENT LEVELS 0.02 D1 MUST BE FAST RECOVERY TYPE, e.g.: 0.01 1N5825 USED ABOVE IB ≈ 100 mA 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 MSD6100 USED BELOW IB ≈ 100 mA IC, COLLECTOR CURRENT (AMP) Figure 4. Switching Time Test Circuit Figure 5. Turn–On Time Motorola Bipolar Power Transistor Device Data 3–19
  • 78. 2N3771 2N3772 100 2000 VCC = 30 V TJ = 25°C 50 IC/IB = 10 20 IB1 = IB2 C, CAPACITANCE (pF) TJ = 25°C 1000 Cib 10t, TIME ( µs) 5.0 700 Cob ts 2.0 500 1.0 tf 0.5 300 0.2 0.1 200 0.3 0.5 1.0 2.0 3.0 5.0 7.0 10 20 30 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 IC, COLLECTOR CURRENT (AMP) VR, REVERSE VOLTAGE (VOLTS) Figure 6. Turn–Off Time Figure 7. Capacitance VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 500 2.0 TJ = 25°C 300 TJ = 150°C VCE = 4.0 V 200 1.6 IC = 2.0 A 5.0 A 10 A 20 A hFE , DC CURRENT GAIN 25°C 100 70 1.2 50 – 55°C 30 0.8 20 0.4 10 7.0 5.0 0 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 8. DC Current Gain Figure 9. Collector Saturation Region 3–20 Motorola Bipolar Power Transistor Device Data
  • 79. MOTOROLA SEMICONDUCTOR TECHNICAL DATA NPN 2N3773* Complementary Silicon Power PNP Transistors 2N6609 The 2N3773 and 2N6609 are PowerBase power transistors designed for high *Motorola Preferred Device power audio, disk head positioners and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, dc to dc 16 AMPERE converters or inverters. COMPLEMENTARY • High Safe Operating Area (100% Tested) 150 W @ 100 V POWER TRANSISTORS • Completely Characterized for Linear Operation 140 VOLTS • High DC Current Gain and Low Saturation Voltage 150 WATTS hFE = 15 (Min) @ 8 A, 4 V VCE(sat) = 1.4 V (Max) @ IC = 8 A, IB = 0.8 A • For Low Distortion Complementary Designs CASE 1–07 TO–204AA (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Rating Symbol Value Unit Collector Emitter Voltage VCEO 140 VdcÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Collector–Base Voltage VCBO VCEX 160 160 Vdc VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î VEBO 7 VdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector Current — Continuous IC 16 Adc — Peak (1) 30 Î Î Î Î Î Î Base Current — Continuous IB 4 Adc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î — Peak (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î 15 Total Power Dissipation @ TC = 25_C PD 150 WattsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 0.855 W/_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Operating and Storage JunctionÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Temperature Range TJ, Tstg – 65 to + 200 _CÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Characteristic ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Symbol Max Unit Thermal Resistance, Junction to Case RθJC 1.17 _C/WÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î * Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%. Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 Motorola Bipolar Power Transistor Device Data 3–21
  • 80. Motorola Bipolar Power Transistor Device Data 3–22 * Indicates JEDEC Registered Data. v 2%. (1) Pulse Test: Pulse Width = 300 µs, Duty CycleÎ Î t = 1 s (non–repetitive), VCE = 100 V, See Figure 12 Adc — 1.5 IS/bÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Second Breakdown Collector Current with Base Forward Biased SECOND BREAKDOWN CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1 Adc, VCE = 4 Vdc, f = 1 kHz) — — 40 hfeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *Small–Signal Current Gain (IC = 1 A, f = 50 kHz) Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Small–Signal, Short–Circuit, Forward Current Transfer Ratio — — 4 |hfe| Magnitude of Common–EmitterÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DYNAMIC CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 8 Adc, VCE = 4 Vdc) Vdc 2.2 — VBE(on)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î *Base–Emitter On Voltage 4 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î1.4 — (IC = 16 Adc, IB = 3.2 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *(IC = 8 Adc, IB = 800 mAdc) Vdc VCE(sat)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector–Emitter Saturation Voltage — 5ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 16 Adc, VCE = 4 Vdc) 60 15 *(IC = 8 Adc, VCE = 4 Vdc) —Î Î Î Î Î Î Î hFEÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î DC Current Gain ON CHARACTERISTICS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (VBE = 7 Vdc, IC = 0) mAdc Î Î Î Î Î Î Î Î 5 — IEBO *Emitter Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCB = 140 Vdc, IE = 0) mAdcÎÎÎ Î Î Î Î Î Î Î Î 2 — ICBOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current Î Î Î10 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î (VCE = 140 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C) 2 — (VCE = 140 Vdc, VBE(off) = 1.5 Vdc) mAdc ICEX *Collector Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 120 Vdc, IB = 0) mAdc 10 — ICEOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *Collector Cutoff CurrentÎ Î Î Î Î Î (IC = 0.2 Adc, RBE = 100 Ohms) Vdc — 150 VCER(sus)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector–Emitter Sustaining VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 0.1 Adc, VBE(off) = 1.5 Vdc, RBE = 100 Ohms) Vdc — 160 VCEX(sus) *Collector–Emitter Sustaining VoltageÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 0.2 Adc, IB = 0) Vdc — 140 VCEO(sus) *Collector–Emitter Breakdown Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS (1) Unit Max Min Symbol CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N3773 2N6609
  • 81. 2N3773 2N6609 NPN PNP 300 300 200 150°C 200 150°C 25°ChFE , DC CURRENT GAIN hFE , DC CURRENT GAIN 100 100 – 55°C – 55°C 70 25°C 70 50 50 30 VCE = 4 V 30 VCE = 4 V 20 20 10 10 7.0 7.0 5.0 5.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 1. DC Current Gain Figure 2. DC Current Gain VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 2.0 IC = 4 A IC = 4 A 1.6 1.6 IC = 16 A 1.2 1.2 IC = 8 A IC = 8 A IC = 16 A 0.8 0.8 0.4 0.4 TC = 25°C TC = 25°C 0 0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 IB, BASE CURRENT (AMPS) IB, BASE CURRENT (AMPS) Figure 3. Collector Saturation Region Figure 4. Collector Saturation Region 2.0 2.0 IC/IB = 10 IC/IB = 10 1.6 1.6 V, VOLTAGE (VOLTS) V, VOLTAGE (VOLTS) 1.2 1.2 VBE(sat) VBE(sat) 0.8 25°C 0.8 25°C 150°C 150°C 150°C 0.4 150°C 0.4 25°C VCE(sat) 25°C VCE(sat) 0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 5. “On” Voltage Figure 6. “On” Voltage Motorola Bipolar Power Transistor Device Data 3–23
  • 82. 2N3773 2N6609 30 20 10 µs 40 µs IC, COLLECTOR CURRENT (AMP) 10 100 µs 5.0 dc 200 µs 3.0 1.0 ms 2.0 100 ms 1.0 0.5 500 ms 0.3 BONDING WIRE LIMIT 0.2 THERMAL LIMIT @ TC = 25°C, SINGLE PULSE 0.1 SECOND BREAKDOWN LIMIT 0.05 0.03 3.0 5.0 7.0 10 20 30 50 70 100 200 300 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 7. Forward Bias Safe Operating Area There are two limitations on the power handling ability of a The data of Figure 7 is based on T J(pk) = 200_C; TC istransistor: average junction temperature and second break- variable depending on conditions. Second breakdown pulsedown. Safe operating area curves indicate I C – V CE limits of limits are valid for duty cycles to 10% provided T J(pk)the transistor that must be observed for reliable operation: < 200_C. At high case temperatures, thermal limitations willi.e., the transistor must not be subjected to greater dissipa- reduce the power that can be handled to values less than thetion than the curves indicate. limitations imposed by second breakdown. 100 POWER DERATING FACTOR (%) 80 60 THERMAL 40 DERATING 20 0 0 40 80 120 160 200 TC, CASE TEMPERATURE (°C) Figure 8. Power Derating 3–24 Motorola Bipolar Power Transistor Device Data
  • 83. MOTOROLASEMICONDUCTOR TECHNICAL DATA 2N3791Silicon PNP Power Transistors 2N3792. . . designed for medium–speed switching and amplifier applications. These devicesfeature:• [ Total Switching Time @ 3.0 A 1.0 µs (typ) 10 AMPERE• hFE (min) = 50 @ 1.0 A POWER TRANSISTORS• Low VCE(sat) = 0.5 V (typ) @ IC = 5.0 A, IB = 0.5 A PNP SILICON• Excellent Safe Area Limits 60 – 80 VOLTS• Complementary NPN available — 2N3716 150 WATTS CASE 1–07 TO–204AA (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Symbol 2N3791 2N3792 Unit Collector–Base Voltage VCB 60 80 Volts ÎÎÎÎÎ ÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Emitter–Base Voltage VCEO VEB 60 7.0 80 7.0 Volts VoltsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Collector Current (Continuous)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î IC 10 10 AmpsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Base Current (Continuous)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Power Dissipation IB PD 4.0 150 4.0 150 Amps WattsÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Thermal Resistance θJC 1.17 1.17 _C/WÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Junction Operating and Storage Temperature Range Î Î Î TJ, Tstg – 65 to + 200 _C 160 140 PD, POWER DISSIPATION (WATTS) 120 100 80 60 40 20 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power–Temperature Derating Curve Safe Area Limits are indicated by Figures 15, 16. Both limits are applicable and must be observed. REV 7 Motorola Bipolar Power Transistor Device Data 3–25
  • 84. 2N3791 2N3792ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Collector–Emitter Sustaining Voltage (1) (IC = 200 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î 2N3791 VCEO(sus) 60 — Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î 2N3792 80 — Collector–Emitter Cutoff Current ICEX mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 60 Vdc, VBE = – 1.5 Vdc) (VCE = 80 Vdc, VBE = – 1.5 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N3791 2N3792 — — 1.0 1.0 Î Î Î ÎÎ Î Î Î Î (VCE = 60 Vdc, VBE = – 1.5 Vdc, TC = 150_C) (VCE = 80 Vdc, VBE = – 1.5 Vdc, TC = 150_C) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î 2N3791 2N3792 — — 5.0 5.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Emitter–Base Cutoff Current (VEB = 7.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ All Types IEBO — 5.0 mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DC Current Gain (1) hFE — (IC = 1.0 Adc, VCE = 2.0 Vdc) 50 180ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 3.0 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 30 — Î Î Î ÎÎÎÎ Î Î Î Î Collector–Emitter Saturation Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 5.0 Adc, IB = 0.5 Adc) VCE(sat) — 1.0 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Base–Emitter On Voltage (1) (IC = 5.0 A, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VBE(on) — 1.8 Vdc (IC = 10 Adc, VCE = 4.0 Vdc) — 4.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎ Î Î Current–Gain — Bandwidth Product fT 4.0 — MHz (VCE = 10 Vdc, IC = 0.5 Adc, f = 1.0 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (1) Pulse Test: Pulse Width v 300 µs, Duty Cycle v 2.0%. 6.7 ms VALUES SHOWN FOR 1.0 1.7 ms IC = 5 A, IB1 = – IB2 = 0.5 A +9 V f ≈ 150 cps, DUTY CYCLE ≈ 2% 0.7SWITCHING TIMES ( µ s) WAVE SHAPE ts AT POINT A – 30 V 0.5 –11.5 V ton ≈ 30 µs 6Ω 4W tf 100 Ω 20 Ω 1W A 1W 0.3 |IB1 = – IB2| = IC/10 900 Ω VCC = 30 V tr 900 Ω UNIT TC = 25°C Hg RELAYS UNDER TEST 100 Ω 0.2 +9 V +4 V 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 100 Ω IC, COLLECTOR CURRENT (AMPS) – 62 V Figure 2. Typical Switching Times and Test Circuit 3–26 Motorola Bipolar Power Transistor Device Data
  • 85. 2N3791 2N3792 500 2N3791, 2N3792 VCE = 2 V 300 + ) TJ = +175°C IC – ICBO hFE, DC CURRENT GAIN 200 hFE TJ = + 25°C IB ICBO TJ = – 40°C 100 70 TJ = + 25°C 50 30 20 TJ = +175°C 10 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (AMPS) Figure 3. Current Gain Variations 2.4 + 5.0 To compute saturation voltages TJ (+100°C to +175°C)V(sat) , SATURATION VOLTAGE (VOLTS) ALL TYPES TEMPERATURE COEFFICIENT (mV/ °C) V_(sat) @ operating TJ = V_(sat) + 4.0 @ + 25°C + θv_ (operating TJ – 25°C) 2.0 TJ = + 25°C Use appropriate θv for voltage of interest. βF = IC/IB (FORCED GAIN) + 3.0 Use appropriate curve for temperature range of interest. θv = Temperatur ecoefficient 1.6 VCE = 2 V + 2.0 TJ (+ 25°C to +100°C) 1.2 βF = 10 + 1.0 θVC for VCE(sat) VBE(sat) 0 0.8 VBE βF = 10 – 1.0 0.4 TJ (– 40°C to + 25°C) VCE(sat) – 2.0 θVB for VBE(sat) ALL TYPES 0 – 3.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 4. Saturation Voltages Figure 5. Temperature Coefficients Motorola Bipolar Power Transistor Device Data 3–27
  • 86. 2N3791 2N3792 SAFE OPERATING AREAS 10 10 7 7 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) 5 DC to 5 ms 5 DC to 5 ms 250 µs 250 µs 3 1 ms 3 2 ≤ 50 µs 2 500 µs 1 ms 500 µs ≤ 50 µs 1 1 0.7 0.7 0.5 0.5 0.3 0.3 0.2 0.2 0.1 0.1 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 6. 2N3789, 2N3791 Figure 7. 2N3790, 2N3792 The Safe Operating Area Curves indicate I C – V CE limits short. (Duty cycle of the excursions make no significantbelow which the device will not go into secondary break- change in these safe areas.) To insure operation below thedown. Collector load lines for specific circuits must fall within maximum TJ, the power–temperature derating curve must bethe applicable Safe Area to avoid causing a collector–emitter observed for both steady state and pulse power conditions. 10 20 VCE = VCEO – 20 V 5.0 10 IC, COLLECTOR CURRENT (mA)IC, COLLECTOR CURRENT (mA) VCE = VCEO – 20 V 5.0 2.0 2.0 TJ = +175°C 1.0 1.0 0.5 0.5 0.2 TJ = +175°C 0.2 0.1 TJ = +100°C 0.1 0.05 0.05 TJ = +100°C 0.02 0.02 0.01 REVERSE FORWARD 0.01 + 0.6 + 0.4 + 0.2 0 – 0.2 – 0.4 1.0 10 100 1K 10K 100K VBE, BASE–EMITTER VOLTAGE (VOLTS) RBE, EXTERNAL BASE–EMITTER RESISTANCE (OHMS) Figure 8. Cut–Off Region Transconductance Figure 9. Collector Cut–Off Current versus Base–Emitter Resistance 3–28 Motorola Bipolar Power Transistor Device Data
  • 87. MOTOROLA SEMICONDUCTOR TECHNICAL DATA 2N4347 (See 2N3442) PNP Silicon High-Power Transistors . . . designed for use in power amplifier and switching circuits. 2N4398 • Low Collector–Emitter Saturation Voltage — 2N4399 IC = 15 Adc, VCE(sat) = 1.0 Vdc (Max) 2N4398,99 IC = 15 Adc, VCE(sat) = 1.5 Vdc (Max) 2N5745 2N5745 • DC Current Gain Specified — 1.0 to 30 Adc • Complements to NPN 2N5301, 2N5302, 2N5303ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ 20, 30 AMPERE POWER TRANSISTORS ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Rating Symbol 2N4398 2N4399 2N5745 Unit PNP SILICON 40 – 60 – 180 VOLTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Collector–Emitter Voltage Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ Î Î VCEO VCB 40 40 60 60 80 80 Vdc Vdc 200 WATTS Emitter–Base Voltage VEB 5.0 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Collector Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Peak IC 30 50 30 50 20 50 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î Î Base Current — Continuous Î Î Peak IB 7.5 15 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Total Device DissipationÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î PD @ TA = 25_C** 5.0 Watts Î Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î 28.6 mW/_C CASE 1–07 Total Device Dissipation @ TC = 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î PDÎÎÎÎ Î Î Î Derate above 25_C Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 200 1.15 Watts W/_C TO–204AA (TO–3) Operating and Storage Junction TJ, Tstg – 65 to + 200 _CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature RangeÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎ THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Thermal Resistance, Junction to Case θJC 0.875 _C/WÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Thermal Resistance, Junction to Ambient θJA 35 _C/WÎ Î Î Î * Indicates JEDEC Registered Data. ** Motorola guarantees this data in addition to JEDEC Registered Data. TA TC 10 200 9.0 180 PD, POWER DISSIPATION (WATTS) 8.0 160 7.0 140 6.0 120 5.0 100 TC 4.0 80 3.0 60 TA 2.0 40 1.0 20 0 0 0 25 50 75 100 125 150 175 200 TC, CASE TEMPERATURE (°C) Figure 1. Power–Temperature Derating Curve Safe Area Curves are indicated by Figure 13. All limits are applicable and must be observed. REV 7 Motorola Bipolar Power Transistor Device Data 3–29
  • 88. 2N4398 2N4399 2N5745ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1) (IC = 200 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N4398 VCEO(sus) 40 — Vdc 2N4399 60 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î 2N5745 80 — Collector Cutoff Current ICEO mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 40 Vdc, IB = 0) (VCE = 60 Vdc, IB = 0) Î Î Î ÎÎ Î Î Î Î 2N4398 2N4399 — — 5.0 5.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 80 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î Î Î 2N5745 — 5.0 Collector Cutoff Current ICEX mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 40 Vdc, VBE(off) = 1.5 Vdc) (VCE = 60 Vdc, VBE(off) = 1.5 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N4398 2N4399 — — 5.0 5.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (VCE = 80 Vdc, VBE(off) = 1.5 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 30 Vdc, VBE(off) = 1.5 Vdc, TC = 150°C) 2N5745 2N4398, 2N4399 — — 5.0 10 (VCE = 80 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C) 2N5745 — 10ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î Î Collector Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICBO mAdc (VCB = 40 Vdc, IE = 0) 2N4398 — 1.0ÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î (VCB = 60 Vdc, IE = 0) 2N4399 — 1.0 (VCB = 80 Vdc, IE = 0) 2N5745 — 1.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0) IEBO — 5.0 mAdc ON CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ hFE — (IC = 1.0 Adc, VCE = 2.0 Vdc) All Types 40 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 10 Adc, VCE = 2.0 Vdc) (IC = 15 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N5745 2N4398, 2N4399 15 15 60 60 Î Î Î Î (IC = 20 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 30 Adc, VCE = 4.0 Vdc) 2N5745 2N4398, 2N4399 5.0 5.0 — —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Collector–Emitter Saturation Voltage (1) (IC = 10 Adc, IB = 1.0 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N4398, 2N4399 VCE(sat) — 0.75 Vdc 2N5745 — 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 15 Adc, IB = 1.5 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N4398, 2N4399 2N5745 — — 1.0 1.5 Î Î Î Î (IC = 20 Adc, IB = 2.0 Adc) Î Î Î ÎÎ Î Î Î Î 2N4398, 2N4399 — 2.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 20 Adc, IB = 4.0 Adc) 2N5745 — 2.0 (IC = 30 Adc, IB = 6.0 Adc) 2N4398, 2N4399 — 4.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Base–Emitter Saturation Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VBE(sat) Vdc (IC = 10 Adc, IB = 1.0 Adc)** 2N4398, 2N4399 — 1.6ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 15 Adc, IB = 1.5 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N5745 2N4398, 2N4399 — — 1.7 1.85 Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 20 Adc, IB = 2.0 Adc)** 2N5745 2N4398, 2N4399 — — 2.0 2.5 (IC = 20 Adc, IB = 4.0 Adc) 2N5745 — 2.5ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î Base–Emitter On Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VBE(on) Vdc (IC = 10 Adc, VCE = 2.0 Vdc) 2N5745 — 1.5ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (IC = 15 Adc, VCE = 2.0 Vdc) (IC = 20 Adc, VCE = 4.0 Vdc)Î Î Î Î Î 2N4398, 2N4399 2N5745 — — 1.7 2.5 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 30 Adc, VCE = 4.0 Vdc)ÎÎÎ Î Î Î Î Î 2N4398, 2N4399 — 3.0 * Indicates JEDEC Registered Data. (continued) ** Motorola Guarantees this Data in Addition to JEDEC Registered Data. (1) Pulse Test: Pulse Width v300 µs, Duty Cycle v 2.0% 3–30 Motorola Bipolar Power Transistor Device Data
  • 89. 2N4398 2N4399 2N5745ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS — continuedÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DYNAMIC CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain Bandwidth Product (2)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.0 Adc, VCE = 10 Vdc, 2N4398, 2N4399 fT MHz 4.0 — f = 1.0 MHz) 2N5745 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Small–Signal Current Gain Î hfe 2.0 40 — — — (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 kHz)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î SWITCHING CHARACTERSTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Rise TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N4398, 2N4399 2N5745 tr — — 0.4 1.0 µsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î Storage Time Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î (VCC = 30 Vdc, Vd IC = 10 Adc, 2N4396, 2N4399 2N5745 ts — — 1.5 2.0 µsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Fall Time ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î IB1 = IB2 = 1.0 Adc) 2N4398, 2N4399 tf — 0.6 µs 2N5746 — 1.0Î Î Î Î (2) fT is defined as the frequency at which |hfe| extrapolates to unity. SWITCHING TIME EQUIVALENT TEST CIRCUITS VCC – 30 V VCC – 30 V RL 3.0 RL 3.0 + 2.0 V + 9.0 V 10 10 0 TO SCOPE 0 TO SCOPE RB tr ≤ 20 ns RB tr ≤ 20 ns tr ≤ –11 V –11 V tr ≤ 20 ns 20 ns 10 to 100 µs VBB + 4.0 V 10 to 100 µs DUTY CYCLE ≈ 2.0% DUTY CYCLE ≈ 2.0% Figure 2. Turn–On Time Figure 3. Turn–Off Time Motorola Bipolar Power Transistor Device Data 3–31
  • 90. 2N4398 2N4399 2N5745 TYPICAL “ON” REGION CHARACTERISTICS 3.0 hFE, DC CURRENT GAIN (NORMALIZED) 2.0 TJ = 175°C VCE = 10 Vdc VCE = 2.0 Vdc 25°C 1.0 0.7 0.5 – 55°C 0.3 0.2 0.1 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (AMP) Figure 4. DC Current Gain VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 TJ = 25°C 1.6 IC = 2.0 A 5.0 A 10 A 20 A 1.2 0.8 0.4 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (AMP) Figure 5. Collector Saturation Region 2.0 2.5 TEMPERATURE COEFFICIENTS (mV/ °C) 1.8 TJ = 25°C 2.0 *APPLIES FOR 1.6 1.5 IC/IB < hFE/2 1.4 1.0VOLTAGE (VOLTS) 1.2 0.5 *θVC for VCE(sat) 1.0 0 0.8 VBE(sat) @ IC/IB = 10 – 0.5 0.6 – 1.0 VBE @ VCE = 2.0 V 0.4 – 1.5 θVB for VBE 0.2 VCE(sat) @ IC/IB = 10 – 2.0 0 – 2.5 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 6. “On” Voltages Figure 7. Temperature Coefficients 3–32 Motorola Bipolar Power Transistor Device Data
  • 91. 2N4398 2N4399 2N5745 RATINGS AND THERMAL DATA 100 50 100 µs 1.0 ms There are two limitations on the power handling ability of a transistor: average junction temperature and second break-IC, COLLECTOR CURRENT (AMP) 20 5.0 ms down. Safe operating area curves indicate I C – V CE limits of 10 the transistor that must be observed for reliable operation; 5.0 2N5745 2N4398, 2N4399 i.e., the transistor must not be subjected to greater dissipa- dc tion than the curves indicate. 2.0 TJ = 200°C The data of Figure 8 is based on T J(pk) = 200_C; T C is Secondary Breakdown Limited variable depending on conditions. Second breakdown pulse 1.0 Bonding Wire Limited limits are valid for duty cycles to 10% provided T J(pk) v Thermal Limitations TC = 25°C 0.5 Pulse Duty Cycle ≤ 10% 200_C. T J(pk) may be calculated from the data in Figure 9. 2N4398 At high case temperatures, thermal limitations will reduce the 0.2 2N4399 power that can be handled to values less than the limitations 2N5745 0.1 imposed by second breakdown. 1.0 2.0 3.0 5.0 10 20 30 50 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 8. Active Region Safe Operating Area 1.0 r(t), NORMALIZED EFFECTIVE TRANSIENT 0.7 D = 0.5 0.5 THERMAL RESISTANCE 0.3 0.2 STEADY STATE VALUES 0.2 θJC(∞) = 0.875°C/W 0.1 θJC(t) = r(t) θJC(∞) 0.1 0.07 0.05 0.05 0.03 0.01 0.02 0 (SINGLE PULSE) 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 t, TIME OR PULSE WIDTH (ms) Figure 9. Thermal Response DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA tP A train of periodical power pulses can be represented by the model as shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal PP PP resistance of Figure 9 was calculated for various duty cycles. To find θJC(t), multiply the value obtained from Figure 9 by R the steady state value θJC( ). Example: The 2N4398 is dissipating 100 watts under the following t1 conditions: t1 = 1.0 ms, tP = 5.0 ms. (D = 0.2) 1/f Using Figure 9, at a pulse width of 1.0 ms and D = 0.2, the t reading of r (t) is 0.28. DUTY CYCLE, D = t1 f – 1 tP The peak rise in junction temperature is therefore PEAK PULSE POWER = PP R T = r(t) x PP x θJC( ) = 0.28 x 100 x 0.875 = 24.5_C Motorola Bipolar Power Transistor Device Data 3–33
  • 92. MOTOROLASEMICONDUCTOR TECHNICAL DATAMedium-Power Plastic PNP 2N4918Silicon Transistors thru. . . designed for driver circuits, switching, and amplifier applications. These 2N4920*high–performance plastic devices feature: *Motorola Preferred Device• Low Saturation Voltage — VCE(sat) = 0.6 Vdc (Max) @ IC = 1.0 Amp• Excellent Power Dissipation Due to Thermopad Construction — 3 AMPERE PD = 30 W @ TC = 25_C GENERAL–PURPOSE• Excellent Safe Operating Area POWER TRANSISTORS• Gain Specified to IC = 1.0 Amp 40 – 80 VOLTS• Complement to NPN 2N4921, 2N4922, 2N4923 30 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RatingsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol 2N4918 2N4919 2N4920 Unit Collector–Emitter Voltage VCEO 40 60 80 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Base Voltage Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î Î Î Î Î Î Emitter–Base Voltage VCB VEB 40 60 5.0 80 Vdc VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î Î Î Î Collector Current — Continuous (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î IC* 1.0 3.0 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Base Current Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IB 1.0 Adc CASE 77–08 TO–225AA TYPE Total Power Dissipation @ TC = 25°C PD 30 WattsÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎDerate above 25_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Operating & Storage JunctionÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature Range TJ, Tstg 0.24 – 65 to + 150 W/_C _CÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î THERMAL CHARACTERISTICS (2)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol Max Unit θJC _C/WÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Thermal Resistance, Junction to Case 4.16* Indicates JEDEC Registered Data for 2N4918 Series. Î Î Î Î Î(1) The 1.0 Amp maximum IC value is based upon JEDEC current gain requirements. The 3.0 Amp maximum value is based upon actual current–handling capability of the device (See Figure 5).(2) Recommend use of thermal compound for lowest thermal resistance. 40 PD, POWER DISSIPATION (WATTS) 30 20 10 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) Figure 1. Power DeratingPreferred devices are Motorola recommended choices for future use and best overall value. REV 7 3–34 Motorola Bipolar Power Transistor Device Data
  • 93. 2N4918 thru 2N4920ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 0.1 Adc, IB = 0) 2N4918 VCEO(sus) Vdc 40 — 2N4919 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î 2N4920 60 80 — — Collector Cutoff Current ICEO mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 20 Vdc, IB = 0) Î Î Î ÎÎ Î Î Î Î 2N4918 — 0.5 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 30 Vdc, IB = 0) (VCE = 40 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î Î Î 2N4919 2N4920 — — 0.5 0.5 Collector Cutoff Current ICEX mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = Rated VCEO, VBE(off) = 1.5 Vdc) (VCE = Rated VCEO, VBE(off) = 1.5 Vdc, TC = 125_C) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 0.1 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î Î Î Î Î Collector Cutoff Current ICBO — — 0.5 0.1 mAdc (VCB = Rated VCB, IE = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Emitter Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IEBO — 1.0 mAdc (VBE = 5.0 Vdc, IC = 0)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ON CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 50 mAdc, VCE = 1.0 Vdc) hFE 40 — — (IC = 500 mAdc, VCE = 1.0 Vdc) 30 150 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î (IC = 1.0 Adc, VCE = 1.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î 10 — Collector–Emitter Saturation Voltage (1) VCE(sat) — 0.6 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.0 Adc, IB = 0.1 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Base–Emitter Saturation Voltage (1) VBE(sat) — 1.3 Vdc (IC = 1.0 Adc, IB = 0.1 Adc) Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Base–Emitter On Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î VBE(on) — 1.3 Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.0 Adc, VCE = 1.0 Vdc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ Î Î Î Î SMALL–SIGNAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth Product (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î fT 3.0 — MHzÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Cob — 100 pF Small–Signal Current Gain (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe 25 — —Î Î Î Î Î * Indicates JEDEC Registered Data. (1) Pulse Test: PW [ 300 µs, Duty Cycle [ 2.0% VBE(off) 5.0 0 VCC = 30 V IC/IB = 10, UNLESS NOTED Vin VCC 3.0 RC IC/IB = 20 TJ = 25°C APPROX 2.0 TJ = 150°C –11 V Vin SCOPE t1 RB 1.0 t, TIME ( µs) Cjd << Ceb VCC = 30 V 0.7 tr APPROX 9.0 V 0.5 VCC = 60 V t2 + 4.0 V 0.3 td VCC = 60 V RB and RC 0.2 VBE(off) = 2.0 V Vin 0 varied to t1 < 15 ns obtain desired 100 < t2 < 500 µs current levels 0.1 VCC = 30 V APPROX 0.07 t3 < 15 ns VBE(off) = 0 –11 V 0.05 t3 DUTY CYCLE ≈ 2.0% 10 20 30 50 70 100 200 300 500 700 1000 TURN–OFF PULSE IC, COLLECTOR CURRENT (mA) Figure 2. Switching Time Equivalent Test Circuit Figure 3. Turn–On Time Motorola Bipolar Power Transistor Device Data 3–35
  • 94. 2N4918 thru 2N4920 1.0 0.7 r(t), TRANSIENT THERMAL RESISTANCE D = 0.5 0.5 0.3 0.2 0.2 (NORMALIZED) 0.1 θJC(t) = r(t) θJC P(pk) 0.1 0.05 θJC = 4.16°C/W MAX 0.07 0.01 D CURVES APPLY FOR POWER 0.05 PULSE TRAIN SHOWN t1 0.03 READ TIME AT t1 t2 SINGLE PULSE TJ(pk) – TC = P(pk) θJC(t) DUTY CYCLE, D = t1/t2 0.02 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 t, TIME (ms) Figure 4. Thermal Response 10 1.0 ms 100 µs There are two limitations on the power handling ability of a IC, COLLECTOR CURRENT (AMP) 5.0 5.0 ms transistor: average junction temperature and second break- down. Safe operating area curves indicate IC – V CE opera- 2.0 TJ = 150°C tion i.e., the transistor must not be subjected to greater dc dissipation than the curves indicate. 1.0 The data of Figure 5 is based on T J(pk) = 150_C; T C is variable depending on conditions. Second breakdown pulse SECOND BREAKDOWN LIMITED limits are valid for duty cycles to 10% provided T J(pk) 0.5 BONDING WIRE LIMITED THERMALLY LIMIT @ TC = 25°C v 150_C. At high case temperatures, thermal limitations will PULSE CURVES APPLY BELOW reduce the power that can be handled to values less than the 0.2 RATED VCEO limitations imposed by second breakdown. 0.1 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 5. Active–Region Safe Operating Area 5.0 5.0 IC/IB = 20 TJ = 25°C 3.0 3.0 IC/IB = 20 TJ = 150°C 2.0 2.0 VCC = 30 Vt s′ , STORAGE TIME ( µs) IB1 = IB2 t f , FALL TIME ( µs) 1.0 IC/IB = 10 1.0 0.7 0.7 0.5 0.5 IC/IB = 10 0.3 ts′ = ts – 1/8 tf 0.3 0.2 TJ = 25°C 0.2 TJ = 150°C 0.1 IB1 = IB2 0.1 0.07 0.07 0.05 0.05 10 20 30 50 70 100 200 300 500 700 1000 10 20 30 50 70 100 200 300 500 700 1000 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 6. Storage Time Figure 7. Fall Time 3–36 Motorola Bipolar Power Transistor Device Data
  • 95. 2N4918 thru 2N4920 TYPICAL DC CHARACTERISTICS VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 1000 1.0 700 VCE = 1.0 V 500 IC = 0.1 A 0.25 A 0.5 A 1.0 A 0.8 TJ = 150°C hFE, DC CURRENT GAIN 300 200 0.6 25°C 100 TJ = 25°C 70 – 55°C 0.4 50 30 0.2 20 10 0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 IC, COLLECTOR CURRENT (mA) IB, BASE CURRENT (mA) Figure 8. Current Gain Figure 9. Collector Saturation Region RBE , EXTERNAL BASE–EMITTER RESISTANCE (OHMS) 108 1.5 IC = 10 ICES VCE = 30 V 107 1.2 TJ = 25°C VOLTAGE (VOLTS) 106 0.9 IC ≈ ICES VBE(sat) @ IC/IB = 10 105 IC = 2x ICES 0.6 VBE @ VCE = 2.0 V ICES VALUES 104 OBTAINED FROM 0.3 FIGURE 13 VCE(sat) @ IC/IB = 10 103 0 0 30 60 90 120 150 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 TJ, JUNCTION TEMPERATURE (°C) IC, COLLECTOR CURRENT (mA) Figure 10. Effects of Base–Emitter Resistance Figure 11. “On” Voltage 102 + 2.5 hFE @ VCE + 1.0 V TEMPERATURE COEFFICIENTS (mV/ °C) + 2.0 *APPLIES FOR IC/IB < 101 2IC, COLLECTOR CURRENT ( µA) + 1.5 TJ = 150°C 100 + 1.0 TJ = 100°C to 150°C + 0.5 *θVC FOR VCE(sat) 10–1 0 TJ = – 55°C to +100°C 100°C – 0.5 10– 2 IC = ICES – 1.0 VCE = 30 V – 1.5 104 θVB FOR VBE 25°C – 2.0 103 REVERSE FORWARD – 2.5 – 0.2 – 0.1 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 VBE, BASE–EMITTER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (mA) Figure 12. Collector Cut–Off Region Figure 13. Temperature Coefficients Motorola Bipolar Power Transistor Device Data 3–37
  • 96. MOTOROLA SEMICONDUCTOR TECHNICAL DATA Medium-Power Plastic NPN 2N4921 Silicon Transistors thru . . . designed for driver circuits, switching, and amplifier applications. These 2N4923* high–performance plastic devices feature: *Motorola Preferred Device • Low Saturation Voltage — VCE(sat) = 0.6 Vdc (Max) @ IC = 1.0 Amp • Excellent Power Dissipation Due to Thermopad Construction — 1 AMPERE PD = 30 W @ TC = 25_C GENERAL–PURPOSE • Excellent Safe Operating Area POWER TRANSISTORS • Gain Specified to IC = 1.0 Amp 40 – 80 VOLTS • Complement to PNP 2N4918, 2N4919, 2N4920 30 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol 2N4921 2N4922 2N4923 Unit Collector–Emitter Voltage VCEO 40 60 80 VdcÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCB 40 60 80 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ Î Î ÎÎÎÎEmitter–Base Voltage Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VEB 5.0 Vdc Collector Current — Continuous (1) IC 1.0 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 3.0 ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î Î Î ÎÎ Base Current — Continuous Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IB 1.0 Adc CASE 77–08 TO–225AA TYPE Total Power Dissipation @ TC = 25_C PD 30 WattsÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î W/_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Derate above 25_C 0.24 Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Operating & Storage Junction Temperature RangeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ TJ, Tstg – 65 to + 150 _CÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICS (2) ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Max Unit Thermal Resistance, Junction to Case θJC 4.16 _C/WÎ Î Î Î (1) The 1.0 Amp maximum IC value is based upon JEDEC current gain requirements. The 3.0 Amp maximum value is based upon actual current handling capability of the device (see Figures 5 and 6) (2) Recommend use of thermal compound for lowest thermal resistance. * Indicates JEDEC Registered Data. 40 PD, POWER DISSIPATION (WATTS) 30 20 10 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) Figure 1. Power Derating Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed. Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 3–38 Motorola Bipolar Power Transistor Device Data
  • 97. 2N4921 thru 2N4923ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 0.1 Adc, IB = 0) 2N4921 VCEO(sus) Vdc 40 — 2N4922 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î 2N4923 60 80 — — Collector Cutoff Current ICEO mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 20 Vdc, IB = 0) Î Î Î ÎÎ Î Î Î Î 2N4921 — 0.5 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 30 Vdc, IB = 0) (VCE = 40 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î Î Î 2N4922 2N4923 — — 0.5 0.5 Collector Cutoff Current ICEX mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = Rated VCEO, VEB(off) = 1.5 Vdc) (VCE = Rated VCEO, VEB(off) = 1.5 Vdc, TC = 125_C) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 0.1 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î Î Î Î Î Collector Cutoff Current ICBO — — 0.5 0.1 mAdc (VCB = Rated VCB, IE = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Emitter Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ IEBO — 1.0 mAdc (VEB = 5.0 Vdc, IC = 0)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ON CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 50 mAdc, VCE = 1.0 Vdc) hFE 40 — — (IC = 500 mAdc, VCE = 1.0 Vdc) 30 150 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î (IC = 1.0 Adc, VCE = 1.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î 10 — Collector–Emitter Saturation Voltage (1) VCE(sat) — 0.6 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.0 Adc, IB = 0.1 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Base–Emitter Saturation Voltage (1) VBE(sat) — 1.3 Vdc (IC = 1.0 Adc, IB = 0.1 Adc) Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Base–Emitter On Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î VBE(on) — 1.3 Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.0 Adc, VCE = 1.0 Vdc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ Î Î Î Î SMALL–SIGNAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth Product (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î fT 3.0 — MHzÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Cob — 100 pF Small–Signal Current Gain (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe 25 — —Î Î Î Î Î (1) Pulse Test: PW ≈ 300 µs, Duty Cycle ≈ 2.0%. * Indicates JEDEC Registered Data. APPROX TURN–ON PULSE 5.0 +11 V t1 VCC = 30 V IC/IB = 10, UNLESS NOTED VCC 3.0 Vin RC IC/IB = 20 TJ = 25°C 2.0 TJ = 150°C Vin VCC = 60 V SCOPE VBE(off) RB 1.0 t, TIME ( µs) Cjd << Ceb 0.7 t3 0.5 tr APPROX – 4.0 V VCC = 30 V +11 V t1 ≤ 15 ns 0.3 td VCC = 60 V 100 < t2 ≤ 500 µs 0.2 VBE(off) = 2.0 V Vin t3 ≤ 15 ns DUTY CYCLE ≈ 2.0% 0.1 VCC = 30 V APPROX 9.0 V 0.07 VBE(off) = 0 t2 RB and RC varied to 0.05 TURN–OFF PULSE obtain desired 10 20 30 50 70 100 200 300 500 700 1000 current levels IC, COLLECTOR CURRENT (mA) Figure 2. Switching Time Equivalent Circuit Figure 3. Turn–On Time Motorola Bipolar Power Transistor Device Data 3–39
  • 98. 2N4921 thru 2N4923 1.0 0.7 D = 0.5 0.5 RESISTANCE (NORMALIZED) r(t), TRANSIENT THERMAL 0.3 0.2 0.2 P(pk) 0.1 θJC(t) = r(t) θJC 0.05 θJC = 4.16°C/W MAX 0.1 D CURVES APPLY FOR POWER 0.07 PULSE TRAIN SHOWN 0.05 0.01 t1 READ TIME AT t1 t2 0.03 TJ(pk) – TC = P(pk) θJC(t) DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.02 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 t, TIME (ms) Figure 4. Thermal Response 10 7.0 100 µs There are two limitations on the power handling ability of a IC, COLLECTOR CURRENT (AMP) 5.0 5.0 ms 1.0 ms transistor: average junction temperature and second break- 3.0 down. Safe operating area curves indicate I C – V CE opera- 2.0 TJ = 150°C dc tion i.e., the transistor must not be subjected to greater dissipation than the curves indicate. 1.0 The data of Figure 5 is based on T J(pk) = 150_C; T C 0.7 SECOND BREAKDOWN is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk) v 0.5 LIMITED BONDING WIRE LIMITED 150_C. At high case temperatures, thermal limitations will 0.3 THERMALLY LIMITED @ TC = 25°C reduce the power that can be handled to values less than the 0.2 PULSE CURVES APPLY BELOW limitations imposed by second breakdown. RATED VCEO 0.1 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 5. Active–Region Safe Operating Area 5.0 5.0 3.0 IC/IB = 20 3.0 IC/IB = 20 2.0 2.0t s′ , STORAGE TIME ( µs) t f , FALL TIME ( µs) 1.0 1.0 0.7 IC/IB = 10 IC/IB = 20 0.7 0.5 0.5 0.3 0.3 IC/IB = 10 0.2 TJ = 25°C 0.2 TJ = 25°C TJ = 150°C TJ = 150°C 0.1 IB1 = IB2 0.1 VCC = 30 V 0.07 ts′ = ts – 1/8 tf 0.07 IB1 = IB2 0.05 0.05 10 20 30 50 70 100 200 300 500 700 1000 10 20 30 50 70 100 200 300 500 700 1000 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 6. Storage Time Figure 7. Fall Time 3–40 Motorola Bipolar Power Transistor Device Data
  • 99. 2N4921 thru 2N4923 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 1000 1.0 700 VCE = 1.0 V 500 IC = 0.1 A 0.25 A 0.5 A 1.0 A 0.8 hFE, DC CURRENT GAIN 300 200 TJ = 150°C 0.6 TJ = 25°C 100 25°C 70 0.4 50 – 55°C 30 0.2 20 10 0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 IC, COLLECTOR CURRENT (mA) IB, BASE CURRENT (mA) Figure 8. Current Gain Figure 9. Collector Saturation Region RBE , EXTERNAL BASE–EMITTER RESISTANCE (OHMS) 108 1.5 IC = 10 x ICES VCE = 30 V TJ = 25°C 107 1.2 IC = 2 x ICES VOLTAGE (VOLTS) 106 0.9 IC ≈ ICES VBE(sat) @ IC/IB = 10 105 0.6 VBE @ VCE = 2.0 V ICES VALUES 104 OBTAINED FROM 0.3 FIGURE 12 VCE(sat) @ IC/IB = 10 103 0 0 30 60 90 120 150 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 TJ, JUNCTION TEMPERATURE (°C) IC, COLLECTOR CURRENT (mA) Figure 10. Effects of Base–Emitter Resistance Figure 11. “On” Voltage 104 + 2.5 hFE @ VCE + 1.0 V TEMPERATURE COEFFICIENTS (mV/ °C) + 2.0 103 TJ = 150°C *APPLIES FOR IC/IB ≤IC, COLLECTOR CURRENT ( µ A) + 1.5 2 102 100°C + 1.0 TJ = 100°C to 150°C 25°C + 0.5 *θVC FOR VCE(sat) 101 0 – 55°C to +100°C IC = ICES – 0.5 100 VCE = 30 V – 1.0 10–1 – 1.5 θVB FOR VBE – 2.0 REVERSE FORWARD 10– 2 – 2.5 – 0.2 – 0.1 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 VBE, BASE–EMITTER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (mA) Figure 12. Collector Cut–Off Region Figure 13. Temperature Coefficients Motorola Bipolar Power Transistor Device Data 3–41
  • 100. MOTOROLA SEMICONDUCTOR TECHNICAL DATA 2N5038* NPN Silicon Transistors 2N5039 *Motorola Preferred Device . . . fast switching speeds and high current capacity ideally suit these parts for use in switching regulators, inverters, wide–band amplifiers and power oscillators in 20 AMPERE industrial and commercial applications. NPN SILICON • High Speed — tf = 0.5 µs (Max) POWER TRANSISTORS • High Current — IC(max) = 30 Amps 75 and 90 VOLTS • Low Saturation — VCE(sat) = 2.5 V (Max) @ IC = 20 Amps 140 WATTS CASE 1–07 TO–204AA (TO–3)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Symbol 2N5038 2N5039 Unit Collector–Base Voltage VCBO 150 120 Vdc ÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector–Emitter Voltage VCEV 150 120 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Emitter–Base VoltageÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VEBO 7 Vdc Collector Current — Continuous IC 20 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Peak (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ICM 30 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Base Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Total Device Dissipation @ TC = 25_C IB PD 5 140 Adc Watts Derate above 25_C 0.8 W/_CÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Operating and Storage Junction Temperature RangeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ TJ, Tstg – 65 to + 200 _CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Thermal Resistance, Junction to Case Symbol RθJC Max 1.25 Unit _C/WÎ Î Î Î * Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width v 10 ms, Duty Cycle v 50%. VCC + 30 V RC 2.5 +11 V 10 Ω PW = 20 µs 0 DUTY CYCLE = 1% –9 V 1N4933 –5 V 2N5038 2N5039 IC = 12 AMPS IC = 10 AMPS IB1 = IB2 = 1.2 AMPS IB1 = IB2 = 1.0 AMPS Figure 1. Switching Time Test Circuit Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 3–42 Motorola Bipolar Power Transistor Device Data
  • 101. 2N5038 2N5039ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 200 mAdc, IB = 0) 2N5038 VCEO(sus) — Vdc 90 2N5039 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î Î Collector Cutoff Current ICEX 75 mAdc (VCE = 140 Vdc, VBE(off) = 1.5 V) 2N5038 — 50ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ Î Î Î Î (VCE = 110 Vdc, VBE(off) = 1.5 V) (VCE = 100 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C) 2N5039 — 50 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 85 Vdc, VBE(off) = 1.5 Vdc, TC = 150_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î Î Î Î Î 2N5038 2N5039 — — 10 10 Emitter Cutoff Current IEBO mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VEB = 5 Vdc, IC = 0) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5038 — 5 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (VEB = 7 Vdc, IC = 0)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎ Î Î Î Î 2N5039 Both — — 15 50 ON CHARACTERISTICS (1)Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current GainÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ hFE — (IC = 12 Adc, VCE = 5 Vdc) 2N5038 20 100Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î (IC = 10 Adc, VCE = 5 Vdc) 2N5039 20 100ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Collector–Emitter Saturation Voltage (IC = 20 Adc, IB = 5 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCE(sat) — 2.5 Vdc Base–Emitter Saturation Voltage VBE(sat) — 3.3 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 20 Adc, IB = 5 Adc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎ Î Î Î DYNAMIC CHARACTERISTICSÎ Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Magnitude of Common–Emitter Small–Signal Short–Circuit |hfe| 12 — —Î Forward Current Transfer Ratio (IC = 2 Adc, VCE = 10 Vdc, f = 5 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î SWITCHING CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RESISTIVE LOADÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Rise TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCC = 30 Vdc) tr — 0.5 µsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ Î Î Î Î Î Î Î Î Î Storage Time ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 12 Adc, IB1 = IB2 = 1.2 Adc) 2N5038 ts — 1.5 µs Fall Time (IC = 10 Adc, IB1 = IB2 = 1 Adc) 2N5039 tf — 0.5 µsÎÎÎ Î Î Î Î * Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width 300, µs, Duty Cycle v v 2%. 100 50 There are two limitations on the power handling ability of a IC, COLLECTOR CURRENT (AMPS) 20 transistor: average junction temperature and second break- dc down. Safe operating area curves indicate IC – VCE limits of 10 the transistor that must be observed for reliable operation; 5 i.e., the transistor must not be subjected to greater dissipa- tion than the curves indicate. 2 Second breakdown pulse limits are valid for duty cycles to 1 BONDING WIRE LIMIT 10%. At high case temperatures, thermal limitations may re- THERMAL LIMIT duce the power that can be handled to values less than the 0.5 SECOND BREAKDOWN LIMIT limitations imposed by second breakdown. TC = 25°C 2N5039 0.2 2N5038 0.1 1 2 3 5 7 10 20 30 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 2. Forward Bias Safe Operating Area Motorola Bipolar Power Transistor Device Data 3–43
  • 102. Motorola Bipolar Power Transistor Device Data 3–44 REV 7 Preferred devices are Motorola recommended choices for future use and best overall value.ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î(continued) Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î mAdcÎÎÎÎ Î Î Î Î Î Î Î ÎÎ 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎΠΗ IEBO (VBE = 5.0 Vdc, IC = 0) Emitter Cutoff Current Î Î Î Î Î Î Î 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î — 2N5192 (VCB = 80 Vdc, IE = 0) 0.1 — 2N5191 (VCB = 60 Vdc, IE = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ mAdcÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ICBO Collector Cutoff Current 2.0 — 2N5192 (VCE = 80 Vdc, VEB(off) = 1.5 Vdc, TC = 125_C) Î Î Î ÎÎ 2.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 2N5191 (VCE = 60 Vdc, VEB(off) = 1.5 Vdc, TC = 125_C) 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 2N5192 (VCE = 80 Vdc, VEB(off) = 1.5 Vdc) 0.1 — 2N5191 (VCE = 60 Vdc, VEB(off) = 1.5 Vdc) mAdcÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ICEX Collector Cutoff Current Î Î Î 1.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 2N5192 (VCE = 80 Vdc, IB = 0) 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î — 2N5191 (VCE = 60 Vdc, IB = 0) mAdc ICEO Collector Cutoff Current Î Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — Î 80 2N5192 — 60ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î 2N5191 (IC = 0.1 Adc, IB = 0) VdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î VCEO(sus) Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Unit MaxÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Min Symbol Characteristic ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î _C 3.12 θJC Thermal Resistance, Junction to Case TO–225AA TYPE CASE 77–08 Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ Unit Max Symbol Characteristic ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature Range ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ Î _C – 65 to + 150 TJ, Tstg Operating and Storage Junction ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î mW/_C 320 Derate above 25_C Î Î Î Î Î Î Watts 40 PD Total Power Dissipation @ TC = 25_C Adc 1.0 IB Base Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Adc 4.0 IC Collector Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Vdc 5.0 VEB Emitter–Base Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Vdc 80 60 VCB Collector–Base Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Vdc 80 60 VCEO Collector–Emitter Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Unit 2N5192 2N5191 Symbol Rating 40 WATTS 60 – 80 VOLTS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGS SILICON NPN POWER TRANSISTORS 4 AMPERE Complement to PNP 2N5194, 2N5195. . . . for use in power amplifier and switching circuits, — excellent safe area limits. *Motorola Preferred Device 2N5192* Silicon NPN Power Transistors 2N5191 SEMICONDUCTOR TECHNICAL DATA MOTOROLA
  • 103. 2N5191 2N5192ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ON CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.5 Adc, VCE = 2.0 Vdc) 2N5191 hFE — 25 100 2N5192ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î (IC = 4.0 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N5191 20 10 80 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î 2N5192 7.0 — Collector–Emitter Saturation Voltage (1) VCE(sat) VdcÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.5 Adc, IB = 0.15 Adc) (IC = 4.0 Adc, IB = 1.0 Adc) — — 0.6 1.4ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Base–Emitter On Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VBE(on) — 1.2 Vdc (IC = 1.5 Adc, VCE = 2.0 Vdc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î DYNAMIC CHARACTERISTICSÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth Product (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 MHz) fT 2.0 — MHz 300 µs, Duty CycleÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (1) Pulse Test: Pulse Width v v 2.0%. * Indicates JEDEC Registered Data. 10 TJ = 150°C hFE , DC CURRENT GAIN (NORMALIZED) 7.0 VCE = 2.0 V 5.0 VCE = 10 V 3.0 2.0 1.0 0.7 – 55°C 25°C 0.5 0.3 0.2 0.1 0.004 0.007 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) Figure 1. DC Current Gain VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 TJ = 25°C 1.6 1.2 IC = 10 mA 100 mA 1.0 A 3.0 A 0.8 0.4 0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 300 500 IB, BASE CURRENT (mA) Figure 2. Collector Saturation Region Motorola Bipolar Power Transistor Device Data 3–45
  • 104. 2N5191 2N5192 2.0 + 2.5 + θV, TEMPERATURE COEFFICIENTS (mV/°C) TJ = 25°C + 2.0 hFE @ VCE 2.0 V *APPLIES FOR IC/IB ≤ 1.6 + 1.5 2 TJ = – 65°C to +150°C + 1.0 VOLTAGE (VOLTS) 1.2 + 0.5 *θV for VCE(sat) 0 0.8 VBE(sat) @ IC/IB = 10 – 0.5 VBE @ VCE = 2.0 V – 1.0 0.4 – 1.5 θV for VBE VCE(sat) @ IC/IB = 10 – 2.0 0 – 2.5 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 3. “On” Voltages Figure 4. Temperature Coefficients RBE , EXTERNAL BASE–EMITTER RESISTANCE (OHMS) 103 107 VCE = 30 V VCE = 30 V IC = 10 x ICES 102IC, COLLECTOR CURRENT ( µ A) 106 TJ = 150°C 101 IC ≈ ICES 105 100 100°C IC = 2 x ICES 104 REVERSE FORWARD 10–1 10– 2 103 (TYPICAL ICES VALUES 25°C OBTAINED FROM FIGURE 5) ICES 10– 3 102 – 0.4 – 0.3 – 0.2 – 0.1 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6 20 40 60 80 100 120 140 160 VBE, BASE–EMITTER VOLTAGE (VOLTS) TJ, JUNCTION TEMPERATURE (°C) Figure 5. Collector Cut–Off Region Figure 6. Effects of Base–Emitter Resistance 300 VCC TJ = + 25°C TURN–ON PULSE RC APPROX 200 +11 V Vin SCOPE RB CAPACITANCE (pF) Vin 0 Cjd << Ceb VEB(off) 100 t1 – 4.0 V t3 Ceb APPROX RB and RC varied 70 t1 ≤ 7.0 ns +11 V to obtain desired 100 < t2 < 500 µs current levels t3 < 15 ns 50 Ccb Vin DUTY CYCLE ≈ 2.0% 30 t2 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 40 APPROX – 9.0 V TURN–OFF PULSE VR, REVERSE VOLTAGE (VOLTS) Figure 7. Switching Time Equivalent Test Circuit Figure 8. Capacitance 3–46 Motorola Bipolar Power Transistor Device Data
  • 105. 2N5191 2N5192 2.0 2.0 ts′ IC/IB = 10 1.0 TJ = 25°C 1.0 0.7 tr @ VCC = 30 V 0.7 tf @ VCC = 30 V 0.5 0.5t, TIME ( µs) t, TIME ( µs) 0.3 tr @ VCC = 10 V 0.3 tf @ VCC = 10 V 0.2 0.2 0.1 0.1 IB1 = IB2 0.07 0.07 IC/IB = 10 td @ VEB(off) = 2.0 V ts′ = ts – 1/8 tf 0.05 0.05 TJ = 25°C 0.03 0.03 0.02 0.02 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 4.0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 9. Turn–On Time Figure 10. Turn–Off Time 10 100 µs There are two limitations on the power handling ability of a 5.0 ms IC, COLLECTOR CURRENT (AMP) 5.0 transistor; average junction temperature and second break- 1.0 ms TJ = 150°C down. Safe operating area curves indicate IC – VCE limits of 2.0 dc the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipa- 1.0 tion than the curves indicate. SECONDARY BREAKDOWN LIMIT The data of Figure 11 is based on T J(pk) = 150_C; T C is 0.5 THERMAL LIMIT AT TC = 25°C variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk) 0.2 BONDING WIRE LIMIT CURVES APPLY BELOW RATED VCEO v 150_C. At high case temperatures, thermal limitations will 2N5191 reduce the power that can be handled to values less than the 2N5192 limitations imposed by second breakdown. 0.1 1.0 2.0 5.0 10 20 50 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 11. Rating and Thermal Data Active–Region Safe Operating Area 1.0 0.7 THERMAL RESISTANCE (NORMALIZED) D = 0.5 0.5 θJC(max) = 3.12°C/W — 2N5190–92 r(t), EFFECTIVE TRANSIENT θJC(max) = 2.08°C/W — MJE5190–92 0.3 0.2 0.2 0.1 0.1 0.05 0.07 0.05 0.02 0.03 0.01 SINGLE PULSE 0.02 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 50 100 200 500 1000 t, TIME OR PULSE WIDTH (ms) Figure 12. Thermal Response Motorola Bipolar Power Transistor Device Data 3–47
  • 106. 2N5191 2N5192 DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA tP A train of periodical power pulses can be represented by the model shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal PP PP resistance of Figure 12 was calculated for various duty cycles. To find θJC(t), multiply the value obtained from Figure 12 by the steady state value θJC. Example: t1 The 2N5190 is dissipating 50 watts under the following 1/f conditions: t1 = 0.1 ms, tp = 0.5 ms. (D = 0.2). t1 Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the DUTY CYCLE, D = t1 f – reading of r(t1, D) is 0.27. tP PEAK PULSE POWER = PP The peak rise in function temperature is therefore: Figure A ∆T = r(t) x PP x θJC = 0.27 x 50 x 3.12 = 42.2_C 3–48 Motorola Bipolar Power Transistor Device Data
  • 107. 3–49 Motorola Bipolar Power Transistor Device Data REV 7 Preferred devices are Motorola recommended choices for future use and best overall value.(continued)Î Î (VBE = 5.0 Vdc, IC = 0) mAdc 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎ Î Î Î — Î IEBO Emitter Cutoff Current Î Î Î Î Î 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎΗ 2N5195 (VCB = 80 Vdc, IE = 0) 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 2N5194 (VCB = 60 Vdc, IE = 0) mAdc ICBO Collector Cutoff CurrentÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2.0 — 2N5195 (VCE = 80 Vdc, VBE(off) = 1.5 Vdc, TC = 125_C) Î Î Î 2.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 2N5194 (VCE = 60 Vdc, VBE(off) = 1.5 Vdc, TC = 125_C) 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 2N5195 (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) 0.1 — 2N5194 (VCE = 60 Vdc, VBE(off) = 1.5 Vdc) mAdcÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ICEX Collector Cutoff Current 1.0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 2N5195 (VCE = 80 Vdc, IB = 0) 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 2N5194 (VCE = 60 Vdc, IB = 0) mAdc ICEO Collector Cutoff Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — Î 80 2N5195 — 60ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î 2N5194 (IC = 0.1 Adc, IB = 0) VdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCEO(sus) Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Unit MaxÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Min Symbol Characteristic ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î _C/W 3.12 θJC Thermal Resistance, Junction to Case TO–225AA TYPE CASE 77–08 Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ Unit Max Symbol Characteristic ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature Range ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ Î _C/W – 65 to + 150 TJ, Tstg Operating and Storage Junction ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î mW/_C 320 Derate above 25_C Î Î Î Î Î Î Watts 40 PD Total Power Dissipation @ TC = 25_C Adc 1.0 IB Base Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Adc 4.0 IC Collector Current ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Vdc 5.0 VEB Emitter–Base Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Vdc 80 60 VCB Collector–Base Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Vdc 80 60 VCEO Collector–Emitter Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Unit 2N5195 2N5194 Symbol Rating 60 – 80 VOLTS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGS SILICON PNP POWER TRANSISTORS 4 AMPERE Complement to NPN 2N5191, 2N5192 . . . for use in power amplifier and switching circuits, — excellent safe area limits. *Motorola Preferred Device 2N5195 * Silicon PNP Power Transistors 2N5194 SEMICONDUCTOR TECHNICAL DATA MOTOROLA
  • 108. 2N5194 2N5195ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ON CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC Current Gain (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.5 Adc, VCE = 2.0 Vdc) 2N5194 hFE — 25 100 2N5195ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î (IC = 4.0 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N5194 20 10 80 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎ Î Î Î Î 2N5195 7.0 — Collector–Emitter Saturation Voltage (1) VCE(sat) VdcÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.5 Adc, IB = 0.15 Adc) (IC = 4.0 Adc, IB = 1.0 Adc) — — 0.6 1.4ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Base–Emitter On Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VBE(on) — 1.2 Vdc (IC = 1.5 Adc, VCE = 2.0 Vdc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î DYNAMIC CHARACTERISTICSÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth Product (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 MHz) fT 2.0 — MHzÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î * Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width 300 µs, Duty Cycle v v 2.0%. 10 TJ = 150°C hFE , DC CURRENT GAIN (NORMALIZED) 7.0 VCE = 2.0 V 5.0 VCE = 10 V 3.0 2.0 1.0 25°C 0.7 – 55°C 0.5 0.3 0.2 0.1 0.004 0.007 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) Figure 1. DC Current Gain VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 1.6 1.2 IC = 10 mA 100 mA 1.0 A 3.0 A 0.8 TJ = 25°C 0.4 0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 300 500 IB, BASE CURRENT (mA) Figure 2. Collector Saturation Region 3–50 Motorola Bipolar Power Transistor Device Data
  • 109. 2N5194 2N5195 2.0 + 2.5 θV, TEMPERATURE COEFFICIENTS (mV/°C) + 2.0 *APPLIES FOR IC/IB ≤ hFE @ VCE TJ = 25°C TJ = – 65°C to +150°C 1.6 + 1.5 + 1.0 VOLTAGE (VOLTS) 1.2 + 0.5 *θVC for VCE(sat) 0 0.8 VBE(sat) @ IC/IB = 10 – 0.5 VBE @ VCE = 2.0 V – 1.0 0.4 – 1.5 θVB for VBE VCE(sat) @ IC/IB = 10 – 2.0 0 – 2.5 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 0.005 0.01 0.020.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 3. “On” Voltage Figure 4. Temperature Coefficients RBE , EXTERNAL BASE–EMITTER RESISTANCE (OHMS) 103 107 VCE = 30 Vdc VCE = 30 V 102IC, COLLECTOR CURRENT ( µA) 106 TJ = 150°C IC = 10 x ICES 101 105 100°C 100 IC = 2 x ICES IC ≈ ICES 104 10–1 REVERSE FORWARD (TYPICAL ICES VALUES 25°C 103 10– 2 OBTAINED FROM FIGURE 5) ICES 10– 3 102 + 0.4 + 0.3 + 0.2 + 0.1 0 – 0.1 – 0.2 – 0.3 – 0.4 – 0.5 – 0.6 20 40 60 80 100 120 140 160 VBE, BASE–EMITTER VOLTAGE (VOLTS) TJ, JUNCTION TEMPERATURE (°C) Figure 5. Collector Cut–Off Region Figure 6. Effects of Base–Emitter Resistance TURN–ON PULSE VCC RC 500 VBE(off) TJ = 25°C Vin 0 Vin RB SCOPE 300 APPROX CAPACITANCE (pF) –11 V Cjd << Ceb 200 t1 APPROX + 4.0 V + 9.0 V t2 Ceb RB AND RC VARIED 100 TO OBTAIN DESIRED Ccb Vin CURRENT LEVELS 70 APPROX –11 V t3 t1 ≤ 7.0 ns 100 < t2 < 500 µs 50 TURN–OFF PULSE 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 40 t3 < 15 ns DUTY CYCLE ≈ 2.0% VR, REVERSE VOLTAGE (VOLTS) Figure 7. Switching Time Equivalent Test Circuit Figure 8. Capacitance Motorola Bipolar Power Transistor Device Data 3–51
  • 110. 2N5194 2N5195 2.0 2.0 IB1 = IB2 IC/IB = 10 ts′ IC/IB = 10 1.0 TJ = 25°C 1.0 ts′ = ts – 1/8 tf 0.7 0.7 TJ = 25°C 0.5 tr @ VCC = 30 V 0.5t, TIME ( µs) t, TIME ( µs) 0.3 0.3 tf @ VCC = 30 V 0.2 0.2 tr @ VCC = 10 V tf @ VCC = 10 V 0.1 0.1 0.07 0.07 0.05 0.05 td @ VBE(off) = 2.0 V 0.03 0.03 0.02 0.02 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 4.0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 9. Turn–On Time Figure 10. Turn–Off Time 10 Note 1: 1.0 ms There are two limitations on the power handling ability of a 5.0 ms IC, COLLECTOR CURRENT (AMP) 5.0 transistor; average junction temperature and second break- 100 µs down. Safe operating area curves indicate I C – V CE limits of TJ = 150°C 2.0 the transistor that must be observed for reliable operation; dc i.e., the transistor must not be subjected to greater dissipa- tion than the curves indicate. 1.0 SECONDARY BREAKDOWN LIMIT The data of Figure 11 is based on T J(pk) = 150_C. T C is THERMAL LIMIT @ TC = 25°C variable depending on conditions. Second breakdown pulse 0.5 BONDING WIRE LIMIT limits are valid for duty cycles to 10% provided T J(pk) CURVES APPLY BELOW RATED VCEO v 150 _C. At high–case temperatures, thermal limitations 0.2 2N5194 will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 2N5195 0.1 1.0 2.0 5.0 10 20 50 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 11. Rating and Thermal Data Active–Region Safe Operating Area 1.0 0.7 THERMAL RESISTANCE (NORMALIZED) D = 0.5 0.5 θJC(max) = 3.12°C/W r(t), EFFECTIVE TRANSIENT 0.3 0.2 0.2 0.1 0.1 0.05 0.07 0.02 0.05 0.03 0.01 SINGLE PULSE 0.02 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 t, TIME OR PULSE WIDTH (ms) Figure 12. Thermal Response 3–52 Motorola Bipolar Power Transistor Device Data
  • 111. 2N5194 2N5195 DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA tP A train of periodical power pulses can be represented by the model shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal PP PP resistance of Figure 12 was calculated for various duty cycles. To find θJC(t), multiply the value obtained from Figure 12 by the steady state value θJC. Example: t1 The 2N5193 is dissipating 50 watts under the following 1/f conditions: t1 = 0.1 ms, tp = 0.5 ms. (D = 0.2). t1 Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the DUTY CYCLE, D = t1 f = reading of r(t1, D) is 0.27. tP PEAK PULSE POWER = PP The peak rise in junction temperature is therefore: Figure A ∆T = r(t) x PP x θJC = 0.27 x 50 x 3.12 = 42.2_CMotorola Bipolar Power Transistor Device Data 3–53
  • 112. MOTOROLASEMICONDUCTOR TECHNICAL DATA 2N5301 2N5302High-Power NPN Silicon 2N5303Transistors. . . for use in power amplifier and switching circuits applications.• High Collector–Emitter Sustaining Voltage — 20 AND 30 AMPERE VCEO(sus) = 80 Vdc (Min) @ IC = 200 mAdc (2N5303) POWER TRANSISTORS• Low Collector–Emitter Saturation Voltage — NPN SILICON VCE(sat) = 0.75 Vdc (Max) @ IC = 10 Adc (2N5301, 2N5302) 40 – 60 – 80 VOLTS VCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc (2N5303) 200 WATTS• Excellent Safe Operating Area — 200 Watt dc Power Rating to 30 Vdc (2N5303)• Complements to PNP 2N4398, 2N4399 and 2N5745ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Voltage Symbol VCEO 2N5301 40 2N5302 60 2N5303 80 Unit Vdc CASE 1–07ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Collector–Base VoltageÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCB 40 60 80 Vdc TO–204AA (TO–3) ÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Base Current IC IB 30 30 7.5 20 Adc AdcÎÎÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Total Device Dissipation @ TC = 25_C Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ PD 200 1.14 Watts W/_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Operating and Storage JunctionÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î TJ, Tstg – 65 to + 200 _C Temperature RangeÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Symbol Max Unit Thermal Resistance, Junction to Case θJC 0.875 _C/WÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Thermal Resistance, Case to Ambient θCA 34 _C/WÎ Î Î Î* Indicates JEDEC Registered Data. TA TC 8.0 200 PD, POWER DISSIPATION (WATTS) 6.0 150 TC 4.0 100 TA 2.0 50 0 0 0 20 40 60 80 100 120 140 160 180 200 TEMPERATURE (°C) Figure 1. Power Temperature Derating Curve 3–54 Motorola Bipolar Power Transistor Device Data
  • 113. 3–55 Motorola Bipolar Power Transistor Device Data v 2.0%. Note 1: Pulse Widthv 300 µs, Duty CycleÎ Î Î Î Î Î * Indicates JEDEC Registered Data. µs 1.0 — tf Fall TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î µs 2.0 — ts Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCC = 30 Vdc, IC = 10 Adc, IB1 = IB2 = 1.0 Adc) Storage TimeÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î µs 1.0 — tr Î Rise Time *SWITCHING CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Î — — 40 hfe Small–Signal Current Gain (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 kHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î MHz — 2.0 fTÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Current–Gain — Bandwidth Product (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 MHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *DYNAMIC CHARACTERISTICS 3.0 — 2N5301, 2N5302 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 30 Adc, VCE = 4.0 Vdc) 25 — 2N5303 (IC = 20 Adc, VCE = 4.0 Vdc) 1.7 Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 1.5 — 2N5301, 2N5302 (IC = 15 Adc, VCE = 2.0 Vdc) — 2N5303ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 10 Adc, VCE = 2.0 Vdc) Vdc VBE(on) *Base–Emitter On Voltage (Note 1)ÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2.5 — 2N5303 (IC = 20 Adc, IB = 4.0 Adc) 2.5 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î — 2N5301, 2N5302 (IC = 20 Adc, IB = 2.0 Adc) 2.0 Î Î Î Î — 2N5303ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 15 Adc, IB = 1.5 Adc) 1.8 — 2N5301, 2N5302 (IC = 15 Adc, IB = 1.5 Adc) 1.7 — ALL TYPESÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 10 Adc, IB = 1.0 Adc) VdcÎÎÎ Î Î Î Î Î Î Î Î VBE(sat)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *Base Emitter Saturation Voltage (Note 1) 3.0 — 2N5301, 2N5302 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 30 Adc, IB = 6.0 Adc) 2.0 — 2N5303 (IC = 20 Adc, IB = 4.0 Adc) 2.0 Î Î Î Î — 2N5301, 2N5302ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 20 Adc, IB = 2.0 Adc) 1.5 Î Î Î Î — 2N5303ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î (IC = 15 Adc, IB = 1.5 Adc) 1.0 — 2N5303 (IC = 10 Adc, IB = 1.0 Adc) 0.75 — 2N5301, 2N5302ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 10 Adc, IB = 1.0 Adc) VdcÎÎÎ Î Î Î Î Î Î Î Î VCE(sat)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *Collector–Emitter Saturation Voltage (Note 1) — 5.0 2N5301, 2N5302 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î *(IC = 30 Adc, VCE = 4.0 Vdc) — 5.0 2N5303 *(IC = 20 Adc, VCE = 4.0 Vdc) 60 Î Î Î Î 15 2N5301, 2N5302ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î *(IC = 15 Adc, VCE = 2.0 Vdc) 60 15 2N5303 *(IC = 10 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 40 ALL TYPES *(IC = 1.0 Adc, VCE = 2.0 Vdc) — hFEÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DC Current Gain (Note 1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ON CHARACTERISTICS mAdc 5.0 — IEBOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0) 1.0 Î Î Î Î Î —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5303 (VCB = 80 Vdc, IE = 0) 1.0 — 2N5302 (VCB = 80 Vdc, IE = 0) 1.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5301 (VCB = 40 Vdc, IE = 0) mAdcÎÎÎ Î Î Î Î Î Î ICBOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current 10 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5303 (VCE = 80 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) 10 — 2N5302 (VCE = 60 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) 10 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5301 (VCE = 40 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) mAdcÎÎÎ Î Î Î Î Î Î Î Î ICEXÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector Cutoff Current 1.0 — 2N5303 (VCE = 80 Vdc, VEB(off) = 1.5 Vdc) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î 1.0 — 2N5302 (VCE = 60 Vdc, VEB(off) = 1.5 Vdc) 1.0 —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5301 (VCE = 40 Vdc, VEB(off) = 1.5 Vdc) mAdcÎÎÎ Î Î Î Î Î Î Î Î ICEXÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current 5.0 — 2N5303 (VCE = 80 Vdc, IB = 0) 5.0 — ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î 5.0 — 2N5302 (VCE = 60 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5301 (VCE = 40 Vdc, IB = 0) mAdcÎÎÎ Î Î Î Î Î Î Î Î Î ICEOÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current — 80 2N5303 — 60 Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 40 2N5302ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î 2N5301 (IC = 200 mAdc, IB = 0) Vdc VCEO(sus) Collector–Emitter Sustaining Voltage (Note 1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *OFF CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Unit Max Min SymbolÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Characteristic ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ2N5301 2N5302 2N5303
  • 114. 2N5301 2N5302 2N5303 SWITCHING TIME EQUIVALENT TEST CIRCUITS INPUT PULSE INPUT PULSE tr ≤ 20 ns VCC tr ≤ 20 ns VCC + 30 V + 30 V PW = 10 to 100 µs PW = 10 to 100 µs DUTY CYCLE = 2.0% DUTY CYCLE = 2.0% 3.0 3.0 +11 V +11 V 10 TO 10 TO SCOPE 0 SCOPE tr ≤ 20 ns – 2.0 V tr ≤ 20 ns D – 9.0 V VBB = 7.0 V Figure 2. Turn–On time Figure 3. Turn–Off time 1.0 r(t), NORMALIZED EFFECTIVE TRANSIENT 0.7 D = 0.5 0.5 THERMAL RESISTANCE 0.3 0.2 0.2 0.1 θJC(t) = r(t) θJC P(pk) 0.1 0.05 θJC = 0.875°C/W MAX 0.07 D CURVES APPLY FOR POWER 0.05 0.02 0.01 PULSE TRAIN SHOWN t1 0.03 READ TIME AT t1 t2 SINGLE PULSE TJ(pk) – TC = P(pk) θJC(t) DUTY CYCLE, D = t1/t2 0.02 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000 2000 t, TIME (ms) Figure 4. Thermal Response 100 3000 50 100 µs 2000IC, COLLECTOR CURRENT (AMP) 20 TJ = 25°C 2N5303 C, CAPACITANCE (pF) 10 1000 2N5301, 5302 5.0 ms 5.0 Cib 1.0 ms dc TJ = 200°C 2.0 Secondary Breakdown Limited 500 Cob Bonding Wire Limited 1.0 TC = 25°C 300 Thermal Limitations 0.5 Pulse Duty Cycle ≤ 10% 200 2N5301 0.2 2N5302 2N5303 0.1 100 1.0 2.0 3.0 5.0 10 20 30 50 100 0.5 1.0 2.0 3.0 5.0 7.0 10 20 30 50 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VR, REVERSE VOLTAGE (VOLTS) Figure 5. Active–Region Safe Operating Area Figure 6. Capacitance versus Voltage 3–56 Motorola Bipolar Power Transistor Device Data
  • 115. 2N5301 2N5302 2N5303 5.0 3.0 TJ = 25°C 3.0 TJ = 25°C IB1 = IB2 2.0 IC/IB = 10 IC/IB = 10 ts′ ts′ ≈ ts – 1/8 tf 1.0 1.0t, TIME ( µs) t, TIME ( µs) 0.7 0.7 0.5 0.5 0.3 tr @ VCC = 30 V tf @ VCC = 30 V 0.2 0.3 tr @ VCC = 10 V tf @ VCC = 10 V 0.1 td @ VOB = 2.0 V 0.07 0.05 0.1 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 0.03 0.05 0.1 0.3 0.5 1.0 3.0 5.0 10 30 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 7. Turn–On Time Figure 8. Turn–Off Time VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 300 2.0 TJ = 175°C VCE = 10 V TJ = 25°C 200 VCE = 2.0 V 1.6 IC = 2.0 A 5.0 A hFE, DC CURRENT GAIN 10 A 20 A 100 25°C 1.2 70 50 0.8 – 55°C 30 20 0.4 10 0 0.03 0.05 0.1 0.3 0.5 1.0 3.0 5.0 10 30 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (AMP) IB, BASE CURRENT (AMP) Figure 9. DC Current Gain Figure 10. Collector Saturation Region RBE , EXTERNAL BASE–EMITTER RESISTANCE (OHMS) 108 2.0 VCE = 30 V 1.8 TJ = 25°C 107 1.6 IC = 10 x ICES V, VOLTAGE (VOLTS) 106 1.4 IC = 2 x ICES 1.2 105 1.0 IC ≈ ICES 0.8 VBE(sat) @ IC/IB = 10 104 0.6 VBE(on) @ VCE = 2.0 V 0.4 103 TYPICAL ICES VALUES OBTAINED FROM FIGURE 13 0.2 VCE(sat) @ IC/IB = 10 102 0 0 20 40 60 80 100 120 140 160 180 200 0.03 0.05 0.1 0.3 0.5 1.0 3.0 5.0 10 30 TJ, JUNCTION TEMPERATURE (°C) IC, COLLECTOR CURRENT (AMP) Figure 11. Effects of Base–Emitter Resistance Figure 12. “On” Voltages Motorola Bipolar Power Transistor Device Data 3–57
  • 116. 2N5301 2N5302 2N5303 103 + 2.5 θV, TEMPERATURE COEFFICIENTS (mV/°C) VCE = 30 V + 2.0 TJ = – 55°C to +175°C + 2.0 V TJ = 175°C 102 hFE @ VCEIC, COLLECTOR CURRENT ( µ A) + 1.5 *APPLIES FOR IC/IB < 100°C 2 + 1.0 101 25°C + 0.5 *θVC for VCE(sat) 100 0 IC = ICES – 0.5 10–1 – 1.0 10– 2 – 1.5 θVB for VBE(sat) REVERSE FORWARD – 2.0 10– 3 – 2.5 – 0.4 – 0.3 – 0.2 – 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.03 0.05 0.1 0.3 0.5 1.0 3.0 5.0 10 30 VBE, BASE–EMITTER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (AMP) Figure 13. Collector Cut–Off Region Figure 14. Temperature Coefficients 3–58 Motorola Bipolar Power Transistor Device Data
  • 117. MOTOROLA SEMICONDUCTOR TECHNICAL DATA NPN 2N5630 High-Voltage Ċ High Power Transistors 2N5631 PNP . . . designed for use in high power audio amplifier applications and high voltage switching regulator circuits. 2N6030 • High Collector Emitter Sustaining Voltage — VCEO(sus) = 120 Vdc — 2N5630, 2N6030 2N6031 VCEO(sus) = 140 Vdc — 2N5631, 2N6031 • High DC Current Gain — @ IC = 8.0 Adc hFE = 20 (Min) — 2N5630, 2N6030 hFE = 15 (Min) — 2N5631, 2N6031 16 AMPERE • Low Collector–Emitter Saturation Voltage — POWER TRANSISTORS VCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc COMPLEMENTARYÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ SILICON 100 –120 –140 VOLTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ Î Î Î Î Î Î Î 2N5630 2N5631 200 WATTS Rating Symbol 2N6030 2N6031 Unit ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector–Emitter Voltage Collector–Base Voltage VCEO VCB 120 120 140 140 Vdc VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ Î Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VEB 7.0 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Collector Current — ContinuousÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Peak IC 16 20 Adc Base Current — Continuous IB 5.0 AdcÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Total Device Dissipation @ TC = 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î PD 200 Watts CASE 1–07 TO–204AA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Derate above 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Operating and Storage Junction TJ, Tstg 1.14 – 65 to + 200 W/_C _C (TO–3) Temperature RangeÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î THERMAL CHARACTERISTICS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î CharacteristicÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Thermal Resistance, Junction to Case Symbol θJC Max 0.875 Unit _C/WÎ Î Î Î (1) Indicates JEDEC Registered Data. 200 PD, POWER DISSIPATION (WATTS) 150 100 50 0 0 20 40 60 80 100 120 140 160 180 200 TC, TEMPERATURE (°C) Figure 1. Power Derating Safe Area Curves are indicated by Figure 5. All Limits are applicable and must be observed. REV 7 Motorola Bipolar Power Transistor Device Data 3–59
  • 118. 2N5630 2N5631 2N6030 2N6031ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î VCEO(sus) Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 200 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î 2N5630, 2N6030 2N5631, 2N6031 120 140 — Collector–Emitter Cutoff Current ICEO mAdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCE = 50 Vdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCE = 60 Vdc, IB = 0) (VCE = 70 Vdc, IB = 0) Î Î Î ÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5630, 2N6030 2N5631, 2N6031 — — 2.0 2.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î ÎÎ Î Î Î Î Collector–Emitter Cutoff Current (VCE = Rated VCB, VEB(off) = 1.5 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ICEX — 2.0 mAdc (VCE = Rated VCB, VEB(off) = 1.5 Vdc, TC = 150_C) — 7.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Collector–Base Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (VCB = Rated VCB, IE = 0) Î ICBO — 2.0 mAdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Emitter–Base Cutoff Current (VBE = 7.0 Vdc, IC = 0)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î IEBO — 5.0 mAdc ON CHARACTERISTICS (1)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DC Current GainÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ hFE — (IC = 8.0 Adc, VCE = 2.0 Vdc) 2N5630, 2N6030 20 80ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 16 Adc, VCE = 2.0 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N5631, 2N6031 All Types 15 4.0 60 — Î Î Î ÎÎÎÎ Î Î Î Î Collector–Emitter Saturation VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCE(sat) Vdc (IC = 10 Adc, IB = 1.0 Adc) All Types — 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 16 Adc, IB = 4.0 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î — 2.0 Î Î Î ÎÎÎÎ Î Î Î Î Base–Emitter Saturation Voltage (IC = 10 Adc, IB = 1.0 Adc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î VBE(sat) — 1.8 Vdc Base–Emitter On Voltage VBE(on) — 1.5 Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î (IC = 8.0 Adc, VCE = 2.0 Vdc) ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î DYNAMIC CHARACTERISTICSÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Current–Gain — Bandwidth Product (2)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 1.0 Adc, VCE = 20 Vdc, ftest = 0.5 MHz) fT 1.0 — MHzÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) Î Î Î Î 2N5630, 31 2N6030, 31 Cob — — 500 1000 pFÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Small–Signal Current GainÎ Î Î Î Î Î Î hfe 15 — — (IC = 4.0 Adc, VCE = 10 Vdc, f = 1.0 kHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î * Indicates JEDEC Registered Data. v (1) Pulse Test: Pulse Width 300 µs, Duty Cycle w 2.0%. (2) fT = |hfe| • ftest VCC 3.0 + 30 V 2.0 TJ = 25°C IC/IB = 10 25 µs RC 1.0 VCE = 30 V +11 V 0.7 SCOPE tr RB 0.5 t, TIME ( µs) 0 – 9.0 V 0.3 51 D1 0.2 tr, tf ≤ 10 ns td @ VBE(off) = 5.0 V DUTY CYCLE = 1.0% –4 V 0.1 RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS 0.07 0.05 2N5629, 30, 31 D1 MUST BE FAST RECOVERY TYPE, e.g.: 2N6029, 30, 31 1N5825 USED ABOVE IB ≈ 100 mA 0.03 MSD6100 USED BELOW IB ≈ 100 mA 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 For PNP test circuit, reverse all polarities and D1. IC, COLLECTOR CURRENT (AMP) Figure 2. Switching Times Test Circuit Figure 3. Turn–On Time 3–60 Motorola Bipolar Power Transistor Device Data
  • 119. 2N5630 2N5631 2N6030 2N6031 1.0 r(t), EFFECTIVE TRANSIENT THERMAL D = 0.5 0.5 RESISTANCE (NORMALIZED) 0.2 0.2 0.1 θJC(t) = r(t) θJC P(pk) 0.1 0.05 θJC = 0.875°C/W MAX D CURVES APPLY FOR POWER 0.05 0.02 PULSE TRAIN SHOWN t1 READ TIME AT t1 t2 SINGLE PULSE 0.01 TJ(pk) – TC = P(pk) θJC(t) DUTY CYCLE, D = t1/t2 0.02 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 2000 t, TIME (ms) Figure 4. Thermal Response 20 1.0 ms There are two limitations on the power handling ability of a 5.0 ms 10 transistor: average junction temperature and second break- IC, COLLECTOR CURRENT (AMP) 7.0 dc down. Safe operating area curves indicate IC – V CE limits of 5.0 0.5 ms the transistor that must be observed for reliable operation, TJ = 200°C 50 ms i.e., the transistor must not be subjected to greater dissipa- 3.0 tion than the curves indicate. 2.0 SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED The data of Figure 5 is based on T J(pk) = 200_C; T C is THERMALLY LIMITED @ TC = 25°C variable depending on conditions. Second breakdown pulse 1.0 limits are valid for duty cycles to 10% provided T J(pk) 0.7 0.5 CURVES APPLY BELOW v 200_C. T J(pk) may be calculated from the data in Figure 4. RATED VCEO 2N5630, 2N6030 At high case temperatures, thermal limitations will reduce the 0.3 2N5631, 2N6031 power that can be handled to values less than the limitations 0.2 imposed by second breakdown. 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 5. Active–Region Safe Operating Area NPN PNP 2N5630, 2N5631 2N6030, 2N6031 5.0 4.0 TJ = 25°C TJ = 25°C 3.0 IC/IB = 10 ts IB1 = IB2 3.0 ts IB1 = IB2 IC/IB = 10 2.0 VCE = 30 V VCE = 30 V 2.0t, TIME ( µs) t, TIME ( µs) 1.0 0.6 1.0 tf 0.4 0.7 0.3 tf 0.5 0.2 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 6. Turn–Off Time Motorola Bipolar Power Transistor Device Data 3–61
  • 120. 2N5630 2N5631 2N6030 2N6031 NPN NPN 2N5630, 2N5631 2N5630, 2N5631 1000 2000 700 TJ = 25°C TJ = 25°CC, CAPACITANCE (pF) C, CAPACITANCE (pF) 500 1000 Cib 700 300 500 Cib 200 300 Cob Cob 100 200 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 VR, REVERSE VOLTAGE (VOLTS) VR, REVERSE VOLTAGE (VOLTS) Figure 7. Capacitance 500 500 TJ = 150°C TJ = +150°C 300 VCE = 2.0 V 300 VCE = 2.0 V 200 VCE = 10 V 200 VCE = 10 V 25°C + 25°ChFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 100 100 – 55°C – 55°C 70 70 50 50 30 30 20 20 10 10 7.0 7.0 5.0 5.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 10 20 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 10 20 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 8. DC Current GainVCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 2.0 2.0 TJ = 25°C TJ = 25°C 1.6 1.6 1.2 IC = 4.0 A 8.0 A 16 A 1.2 IC = 4.0 A 8.0 A 16 A 0.8 0.8 0.4 0.4 0 0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 IB, BASE CURRENT (AMP) IB, BASE CURRENT (AMP) Figure 9. Collector Saturation Region 3–62 Motorola Bipolar Power Transistor Device Data
  • 121. MOTOROLASEMICONDUCTOR TECHNICAL DATA 2N5655 2N5656Plastic NPN Silicon 2N5657High-Voltage Power Transistor. . . designed for use in line–operated equipment such as audio output amplifiers;low–current, high–voltage converters; and AC line relays. 0.5 AMPERE• Excellent DC Current Gain — hFE = 30 – 250 @ IC = 100 mAdc POWER TRANSISTORS• Current–Gain — Bandwidth Product — NPN SILICON fT = 10 MHz (Min) @ IC = 50 mAdc 250 – 300 – 350 VOLTS 20 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Rating Symbol 2N5655 2N5656 2N5657 Unit Collector–Emitter Voltage VCEO 250 300 350 VdcÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCB 275 325 375 VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VEB 6.0 Vdc Collector Current — Continuous IC 0.5 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Peak 1.0 ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Base CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Total Power Dissipation @ TC = 25_CÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î IB PD 0.25 20 Adc Watts CASE 77–08 TO–225AA TYPE Derate above 25_C 0.16 W/_CÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Operating and Storage Junction TJ, Tstg – 65 to + 150 _C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Temperature RangeÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎ THERMAL CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Characteristic Symbol Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Thermal Resistance, Junction to Case θJC 6.25 _C/W(1) Indicates JEDEC Registered Data. 40 PD, POWER DISSIPATION (WATTS) 30 50 mH 20 X 200 Hg RELAY TO SCOPE + + 6.0 V 50 V 10 – Y 300 1.0 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) Figure 1. Power Derating Figure 2. Sustaining Voltage Test Circuit Safe Area Limits are indicated by Figures 3 and 4. Both limits are applicable and must be observed. REV 3 Motorola Bipolar Power Transistor Device Data 3–63
  • 122. 2N5655 2N5656 2N5657ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Characteristic Symbol Min Max UnitÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ OFF CHARACTERISTICS Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Emitter Sustaining VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î 2N5655 VCEO(sus) 250 — Vdc ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 100 mAdc (inductive), L = 50 mH)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î ÎÎÎÎ Î Î Î 2N5656 2N5657 300 350 — — Collector–Emitter Breakdown Voltage 2N5655 V(BR)CEO 250 — VdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 1.0 mAdc, IB = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 2N5656 2N5657 300 350 — —ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current (VCE = 150 Vdc, IB = 0) 2N5655 ICEO mAdc — 0.1 (VCE = 200 Vdc, IB = 0) 2N5656ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCE = 250 Vdc, IB = 0) 2N5657 — — 0.1 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Collector Cutoff Current (VCE = 250 Vdc, VEB(off) = 1.5 Vdc) 2N5655 ICEX — 0.1 mAdc (VCE = 300 Vdc, VEB(off) = 1.5 Vdc) 2N5656 — 0.1ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î (VCE = 350 Vdc, VEB(off) = 1.5 Vdc) (VCE = 150 Vdc, VEB(off) = 1.5 Vdc, TC = 100_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 2N5657 — 0.1 Î Î Î Î (VCE = 200 Vdc, VEB(off) = 1.5 Vdc, TC = 100_C)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î 2N5655 2N5656 — — 1.0 1.0 (VCE = 250 Vdc, VEB(off) = 1.5 Vdc, TC = 100_C) 2N5657 — 1.0ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ Î Î Î Î Î Collector Cutoff CurrentÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (VCB = 275 Vdc, IE = 0) 2N5655 ICBO — 10 µAdc (VCB = 325 Vdc, IE = 0) 2N5656 — 10 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î ÎÎ Î Î Î (VCB = 375 Vdc, IE = 0)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0) 2N5657 IEBO — — 10 10 µAdcÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ON CHARACTERISTICS DC Current Gain (1) hFE —Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î (IC = 50 mAdc, VCE = 10 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 100 mAdc, VCE = 10 Vdc) 25 — 30 250 (IC = 250 mAdc, VCE = 10 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 500 mAdc, VCE = 10 Vdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î 15 5.0 — — Î Î Î ÎÎÎÎ Î Î Î Î Collector–Emitter Saturation Voltage (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ (IC = 100 mAdc, IB = 10 mAdc) VCE(sat) — 1.0 Vdc (IC = 250 mAdc, IB = 25 mAdc) — 2.5ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î (IC = 500 mAdc, IB = 100 mAdc)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ — 10 ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Base–Emitter Voltage (1) (IC = 100 mAdc, VCE = 10 Vdc)Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VBE — 1.0 VdcÎ Î Î Î Î DYNAMIC CHARACTERISTICSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Current–Gain — Bandwidth Product (2) (IC = 50 mAdc, VCE = 10 Vdc, f = 10 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz) fT Cob 10 — — 25 MHz pFÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Small–Signal Current Gain (IC = 100 mAdc, VCE = 10 Vdc, f = 1.0 kHz)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î hfe 20 — — * Indicates JEDEC Registered Data for 2N5655 Series. (1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%.v v (2) fT is defined as the frequency at which |hfe| extrapolates to unity. 1.0 There are two limitations on the power handling ability of a 10 µs transistor: average junction temperature and second break- 0.5 IC, COLLECTOR CURRENT (AMP) down. Safe operating area curves indicate I C – V CE limits of 500 µs the transistor that must be observed for reliable operation; TJ = 150°C i.e., the transistor must not be subjected to greater dissipa- 0.2 1.0 ms tion than the curves indicate. dc 0.1 The data of Figure 3 is based on T J(pk) = 150_C; TC is Second Breakdown Limit variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk) v Thermal Limit @ TC = 25°C 0.05 Bonding Wire Limit 150_C. At high case temperatures, thermal limitations will Curves apply below rated VCEO reduce the power that can be handled to values less than the 0.02 2N5655 limitations imposed by second breakdown. 2N5656 2N5657 0.01 20 30 40 60 100 200 300 400 600 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 3. Active–Region Safe Operating Area 3–64 Motorola Bipolar Power Transistor Device Data
  • 123. 2N5655 2N5656 2N5657 300 200 VCE = 10 V VCE = 2.0 V hFE , DC CURRENT GAIN 100 TJ = +150°C 70 +100°C 50 + 25°C 30 20 – 55°C 10 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 300 500 IC, COLLECTOR CURRENT (mA) Figure 4. Current Gain 1.0 300 200 TJ = + 25°C 0.8 VBE(sat) @ IC/IB = 10 Cib C, CAPACITANCE (pF) V, VOLTAGE (VOLTS) 100 0.6 VBE @ VCE = 10 V 70 50 0.4 30 VCE(sat) @ IC/IB = 10 0.2 TJ = + 25°C 20 Cob IC/IB = 5.0 0 10 10 20 30 50 100 200 300 500 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 IC, COLLECTOR CURRENT (mA) VR, REVERSE VOLTAGE (VOLTS) Figure 5. “On” Voltages Figure 6. Capacitance 10 10 tr IC/IB = 10 5.0 IC/IB = 10 VCC = 300 V, VBE(off) = 2.0 V 5.0 2.0 (2N5656, 2N5657, only) VCC = 100 V, VBE(off) = 0 V 1.0 2.0 tst, TIME ( µs) t, TIME ( µs) 0.5 td 1.0 tf 0.2 0.1 0.5 VCC = 100 V 0.05 0.2 VCC = 300 V 0.02 (Type 2N5656, 2N5657, only) 0.01 0.1 1.0 2.0 5.0 10 20 50 100 200 500 1.0 2.0 5.0 10 20 50 100 200 500 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 7. Turn–On Time Figure 8. Turn–Off Time Motorola Bipolar Power Transistor Device Data 3–65
  • 124. MOTOROLASEMICONDUCTOR TECHNICAL DATA PNPHigh-Current Complementary 2N5684 NPNSilicon Power Transistors 2N5685. . . designed for use in high–power amplifier and switching circuit applications.• High Current Capability — IC Continuous = 50 Amperes.• DC Current Gain — 2N5686* hFE = 15 – 60 @ IC = 25 Adc• Low Collector–Emitter Saturation Voltage — *Motorola Preferred Device VCE(sat) = 1.0 Vdc (Max) @ IC = 25 Adc 50 AMPERE COMPLEMENTARYÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î SILICONÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RatingÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Symbol 2N5685 2N5684 2N5686 Unit POWER TRANSISTORS 60 – 80 VOLTS Î Î Î Î Collector–Emitter VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VCEO VCB 60 60 80 80 Vdc Vdc 300 WATTSÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Emitter–Base VoltageÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î VEB 5.0 Vdc Collector Current — Continuous IC 50 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Base CurrentÎÎÎ Î Î IB 15 AdcÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Total Device Dissipation @ TC = 25_CÎÎÎÎ Î Î PD 300 WattsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎDerate above 25_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Operating and Storage JunctionÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Temperature Range TJ, Tstg 1.715 – 65 to + 200 W/_C _C CASE 197A–05 TO–204AEÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎ Î Î ÎÎ THERMAL CHARACTERISTICS (1)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î C