Study of-ndvi-land-surface-temperature-using-landsat-tm-data

1,236 views
1,005 views

Published on

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,236
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
52
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Study of-ndvi-land-surface-temperature-using-landsat-tm-data

  1. 1. STUDY OF NDVI, LAND SURFACE TEMPERATURE USING LANDSAT (TM) DATA Course: Introduction to RS & DIP Mirza Muhammad Waqar Contact: mirza.waqar@ist.edu.pk +92-21-34650765-79 EXT:2257 RG610
  2. 2. Landsat TM(07-03-2010)
  3. 3. LMAX_BAND1 = 193.000 LMIN_BAND1 = -1.520 LMAX_BAND2 = 365.000 LMIN_BAND2 = -2.840 LMAX_BAND3 = 264.000 LMIN_BAND3 = -1.170 LMAX_BAND4 = 221.000 LMIN_BAND4 = -1.510 LMAX_BAND5 = 30.200 LMIN_BAND5 = -0.370 LMAX_BAND6 = 15.303 LMIN_BAND6 = 1.238 LMAX_BAND7 = 16.500 LMIN_BAND7 = -0.150 Slope= (LMAX-LMIN)/(Max Gray) Slope(B6)= (15.303-1.238)/(255)= 0.0551 Slope(B3)= (264+1.170)/(255)= 1.0398 Slope(B4)= (221+1.51)/(255)= 0.8725 Calculating Slope for Band= 3, 4 and 6
  4. 4. Radiance= Slope*DN + LMIN LMAX_BAND1 = 193.000 LMIN_BAND1 = -1.520 LMAX_BAND2 = 365.000 LMIN_BAND2 = -2.840 LMAX_BAND3 = 264.000 LMIN_BAND3 = -1.170 LMAX_BAND4 = 221.000 LMIN_BAND4 = -1.510 LMAX_BAND5 = 30.200 LMIN_BAND5 = -0.370 LMAX_BAND6 = 15.303 LMIN_BAND6 = 1.238 LMAX_BAND7 = 16.500 LMIN_BAND7 = -0.150 R(3)= 1.0398 *B3-1.170 R(4)= 0.8725*B4-1.510 R(6)= 0.0551*B6-1.238 Calculating Radiance for Band= 3, 4 and 6
  5. 5. Radiance for Band 6 Calculating Radiance for Band= 3, 4 and 6
  6. 6. Calculating Brightness Temperature using Planck's Black Body Radiation Law TB = K2/Log{(K1/R6)+1)} Where: K1 = Calibration constant 1 (666.09 watt/m2 * ster * µm) K2 = Calibration constant 2 (1282.71 K)
  7. 7. Surface Temperature= TB /{1+(λ *BT/ρ*logε)} TB= Brightness Temperature λ = Wavelength of emitted radiance (11.5 µm) ρ = h x c/σ =1.438 x 10-2 mK (σ=Boltzmann constant=1.38 x 10-23 J/K, h=Planck’s constant=6.626 x 10-34 Js, c=velocity of light=2.998 x 108 m/s) ε = Land surface emissivity Calculating Surface Temperature
  8. 8. Calculating Land surface emissivity (LSE)- ε  LSE (ε) can be extracted by using NDVI considering three different cases  Bare ground  Fully vegetated and  Mixture of bare soil and vegetation  For Band 6 of Landsat TM  ε = 0.004*Pv + 0.986  Pv is the proportion of vegetation which is given by  Pv = [(NDVI-NDVImin)/(NDVImax-NDVImin)]2
  9. 9. NDVI = [Ref(B4)-Ref (B3)}/{Ref (B4)+Ref(B3)} Pv Calculating Pv
  10. 10. Pv = [(NDVI-NDVImin)/(NDVImax-NDVImin)]2
  11. 11. LSE ε = 0.004*Pv + 0.986 Calculating ε
  12. 12. Logε Calculating ε
  13. 13. Surface Temperature= TB /{1+(λ *BT/ρ) *logε} λ = Wavelength of emitted radiance (11.5 µm) ρ = h x c/σ =1.438 x 10-2 mK (σ=Boltzmann constant=1.38 x 10-23 J/K, h=Planck’s constant=6.626 x 10-34 Js, c=velocity of light=2.998 x 108 m/s) Calculating Surface Temperature
  14. 14. Land Surface Temperature (LST)

×