
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This paper presents a Flood Prediction Model (FPM) to predict flood in rivers using Artificial Neural Network (ANN)
approach. This model predicts river water level from rainfall and present river water level data. Though numbers of factors are
responsible for changes in water level, only two of them are considered. Flood prediction problem is a nonlinear problem and to solve
this nonlinear problem, ANN approach is used. Multi Linear Perceptron (MLP) based ANN’s Feed Forward (FF) and Back
Propagation (BP) algorithm is used to predict flood. Statistical analysis shows that data fit well in the model. We present our
simulation results for the predicted water level compared to the actual water level. Results show that our model successfully predicts
the flood water level 24 hours ahead of time.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment