• Save
Clase Nº3 Pronostico
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Clase Nº3 Pronostico

on

  • 11,017 views

 

Statistics

Views

Total Views
11,017
Views on SlideShare
10,934
Embed Views
83

Actions

Likes
27
Downloads
0
Comments
2

3 Embeds 83

http://lmssofia.senasofiaplus.edu.co 71
http://gopust.blogspot.com 6
http://www.slideshare.net 6

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Clase Nº3 Pronostico Presentation Transcript

  • 1. Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 2. PRONOSTICO Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 3. P ronosticar : Es el arte y la ciencia de predecir los eventos futuros. Para ello se pueden usar datos históricos y su proyección hacia el futuro mediante algún tipo de modelo matemático. Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 4. Horizonte de tiempo del Pronóstico
    • Pronóstico a largo plazo: 3 años o más Ej: planear nuevos productos, gastos de capital, ubicación o ampliación de las instalaciones
    • Pronóstico a corto Plazo : hasta 1 año, pero casi siempre es menor que 3 meses. Ej: planear compras, programar el trabajo, determinar niveles de mano de obra, asignar el trabajo y decidir los niveles de producción.
    • Pronóstico a mediano plazo : de 3 meses a 3 años. Ej: planear las ventas, la producción, el presupuesto.
    Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 5. Los 7 Pasos de un Pronóstico 7.- Validar e implantar los resultados 1.- Determinar el uso del pronóstico 2.- Seleccionar los aspectos que se deben pronosticar. 3.- Determinar el horizonte del pronóstico 4.- Seleccionar los modelos de pronóstico 5.- Reunir los datos necesarios para elaborar el pronóstico 6.- Obtener el pronóstico Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 6. Enfoques de Pronósticos Métodos Cualitativos Método Delphi Jurado de opinión de Ejecutivos Composición de la fuerza de ventas Encuesta en el mercado de consumo Métodos Cuantitativos Promedios Móviles (*) Suavizamiento exponencial (*) Proyección de tendencias (*) Enfoque intuitivo Regresión Lineal (*) Modelos de series de tiempo Modelo asociativo Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 7. 1.- Promedios Móviles. Promedio Móvil = Demanda en los n periodos anteriores n Promedio Móvil Ponderado = (ponderación para periodo n) (demanda en periodo n) ponderaciones Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 8. Ejemplo: Las ventas de cobertizos de una empresa X, se muestran en la columna central de la siguiente tabla. A la derecha se da el promedio móvil de tres meses. Mes Ventas Reales de Cobertizos Promedio Móvil de 3 meses Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre 10 12 13 16 19 23 26 30 28 18 16 14 (10+12+13)/3 = 11 2/3 (12+13+16)/3 = 13 2/3 (13+16+19)/3 = 16 (16+19+23)/3=19 1/3 (19+23+26)/3 = 22 2/3 (23+26+30)/3= 26 1/3 (26+30+28)/3= 28 (30+28+18)/3 = 25 1/3 (28+18+16)/3 = 20 2/3 Vemos que el pronóstico para diciembre es de 20 2/3 . Para proyectar la demanda de cobertizos en enero próximo, sumamos las ventas de octubre, noviembre y diciembre entre 3: pronóstico para enero = (18+16+14)/3 = 16 Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 9. Mes Ventas Reales de Cobertizos Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre 10 12 13 16 19 23 26 30 28 18 16 14 Siguiendo con el ejemplo anterior. Esta empresa decidió pronosticar las ventas de cobertizos ponderando los últimos tres meses como sigue: Ponderación Aplicada Periodo 3 Último mes o más reciente 2 Hace dos meses 1 Hace tres meses 6 Suma de ponderaciones Promedio Móvil Ponderado de 3 meses (3x13)+(2x12)+(10) /6 = 12 1/6 (3x16)+(2x13)+(12) /6 = 14 1/3 (3x19)+(2x16)+(13) /6 = 17 (3x23)+(2x19)+(16) /6 = 20 1/2 (3x26)+(2x23)+(19) /6 = 23 5/6 (3x30)+(2x26)+(23) /6 = 27 1/2 (3x28)+(2x30)+(26) /6 = 28 1/3 (3x18)+(2x28)+(30) /6 = 23 1/3 (3x16)+(2x18)+(28) /6 = 18 2/3
  • 10. Demanda de Ventas 5 10 15 25 20 30 Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Mes Ventas reales Promedio móvil Promedio móvil ponderado
  • 11. 2.- Suavizamiento Exponencial. Nuevo pronóstico = pronóstico del periodo anterior + α (demanda real en periodo anterior – pronóstico del periodo anterior) α : es la ponderación, o constante de suavizado, elegida por quien pronostica, que tiene un valor entre 0 y 1. ( 0 < α < 1 ) matemáticamente, se puede escribir así: F t = nuevo pronóstico F t-1 = pronóstico anterior A t-1 = demanda real en el periodo anterior F t = F t-1 + α (A t-1 - F t-1 ) Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 12. Ejemplo: En Enero, un distribuidor de automóviles predijo que la demanda para Febrero sería de 142 camionetas Ford. La demanda real de febrero fue de 153 autos. Si empleamos la constante de suavizado que eligió la administración , α = 0,20, podemos pronosticar la demanda de marzo mediante el modelo de suavizamiento exponencial. Sustituyendo los datos del ejemplo en la fórmula, obtenemos. (suavizamiento exponencial) Nuevo pronóstico (para la demanda de marzo) = 142 + 0,20 (153 – 142) = 142 + 2,2 = 144,2 α siempre será dada. Profesora: Paulina Mayorga Peralta Gestión de Operaciones
    • se elige un α alto, cuando la demanda tiene altas probabilidades de cambiar.
    • se elige un α bajo, cuando la demanda es bastante estable.
    • En consecuencia el objetivo es elegir aquel constante de suavizado que permita obtener el pronóstico más preciso
    Nuevo pronóstico = pronóstico del periodo anterior + α (demanda real en periodo anterior – pronóstico del periodo anterior)
  • 13. Error del pronóstico Mide la precisión del modelo de pronóstico que se ha usado, comparando los valores pronosticados con los valores reales u observados. Si F t denota el pronóstico en el periodo t , y A t denota la demanda real del periodo t , el error de pronóstico (o desviación) se define como: Error del Pronóstico = demanda real – valor pronosticado = A t - F t
  • 14. Medidas para calcular el Error Global del pronóstico
    • Desviación Absoluta Media (MAD): Su valor se calcula sumando los valores absolutos de los errores individuales del pronóstico y dividiendo entre el número de periodos de datos (n)
    MAD = real - pronóstico n Veamos un ejemplo
  • 15. Durante los últimos 8 trimestres, el Puerto de Valparaíso ha descargado de los barcos, grandes cantidades de grano. El Jefe de Operaciones del puerto quiere probar el uso de suavizamiento exponencial para ver que tan bien funciona la técnica para predecir el tonelaje descargado. Supone que el pronóstico de grano descargado durante el primer trimestre fue 175 toneladas. Se examinan dos valores de α . α = 0,10 y α = 0,50. La siguiente tabla muestra los cálculos detallados sólo para α = 0,10 Trimestre Toneladas reales descargadas Pronóstico Redondeado con α = 0,10 Pronóstico Redondeado con α = 0,50 1 2 3 4 5 6 7 8 9 180 168 159 175 190 205 180 182 ? 175 = 175 + 0,10 ( 180 – 175) Pronóstico del periodo anterior Demanda real en periodo anterior Pronóstico del periodo anterior 176 175 = 175,50+0,10 (168 – 175,50) 173 = 174,75+0,10 (159-174,75) 173 = 173,18+0,10 (175+173,18) 175 = 173,36+0,10(190-173,36) 178 = 175,02+0,10(205-175,02) 178 = 178,02 + 0,10 (180-178,02) 179 = 178,22 + 0,10 (182-178,22) 175 178 173 166 170 180 193 186 184
  • 16. Para evaluar la precisión de ambas constantes de suavizado, calculamos los errores de pronóstico en términos de desviaciones absolutas y MAD Trimestre Toneladas reales Descargadas Pronóstico Redondeado con α =0,10 Desviación Absoluta Para α =0,10 Pronóstico Redondeado con α =0,50 Desviación Absoluta Para α =0,50 1 2 3 4 5 6 7 8 180 168 159 175 190 205 180 182 175 176 175 173 173 175 178 178 5 8 16 2 17 30 2 4 175 178 173 166 170 180 193 186 5 10 14 9 20 25 13 4 Suma de desviaciones absolutas 84 100 MAD = desviaciones n 10,50 12,50 Con base en este análisis, una constante de suavizado de α =0,10 es preferible a α =0,50 por que su MAD es más pequeña. Se debe encontrar la constante de suavizado con el menor error de pronóstico. Para este cálculo , tomamos los únicos datos reales que tenemos del ejercicio.
  • 17.
    • Error cuadrático Medio (MSE): Es una segunda forma de medir el error global del pronóstico. El MSE es el promedio de los cuadrados de las diferencias entre los valores pronosticados y observados. Su fórmula es:
    MSE = (errores de pronóstico) n Sigamos con el ejemplo del Puerto de Valparaíso para determinar el MSE Profesora: Paulina Mayorga Peralta Gestión de Operaciones 2
  • 18. Trimestre Toneladas reales Descargadas Pronóstico Redondeado con α =0,10 1 2 3 4 5 6 7 8 180 168 159 175 190 205 180 182 175 176 175 173 173 175 178 178 (Error) 2 5 2 = 25 (-8) 2 = 64
    • (-16) = 256
    • = 4
    • = 289
    • 30 = 900
    • 2 = 4
    • 4 = 16
    2 2 2 2 2 2 Suma de los cuadrados de los errores 1.558 MSE = (errores de pronóstico) n 2 = 1.558 / 8 = 194,75 Usando un α = 0,50 se obtendría un MSE de 201,5. Por lo tanto el α = 0,10 es una mejor elección por que se minimiza el MSE. Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 19.
    • Error porcentual absoluto medio (MAPE): Este se calcula como el promedio de las diferencias absolutas entre los valores pronosticados y los reales y se expresa como porcentaje de los valores reales. Es decir, si hemos pronosticado n periodos y los valores reales corresponden a n periodos, MAPE, se calcula como:
    = real i - pronóstico i / real i 100 n i = 1 MAPE n Sigamos con el ejemplo del Puerto de Valparaíso para determinar el MAPE Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 20. Trimestre Toneladas reales Descargadas Pronóstico Redondeado con α =0,10 1 2 3 4 5 6 7 8 180 168 159 175 190 205 180 182 175 176 175 173 173 175 178 178 Suma de errores porcentuales = 45,62% Error porcentual Absoluto 100 ( error / real) 100(5/180) = 2,77% 100(8/168) = 4,76% 100(16/159) = 10,06% 100(2/175) = 1,14% 100(17/190) = 8,95% 100(30/205) = 14,63% 100(2/180) = 1,11% 100(4/182) = 2,20% MAPE = errores porcentuales absolutos = 45,62% n 8 = 5,70% Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 21. 3.- Proyección de Tendencias Método de pronóstico de series de tiempo que ajusta una recta de tendencia a una serie de datos históricos y después proyecta la recta al futuro para pronosticar. A través del método de Mínimos Cuadrados , encontramos la recta que mejor se ajuste a las observaciones reales. Una recta de mínimos cuadrados se describe en términos de su ordenada o intersección con el eje “y” y su pendiente. Si calculamos la pendiente y la ordenada, expresamos la recta con la siguiente ecuación: y = a + b x y “ y gorro” = valor calculado de la variable que debe predecirse (variable dependiente) a = ordenada b = pendiente de la recta de regresión (o la tasa de cambio en y para los cambios dados en x) X = variable independiente (Ej: tiempo) Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 22. Los profesionales de estadísticas han desarrollado ecuaciones que se utilizan para encontrar los valores de a y b para cualquier recta de regresión. La pendiente b se encuentra mediante: xy - n x y x - n x 2 2 b = b = pendiente de la recta de regresión x = valores conocidos de la variable independiente y = valores conocidos de la variable dependiente x = promedio del valor de las x y = promedio del valor de las y n = número de datos puntuales u observaciones. = signo de suma donde: Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 23. Calculamos la ordenada a cómo sigue: a = y - b x Veamos un ejemplo para aplicar estos conceptos:
  • 24. A continuación se muestra la demanda de energía eléctrica en la ciudad de Puerto Montt, durante el año 1997 al 2003, en kilowatt. El Jefe de Operaciones de la empresa SAESA , debe pronosticar la demanda para el 2004 ajustando una recta de tendencia a estos datos. Año Demanda de Energía Eléctrica 1997 1998 1999 2000 2001 2002 2003 74 79 80 90 105 142 122
  • 25. Para simplificar, transformamos los valores de x (tiempo) en números más sencillos, como 1,2,3,4… Año Periodo (x) Demanda de energía Eléctrica (y) x 2 xy 1997 1998 1999 2000 2001 2002 2003 1 2 3 4 5 6 7 74 79 80 90 105 142 122 X = 28 y = 692 1 4 9 16 25 36 49 x = 140 2 74 158 240 360 525 852 854 xy = 3.063 X = X n = 28 7 = 4 y = y n = 692 7 = 98,86
  • 26. xy - n x y x - n x 2 2 b = = 3.063 – (7) (4) (98,86) 140- (7) ( 4 ) 2 = 295 28 = 10,54 a = y - b x = 98,86 – 10,54 (4) = 56,70 Así, la ecuación de mínimos cuadrados para la tendencia es y = 56,70 + 10,54 x . Para proyectar la demanda en el 2004, primero denotamos el año 2004 en el nuevo sistema de códigos como x = 8. Demanda en el 2004 = 56,70 + 10,54 (8) = 141,02, o 141 Kilowatt. Profesora: Paulina Mayorga Peralta Gestión de Operaciones
  • 27. Demanda en el 2005 = 56,70 + 10,54 (9) = 151,56, o 152 Kilowatt. Estimamos la demanda para el 2005 insertando x = 9 en la misma ecuación: Para comprobar la validez del modelo, graficamos la demanda histórica y la recta de tendencia. En este caso debemos tener cuidado y tratar de comprender el cambio en la demanda de 2002 a 2003. 1997 1998 1999 2000 2001 2002 2003 2004 2005 Año Demanda de energía 50 60 70 80 90 100 110 120 130 140 150 160 Recta de tendencia y =56,70 + 10,54 x Demanda histórica
  • 28. 4.- Regresión Lineal Podemos usar el mismo modelo matemático que usamos con el método de mínimos cuadrados para la proyección de tendencias, con el fin de realizar un análisis de regresión lineal. Las variables dependientes que deseamos pronosticar se simbolizan con y . Pero la variable independiente, x , ya no necesita ser el tiempo. Usamos la ecuación. y = a + b x y = valor calculado de la variable que debe predecirse (variable dependiente) a = ordenada, intersección con el eje y. b = pendiente de la recta de regresión X = variable independiente. Veamos un ejemplo para mostrar cómo usar la regresión lineal.
    • Regresión lineal simple:
  • 29. Los siguientes datos relacionan las cifras de ventas de un bar de un pequeño Hotel, con el número de huéspedes registrados esa semana: semana Huéspedes Ventas del bar 16 12 18 14 1 2 3 4 $330 270 380 300 Huéspedes (en miles) Ventas del bar 4 8 12 16 20 50 100 150 200 250 300 350 400
  • 30. Ventas, y Huéspedes,x x 2 xy 330 270 380 300 16 12 18 14 X = 60 256 144 324 196 x = 920 2 5.280 3.240 6.840 4.200 xy =19.560 X = X n = 60 4 = 15 y = y n = 1.280 4 = 320 y = 1.280 xy - n x y x - n x 2 2 b = = 19.560 – (4) (15) (320) 920- (4) ( 15 ) 2 = 360 20 = 18 a = y - b x = 320 – 18(15) = 50 La ecuación de regresión estimada es, por lo tanto, y = 50 + 18 x 0 Ventas = 50 + 18 (huéspedes)
  • 31. Huéspedes (en miles) Ventas del bar 4 8 12 16 20 50 100 150 200 250 300 350 400 Si el pronóstico es de 20 huéspedes la semana siguiente ¿de cuánto se esperan que sean las ventas? y = 50 + 18 x 0 Ventas = 50 + 18 (huéspedes) Ventas = 50 + 18 (20) = 410 Recta de regresión lineal Simple Demanda histórica
  • 32.
    • Error estándar de la estimación S y,x
    Medida de la variabilidad alrededor de la recta de regresión, su desviación estándar. El cálculo se llama desviación estándar de la regresión y mide el error desde la variable dependiente, “y”, hasta la recta de regresión, en lugar de hasta la media. S y,x ( y – y c ) 2 = n - 2 donde: y = valor de y de cada dato puntual y c = valor calculado de la variable dependiente, a partir de la ecuación de regresión. n = número de datos puntuales
  • 33. S y,x y 2 = n - 2 - a y xy - b Esta ecuación puede resultar más fácil de usar. Ambas fórmulas entregarán el mismo resultado Huéspedes (en miles) Ventas del bar 4 8 12 16 20 50 100 150 200 250 300 350 400 Recta de regresión lineal Simple Demanda histórica
  • 34. Para calcular el error estándar de la estimación , la única cifra que necesitamos es y 2 y 108.900 72.900 144.400 90.000 y 2 2 = 416.200 S y,x y 2 = n - 2 - a y xy - b S y,x = 4 - 2 416.200 – 50(1.280) – 18 ( 19.560) = 60 = 7,74 $ en ventas Error estándar de la estimación
  • 35.
    • Coeficiente de correlación para rectas de regresión
    Sirve para medir o evaluar la relación entre las dos variables de una regresión lineal. Se expresa con la letra “r”. Para calcular el valor, se utiliza la siguiente fórmula: n xy - x y n x - x 2 2 n y - y 2 2 r = El coeficiente de correlación “r” puede ser cualquier número entre +1 y -1.
  • 36. Cuatro valores del coeficiente de correlación. X X X X y y y y Correlación positiva perfecta r= +1 Correlación positiva 0 < r < 1 No hay Correlación r= 0 Correlación negativa perfecta r= -1
  • 37. Ventas, y Huéspedes,x x 2 xy 330 270 380 300 16 12 18 14 X = 60 256 144 324 196 x = 920 2 5.280 3.240 6.840 4.200 xy =19.560 y = 1.280 y 2 108.900 72.900 144.400 90.000 y 2 = 416.200 Siguiendo con el ejemplo, calcular el coeficiente de correlación: (4) (19.560) - (60) (1.280) (4) (920)- (60) 2 (4) (416.200)- (1.280) 2 r = = 1.440 = 2.112.000 1453,27217 1.440 = 0,993619798 Correlación positiva r= 0 < r < 1
  • 38.
    • Regresión Lineal Múltiple
    La regresión múltiple es una extensión práctica del modelo simple de regresión que acabamos de ver. Nos permite construir un modelo con varias variables independientes en lugar de sólo una variable. Por ejemplo, si en el ejemplo anterior se desea incluir el alza en los pasajes de los huéspedes, la ecuación apropiada sería: y = a + b 1 x 1 + b 2 x 2 y = variable dependiente, ventas a = una constante x 1 y x 2 = valores de las dos variables independientes (Ej: nº de huéspedes y alza en los pasajes) b 1 y b 2 = coeficientes de las dos variables independientes Las matemáticas de la regresión múltiple son bastante complejas y lo usual es que los cálculos se realicen en el computador, por lo cual dejaremos las fórmulas para encontrar a, b1 y b2 a los libros de estadística.