Your SlideShare is downloading. ×
Números complexos
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Números complexos

2,131

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,131
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
33
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. NÚMEROS COMPLEXOS
  • 2. SITUAÇÃO-PROBLEMA:  Considere o retângulo da figura:  Se seu perímetro é 4 u.c. e sua área é 2 u.a.. Quais as dimensões desse retângulo?
  • 3. RESOLUÇÃO:  Chamemos de x a medida do comprimento, y a medida da largura, P o perímetro e de S a área desse retângulo. Temos então:  Substituindo o valor de y na segunda equação, temos: 4224  yxP 2 yx 2.2  yxS xy  2 2).2(  xx 022²  xx2²2  xx
  • 4.  Calculando o valor do discriminante  Calculando x, temos:  Opa! Qual é a raiz quadrada de – 4? acb 4²  a b x .2   )2).(1.(4)²2(  484  )1.(2 42    x
  • 5.  Como sabemos, não existe, nenhum número real cujo quadrado é – 4. Surge então o seguinte questionamento:  Existe um retângulo cujas dimensões satisfazem à situação descrita?
  • 6. UNIDADE IMAGINÁRIA  É um número representado pelo símbolo i, tal que:  Com esse novo conceito de número, podemos considerar, por exemplo, raízes de índice par, de números negativos.  Ex.: 1² i  1i 4 )1.(4  ²4i i2
  • 7.  Assim, podemos retomar a resolução de nossa situação-problema:  Logo as dimensões do retângulo são: e )1.(2 42   x  2 22    i x ix 1 ix 1 ix 1 
  • 8.  A partir de situações como esta, é que surgiu a necessidade da evolução dos números, pois como vimos, os números reais, não eram suficientes para resolvermos tal situação. Surgiu então o conjunto dos números complexos, que contém os números reais e os números imaginários. Veja o esquema:
  • 9.  Sendo  Em que:  N: conjunto dos números Naturais  Z: conjunto dos números Inteiros  Q: conjunto dos números Racionais  I: conjunto dos números Irracionais  R: conjunto dos números Reais  C: conjunto dos números Complexos IQR 
  • 10. FORMA ALGÉBRICA  Todo número complexo pode ser escrito na forma  Em que:  - é denominado parte real de z  - é denominado parte imaginária de z  Ex.: biaz  )Re(za  )Im(zb  a b iz 321   3e2  ba iz 2 3 2 1 2   2 3 e 2 1  ba
  • 11. OPERAÇÕES  Sejam dois números complexos e, consideremos as operações de igualdade, adição, subtração, multiplicação e divisão, assim temos:  Igualdade:  Adição:  Subtração:  Multiplicação: diczbiaz  21 e 21 zz   dbca  e  21 zz idbca )()(   21 zz idbca )()(  21 . zz ibcadbdac )()( 
  • 12.  Seja um número complexo, definimos como complexo conjugado de z e indicamos por ao número , que obtemos trocando o sinal da parte imaginária do complexo.  Divisão: biaz  biaz  22 21 2 1 . . zz zz z z  z
  • 13. MÓDULO DE UM NÚMERO COMPLEXO  Seja um complexo, o módulo de z, é o número (vetor), que indicamos por , dado pela expressão biaz  z ²² baz 

×