Your SlideShare is downloading. ×
0
Overview of SAP BW
1.  Agenda 
Contents <ul><li>SAP BW Overview and Concepts </li></ul><ul><li>Introducing the Administrator Workbench </li></ul><ul><li>...
Data Warehousing and the SAP BW Overview and Concepts 
SAP Business Information Warehouse <ul><li>Data Warehouse system with optimized structures for reporting and analysis  </l...
Business Information Warehouse Architecture
Business Content   Financial Accounting General Ledger Accnts Receivable Accnts Payable Special Ledger Profitability Analy...
Close the Loop Common Meta Data - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Transaction Processing OLT...
Architecture Overview R/3 OLTP Applications OLTP Reporting Production Data Extractor Business Information Warehouse Server...
Staging Process Update Rules R/3 OLTP System Business Information Warehouse Server Source Systems Data extract Sales Europ...
DataSource and InfoSource Transfer Rules Update Rules InfoCubes Communication structure Transfer Structure Extract Source ...
Extraction, Transformation and Loading … to get a complete view of your business <ul><ul><li>Open for any source </li></ul...
Non-SAP Data Sources <ul><li>Staging BAPIs allow ... </li></ul><ul><ul><li>... certified SAP Partners to provide  ready-to...
Persistent Staging Area OLTP System Business Information Warehouse Server InfoCube InfoSource InfoSource PSA Data extract ...
Administrator Workbench <ul><li>Central Administration and Control </li></ul><ul><li>Modeling </li></ul><ul><li>Reporting ...
OLAP Processor <ul><li>Arbitrary drill-downs, horizontally, vertically, hierarchically </li></ul><ul><li>Built-in function...
More OLAP Goodies ... <ul><li>Hierarchies for interactive drill-down </li></ul><ul><ul><li>Tree-like structures on a chara...
Currency Conversion <ul><li>Convert during data load and/or during analysis </li></ul><ul><li>Based on R/3 conversion rate...
Aggregates <ul><li>Speed up query performance by providing  pre-aggregated views on InfoCubes </li></ul><ul><ul><li>Aggreg...
BW Data Model InfoCube Time dimension T Period Fiscal year … 10 1997 ... Product dimension P Product # Product group … 210...
 
InfoCube: SAP BW Design <ul><li>Central data stores for reports and evaluations </li></ul><ul><li>Contains two types of da...
 
InfoCube: Example Customer group Region Division Dept. Stores Wholesale Retail Glass-  Ceramics  Plastics  Pottery  Copper...
InfoCube: Multi-dimensional analysis 1 Region North South East Glass- ware Ceramics Customer group Division Retail Wholesa...
InfoCube: Characteristics and Key Figures Division 1 100 RT-0001 North Plastics Retail Trade Sales Hours worked 4,000,000 ...
What is an InfoObject ? <ul><li>The various OLTP data models are unified for BW </li></ul><ul><li>Business objects / data ...
Types of InfoObjects  <ul><li>Characteristics : evaluation groups like “Cost Center”, “Product group”, “Material” </li></u...
Reporting Architecture Query OLAP server Database OLAP  Processor operates on ... InfoCube stored in Aggregates Database s...
Reporting Architecture Query OLAP server Database OLAP  Processor operates on ... InfoCube stored in Aggregates Database s...
Analyzer: Defining Queries
Analyzer embedded in Excel <ul><li>Business Explorer Analyzer ...  </li></ul><ul><ul><li>... implemented as an Add-in for ...
Thank You
Upcoming SlideShare
Loading in...5
×

Bw training 1 intro dw

12,739

Published on

3 Comments
5 Likes
Statistics
Notes
No Downloads
Views
Total Views
12,739
On Slideshare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
934
Comments
3
Likes
5
Embeds 0
No embeds

No notes for slide
  • Flexible set of ETL capabilities: a company can apply the various forms of ETL capabilities to its specific situations (flatfiles, DB connect, XML erläutern) Open to third party ETL-tools: ETL tool vendors have strength and weaknesses. We have build a tighter integration with Ascential Datastage, because many companies want an out-of-the-box integration with an ETL tool vendor. We have also packaged it. But all ETL tools have strength and weaknesses. Seamless, semantic integration to SAP applications.  to provide the customer with a set of capabilities that he can tailor to his needs and situation To get a complete view of the business: information islands (not consolidated and linked to each other) can not provide a 360 degree view
  • 1
  • Transcript of "Bw training 1 intro dw"

    1. 1. Overview of SAP BW
    2. 2. 1. Agenda 
    3. 3. Contents <ul><li>SAP BW Overview and Concepts </li></ul><ul><li>Introducing the Administrator Workbench </li></ul><ul><li>Data Modeling and Loading </li></ul><ul><li>Data Extraction (OLTP and Remote Systems) </li></ul><ul><li>The ODS and Business Content </li></ul><ul><li>Production Support </li></ul><ul><li>BEX Reporting </li></ul>
    4. 4. Data Warehousing and the SAP BW Overview and Concepts 
    5. 5. SAP Business Information Warehouse <ul><li>Data Warehouse system with optimized structures for reporting and analysis </li></ul><ul><li>OLAP engine and tools for BEX Reporting </li></ul><ul><li>Integrated meta data repository </li></ul><ul><li>Data extraction and data staging in OLTP </li></ul><ul><ul><li>Preconfigured support for data sources from R/3 Systems </li></ul></ul><ul><ul><li>BAPIs for data sources from non-SAP systems </li></ul></ul><ul><li>Automated Data Warehouse management </li></ul><ul><li>Administrator Workbench for controlling and managing content </li></ul>
    6. 6. Business Information Warehouse Architecture
    7. 7. Business Content Financial Accounting General Ledger Accnts Receivable Accnts Payable Special Ledger Profitability Analysis Product Costing Overhead Costing Profit Center Accnt Controlling Sales Purchasing Inventory Management Production Project Management Logistics Time Management Training & Events Human Resources Payroll Accounting Fixed Assets Administration
    8. 8. Close the Loop Common Meta Data - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Transaction Processing OLTP Transformation DSS External Extraction Action Analysis Analytical Applications
    9. 9. Architecture Overview R/3 OLTP Applications OLTP Reporting Production Data Extractor Business Information Warehouse Server Business Explorer Analyzer (hosted by MS Excel) Browser Non R/3 Production Data Extractor Non R/3 OLTP Applications 3rd party OLAP client Data Manager InfoCubes Operational Data Store 3rd party OLAP client 3rd party OLAP clients Meta Data Manager Staging Engine Administrator Workbench Administration Scheduling Monitor OLAP Processor Meta Data Repository InfoCatalog OLE-DB for OLAP Provider Data Manager BAPI MDX
    10. 10. Staging Process Update Rules R/3 OLTP System Business Information Warehouse Server Source Systems Data extract Sales Europe R/3 standard extractor Transfer Structure Communication Structure Mapping & Transformation Rules Info Sources InfoCube Update Rules Non R/3 OLTP System Data extract Sales Americas 3rd party extraction tool Transfer Structure Update Rules Research Institute InfoCube Market Information Transfer Structure Communication Structure Mapping & Transformation Rules
    11. 11. DataSource and InfoSource Transfer Rules Update Rules InfoCubes Communication structure Transfer Structure Extract Source Structure Business Information Warehouse Server Staging Engine OLTP System 1 OLTP System 2 Extract Source Structure Transfer Structure Transfer Structure Transfer Structure Extract Source Structure Transfer Structure DataSource Transfer Structure InfoSource Transfer Rules Transfer Rules ( Replicated )
    12. 12. Extraction, Transformation and Loading … to get a complete view of your business <ul><ul><li>Open for any source </li></ul></ul><ul><ul><li>Flexible set of ETL capabilities </li></ul></ul><ul><ul><li>Integration on application level </li></ul></ul><ul><ul><li>Open to third-party tools </li></ul></ul><ul><ul><li>Support of open standards </li></ul></ul>JDBC XLMA ODBO
    13. 13. Non-SAP Data Sources <ul><li>Staging BAPIs allow ... </li></ul><ul><ul><li>... certified SAP Partners to provide ready-to-run extraction & transformation tools </li></ul></ul><ul><ul><li>... customers to integrate their non-SAP data </li></ul></ul>Business Information Warehouse Server Administrator Workbench Staging Engine Data Base Non SAP Complementary Extraction & Transformation Tool Meta Data Repository File R/3 Mainframe RDBMS BAPI
    14. 14. Persistent Staging Area OLTP System Business Information Warehouse Server InfoCube InfoSource InfoSource PSA Data extract Data extract Update Rules BAPI Validation
    15. 15. Administrator Workbench <ul><li>Central Administration and Control </li></ul><ul><li>Modeling </li></ul><ul><li>Reporting Agent </li></ul><ul><li>Business Content </li></ul><ul><li>Monitoring </li></ul><ul><li>Metadata Repository </li></ul>
    16. 16. OLAP Processor <ul><li>Arbitrary drill-downs, horizontally, vertically, hierarchically </li></ul><ul><li>Built-in functions for ... </li></ul><ul><ul><li>... Aggregation: sum, count, count distinct, min / max, first / last, average by period, ... </li></ul></ul><ul><ul><li>... Comparison: difference, ratio, percent,... </li></ul></ul><ul><ul><li>... Analysis: sort, cumulated sum, time series,... </li></ul></ul><ul><ul><li>... Stock value handling </li></ul></ul><ul><ul><li>... Financial: currencies, fiscal year variants,... </li></ul></ul><ul><li>Derived key figures </li></ul>
    17. 17. More OLAP Goodies ... <ul><li>Hierarchies for interactive drill-down </li></ul><ul><ul><li>Tree-like structures on a characteristic’s domain </li></ul></ul><ul><ul><li>Structure defined in external hierarchy table (similar to master data)  no realignment problem! </li></ul></ul><ul><ul><li>Flexible versioning on hierarchies </li></ul></ul><ul><li>Variables </li></ul><ul><ul><li>Determine set of data for a query at run-time </li></ul></ul><ul><ul><ul><li>which complex filters, which hierarchies? </li></ul></ul></ul><ul><ul><li>Values for variables are calculated by the system or entered by the user </li></ul></ul><ul><ul><li>Values for variables can be used as input for formulae </li></ul></ul>
    18. 18. Currency Conversion <ul><li>Convert during data load and/or during analysis </li></ul><ul><li>Based on R/3 conversion rates </li></ul><ul><li>Conversion per </li></ul><ul><ul><li>fiscal year / fiscal period </li></ul></ul><ul><ul><li>calendar date / period </li></ul></ul><ul><ul><li>conversion rate type </li></ul></ul><ul><li>Mixed currencies within columns or rows </li></ul><ul><ul><li>multi currency aggregates can be resolved by a simple dill-down by units </li></ul></ul>Business Explorer Staging Engine OLAP Processor EUR convert DM FFR JPY LIT EUR JPY EUR USD NLG convert File R/3
    19. 19. Aggregates <ul><li>Speed up query performance by providing pre-aggregated views on InfoCubes </li></ul><ul><ul><li>Aggregates are also stored in InfoCube star schema </li></ul></ul><ul><li>Fully invisible to the end-user </li></ul><ul><ul><li>Created by administrator depending on InfoCube semantics and query anticipation </li></ul></ul><ul><ul><li>Optimized by OLAP processor selecting best aggregate </li></ul></ul><ul><li>Built-in consistency </li></ul><ul><ul><li>data package released for queries when aggregate update complete </li></ul></ul><ul><li>Zero downtime during load </li></ul>
    20. 20. BW Data Model InfoCube Time dimension T Period Fiscal year … 10 1997 ... Product dimension P Product # Product group … 2101004 displays ... Fact table C Customer # Region … 13970522 west ... Customer dimension P C T Quantity Revenue Discount Sales overhead 250 500,000 $ 50,000 $ 280,000 $ 50 100,000 $ 7,500 $ 60,000 $ … … … ... Customer # Name Location 13970522 Brightview, Inc. Palo Alto Master data
    21. 22. InfoCube: SAP BW Design <ul><li>Central data stores for reports and evaluations </li></ul><ul><li>Contains two types of data: </li></ul><ul><ul><li>Key Figures </li></ul></ul><ul><ul><li>Characteristics </li></ul></ul><ul><li>1 Fact Table and up to 16 Dimension Tables </li></ul><ul><ul><li>3 Dimensions are predefined by SAP </li></ul></ul><ul><ul><ul><li>Time </li></ul></ul></ul><ul><ul><ul><li>Unit </li></ul></ul></ul><ul><ul><ul><li>Info Package </li></ul></ul></ul>
    22. 24. InfoCube: Example Customer group Region Division Dept. Stores Wholesale Retail Glass- Ceramics Plastics Pottery Copper Pewter ware North South East
    23. 25. InfoCube: Multi-dimensional analysis 1 Region North South East Glass- ware Ceramics Customer group Division Retail Wholesale DeptStores Analysis of Ceramics division Analysis of Plastics division Analysis of Plastics division and Southern region Region North South East Glass- ware Ceramics Plastics Customer group Division Retail Wholesale DeptStores Region North South East Glass- ware Ceramics Plastics Customer group Division Retail Wholesale DeptStores 2 Region North South East Glass- ware Ceramics Plastics Customer group Division Retail Wholesale DeptStores 3 Product group Customer group Division Area Company code Region Period Profit Center Bus. Area Plastics Characteristics: Query Cache InfoCube
    24. 26. InfoCube: Characteristics and Key Figures Division 1 100 RT-0001 North Plastics Retail Trade Sales Hours worked 4,000,000 1,300,000 Key Figures Character- istics Customer group Region <ul><li>Key Figures are stored for a unique combination of Characteristic Values </li></ul><ul><li>Number of dimensions is degree of granularity / summarization level of the dataset </li></ul>
    25. 27. What is an InfoObject ? <ul><li>The various OLTP data models are unified for BW </li></ul><ul><li>Business objects / data elements become InfoObjects </li></ul>InfoObject “ 0COSTCENTER” InfoObjects are unique across application components ! R/3 OLTP CO Controlling HR Human Resources Table of cost centers Table of employees BW Extractor DataSource for Cost Center
    26. 28. Types of InfoObjects <ul><li>Characteristics : evaluation groups like “Cost Center”, “Product group”, “Material” </li></ul><ul><ul><li>Have discrete values stored in their master data tables (e.g. the characteristic “Region” has the values “North”, “South”, ... ) </li></ul></ul><ul><ul><li>Special types of characteristics: </li></ul></ul><ul><ul><ul><li>Time characteristics like “Fiscal period”, “Calendar year”, ... </li></ul></ul></ul><ul><ul><ul><li>Unit characteristics which comprise currencies and units of measure like “Local currency” or “Sales quantity” </li></ul></ul></ul><ul><li>Keyfigures: c ontinuously valued numerical fields like amounts and quantities (e.g.: “Revenue” and “Sales quantity”) </li></ul>
    27. 29. Reporting Architecture Query OLAP server Database OLAP Processor operates on ... InfoCube stored in Aggregates Database stores ... Business Explorer Analyzer defines ... Star Schema
    28. 30. Reporting Architecture Query OLAP server Database OLAP Processor operates on ... InfoCube stored in Aggregates Database stores ... Business Explorer Analyzer defines ... Star Schema Business Explorer Analyzer shows ... Query View stored in Excel Workbook
    29. 31. Analyzer: Defining Queries
    30. 32. Analyzer embedded in Excel <ul><li>Business Explorer Analyzer ... </li></ul><ul><ul><li>... implemented as an Add-in for Microsoft Excel </li></ul></ul><ul><ul><li>... links query rsults to cells in Excel workbooks (e.g. multiple queries within same worksheet) </li></ul></ul><ul><ul><li>... offers all navigation features of OLAP-Processor via mouse-click, context-menus, toolbar etc. </li></ul></ul>End-users build on existing Excel and MS Office know how Workbooks as container for queries (store, e-mail) All rendition and presentation features of Excel available
    31. 33. Thank You
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×